2,699 research outputs found

    Scheduling data flow program in xkaapi: A new affinity based Algorithm for Heterogeneous Architectures

    Get PDF
    Efficient implementations of parallel applications on heterogeneous hybrid architectures require a careful balance between computations and communications with accelerator devices. Even if most of the communication time can be overlapped by computations, it is essential to reduce the total volume of communicated data. The literature therefore abounds with ad-hoc methods to reach that balance, but that are architecture and application dependent. We propose here a generic mechanism to automatically optimize the scheduling between CPUs and GPUs, and compare two strategies within this mechanism: the classical Heterogeneous Earliest Finish Time (HEFT) algorithm and our new, parametrized, Distributed Affinity Dual Approximation algorithm (DADA), which consists in grouping the tasks by affinity before running a fast dual approximation. We ran experiments on a heterogeneous parallel machine with six CPU cores and eight NVIDIA Fermi GPUs. Three standard dense linear algebra kernels from the PLASMA library have been ported on top of the Xkaapi runtime. We report their performances. It results that HEFT and DADA perform well for various experimental conditions, but that DADA performs better for larger systems and number of GPUs, and, in most cases, generates much lower data transfers than HEFT to achieve the same performance

    Locality-aware parallel block-sparse matrix-matrix multiplication using the Chunks and Tasks programming model

    Full text link
    We present a method for parallel block-sparse matrix-matrix multiplication on distributed memory clusters. By using a quadtree matrix representation, data locality is exploited without prior information about the matrix sparsity pattern. A distributed quadtree matrix representation is straightforward to implement due to our recent development of the Chunks and Tasks programming model [Parallel Comput. 40, 328 (2014)]. The quadtree representation combined with the Chunks and Tasks model leads to favorable weak and strong scaling of the communication cost with the number of processes, as shown both theoretically and in numerical experiments. Matrices are represented by sparse quadtrees of chunk objects. The leaves in the hierarchy are block-sparse submatrices. Sparsity is dynamically detected by the matrix library and may occur at any level in the hierarchy and/or within the submatrix leaves. In case graphics processing units (GPUs) are available, both CPUs and GPUs are used for leaf-level multiplication work, thus making use of the full computing capacity of each node. The performance is evaluated for matrices with different sparsity structures, including examples from electronic structure calculations. Compared to methods that do not exploit data locality, our locality-aware approach reduces communication significantly, achieving essentially constant communication per node in weak scaling tests.Comment: 35 pages, 14 figure

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft
    • …
    corecore