18 research outputs found

    Locality : A useful notion for proving inexpressibility in Finite Model Theory

    Get PDF
    This thesis discusses the notion of locality used in finite model theory to obtain results about the expressive power of first order logic. It turns out that the most commonly used Ehrenfeucht-Fraïssé games are also applicable over finite structures. However, we analyze with an example the need for simpler tools for finite structures due to the complex combinatorial arguments required while using EF-games. We argue that locality is such a tool, although the gap between games and locality is quite narrow as the latter is in fact based on the former. Intuitively speaking: locality of FO implies that in order to check the satisfiability of a FO formula over a finite structure, it is enough to look at a small portion of the universe (which will be called the neighborhood of a point). We discuss two commonly known notions of locality given by William Hanf and Haim Gaifman. We provide the original results of the authors and then their modified versions suitable for finite structures. We then show that first order logic over any relational vocabulary has both of these locality properties. In order to grasp the idea of locality we also include examples wherever required. Towards the end of the thesis we also discuss deficiencies and limitations of the two types of locality and possible solutions to overcome them. In the last section we also discuss locality of order-invariant first order formulas

    Successor-Invariant First-Order Logic on Graphs with Excluded Topological Subgraphs

    Get PDF
    We show that the model-checking problem for successor-invariant first-order logic is fixed-parameter tractable on graphs with excluded topological subgraphs when parameterised by both the size of the input formula and the size of the exluded topological subgraph. Furthermore, we show that model-checking for order-invariant first-order logic is tractable on coloured posets of bounded width, parameterised by both the size of the input formula and the width of the poset. Our result for successor-invariant FO extends previous results for this logic on planar graphs (Engelmann et al., LICS 2012) and graphs with excluded minors (Eickmeyer et al., LICS 2013), further narrowing the gap between what is known for FO and what is known for successor-invariant FO. The proof uses Grohe and Marx's structure theorem for graphs with excluded topological subgraphs. For order-invariant FO we show that Gajarsk\'y et al.'s recent result for FO carries over to order-invariant FO

    Order-Invariant First-Order Logic over Hollow Trees

    Get PDF
    We show that the expressive power of order-invariant first-order logic collapses to first-order logic over hollow trees. A hollow tree is an unranked ordered tree where every non leaf node has at most four adjacent nodes: two siblings (left and right) and its first and last children. In particular there is no predicate for the linear order among siblings nor for the descendant relation. Moreover only the first and last nodes of a siblinghood are linked to their parent node, and the parent-child relation cannot be completely reconstructed in first-order

    The Generalised Colouring Numbers on Classes of Bounded Expansion

    Get PDF
    The generalised colouring numbers admr(G)\mathrm{adm}_r(G), colr(G)\mathrm{col}_r(G), and wcolr(G)\mathrm{wcol}_r(G) were introduced by Kierstead and Yang as generalisations of the usual colouring number, also known as the degeneracy of a graph, and have since then found important applications in the theory of bounded expansion and nowhere dense classes of graphs, introduced by Ne\v{s}et\v{r}il and Ossona de Mendez. In this paper, we study the relation of the colouring numbers with two other measures that characterise nowhere dense classes of graphs, namely with uniform quasi-wideness, studied first by Dawar et al. in the context of preservation theorems for first-order logic, and with the splitter game, introduced by Grohe et al. We show that every graph excluding a fixed topological minor admits a universal order, that is, one order witnessing that the colouring numbers are small for every value of rr. Finally, we use our construction of such orders to give a new proof of a result of Eickmeyer and Kawarabayashi, showing that the model-checking problem for successor-invariant first-order formulas is fixed-parameter tractable on classes of graphs with excluded topological minors

    On the Expressiveness of LARA: A Unified Language for Linear and Relational Algebra

    Get PDF
    We study the expressive power of the Lara language - a recently proposed unified model for expressing relational and linear algebra operations - both in terms of traditional database query languages and some analytic tasks often performed in machine learning pipelines. We start by showing Lara to be expressive complete with respect to first-order logic with aggregation. Since Lara is parameterized by a set of user-defined functions which allow to transform values in tables, the exact expressive power of the language depends on how these functions are defined. We distinguish two main cases depending on the level of genericity queries are enforced to satisfy. Under strong genericity assumptions the language cannot express matrix convolution, a very important operation in current machine learning operations. This language is also local, and thus cannot express operations such as matrix inverse that exhibit a recursive behavior. For expressing convolution, one can relax the genericity requirement by adding an underlying linear order on the domain. This, however, destroys locality and turns the expressive power of the language much more difficult to understand. In particular, although under complexity assumptions the resulting language can still not express matrix inverse, a proof of this fact without such assumptions seems challenging to obtain

    Consistent Query Answering for Primary Keys in Logspace

    Get PDF
    We study the complexity of consistent query answering on databases that may violate primary key constraints. A repair of such a database is any consistent database that can be obtained by deleting a minimal set of tuples. For every Boolean query q, CERTAINTY(q) is the problem that takes a database as input and asks whether q evaluates to true on every repair. In [Koutris and Wijsen, ACM TODS, 2017], the authors show that for every self-join-free Boolean conjunctive query q, the problem CERTAINTY(q) is either in P or coNP-complete, and it is decidable which of the two cases applies. In this paper, we sharpen this result by showing that for every self-join-free Boolean conjunctive query q, the problem CERTAINTY(q) is either expressible in symmetric stratified Datalog (with some aggregation operator) or coNP-complete. Since symmetric stratified Datalog is in L, we thus obtain a complexity-theoretic dichotomy between L and coNP-complete. Another new finding of practical importance is that CERTAINTY(q) is on the logspace side of the dichotomy for queries q where all join conditions express foreign-to-primary key matches, which is undoubtedly the most common type of join condition

    Order-Invariance in the Two-Variable Fragment of First-Order Logic

    Get PDF
    We study the expressive power of the two-variable fragment of order-invariant first-order logic. This logic departs from first-order logic in two ways: first, formulas are only allowed to quantify over two variables. Second, formulas can use an additional binary relation, which is interpreted in the structures under scrutiny as a linear order, provided that the truth value of a sentence over a finite structure never depends on which linear order is chosen on its domain. We prove that on classes of structures of bounded degree, any property expressible in this logic is definable in first-order logic. We then show that the situation remains the same when we add counting quantifiers to this logic

    Successor-Invariant First-Order Logic on Classes of Bounded Degree

    Get PDF
    We study the expressive power of successor-invariant first-order logic, which is an extension of first-order logic where the usage of an additional successor relation on the structure is allowed, as long as the validity of formulas is independent on the choice of a particular successor. We show that when the degree is bounded, successor-invariant first-order logic is no more expressive than first-order logic

    Order-Invariant Types and their Applications

    Get PDF
    Our goal is to show that the standard model-theoretic concept of types can be applied in the study of order-invariant properties, i.e., properties definable in a logic in the presence of an auxiliary order relation, but not actually dependent on that order relation. This is somewhat surprising since order-invariant properties are more of a combinatorial rather than a logical object. We provide two applications of this notion. One is a proof, from the basic principles, of a theorem by Courcelle stating that over trees, order-invariant MSO properties are expressible in MSO with counting quantifiers. The other is an analog of the Feferman-Vaught theorem for order-invariant properties
    corecore