10 research outputs found

    Local texture stationarity indicator for filtering Doñana wetlands SAR images

    Get PDF
    This paper defines a new operator, named Ds, for local texture stationarity assessment on SAR images. . The aim is to discriminate heterogeneous targets from land cover types of high normalized variance values, as those observed in flooded vegetation areas of Doñana wetlands. Suitable Ds thresholds for such discrimination were estimated for different window sizes through Monte Carlo simulations of synthetic textures. Maximum stationary texture windows were then determined on Doñana ASAR scenes by Ds multi-resolution thresholding and averaging was applied within. Results reveal the substantial degree of smoothing achieved over high variance cover types, while edges among different targets were properly preserved.Postprint (published version

    Local isotropy indicator for SAR image filtering: application to Envisat/ASAR images of the Doñana Wetland

    Get PDF
    ©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper explores a geometrical and computationally simple operator, named Ds, for local isotropy assessment on SAR images. It is assumed that isotropic intensity distributions in natural areas, either textured or nontextured, correspond to a single cover class. Ds is used to measure isotropy in processing neighborhoods and decide if they can be considered as belonging to a unique cover class. The speckle statistical properties are used to determine suitable Ds thresholds for discriminating heterogeneous targets from isotropic cover types at different window sizes. An assessment of Ds as an edge detector showed sensitivities similar to those of the ratio edge operator for straight, sharp boundaries, centered in the processing window, but significantly better sensitivity for detecting heterogeneities during the window expansion in multiresolution filtering. Furthermore, Ds presents the advantage versus the ratio edge coefficient of being rotationally invariant, and its computation indicates the direction of the main intensity gradient in the processing window. The Ds operator is used in a multiresolution fashion for filtering ASAR scenes of the Doñana wetland. The intensities in isotropic areas are averaged in order to flatten fluctuations within cover types and facilitate a subsequent land cover classification. The results show high degree of smoothing within textured cover classes, plus effective spatial adaptation to gradients and irregular boundaries, substantiating the usefulness of this operator for filtering SAR data of natural areas with the purpose of classification.Peer ReviewedPostprint (author's final draft

    Local isotropy indicator for SAR image filtering: application to Envisat/ASAR images of the Doñana Wetland

    Get PDF
    This paper explores a geometrical and computationally simple operator, named Ds, for local isotropy assessment on SAR images. It is assumed that isotropic intensity distributions in natural areas, either textured or nontextured, correspond to a single cover class. Ds is used to measure isotropy in processing neighborhoods and decide if they can be considered as belonging to a unique cover class. The speckle statistical properties are used to determine suitable Ds thresholds for discriminating heterogeneous targets from isotropic cover types at different window sizes. An assessment of Ds as an edge detector showed sensitivities similar to those of the ratio edge operator for straight, sharp boundaries, centered in the processing window, but significantly better sensitivity for detecting heterogeneities during the window expansion in multiresolution filtering. Furthermore, Ds presents the advantage versus the ratio edge coefficient of being rotationally invariant, and its computation indicates the direction of the main intensity gradient in the processing window. The Ds operator is used in a multiresolution fashion for filtering ASAR scenes of the Doñana wetland. The intensities in isotropic areas are averaged in order to flatten fluctuations within cover types and facilitate a subsequent land cover classification. The results show high degree of smoothing within textured cover classes, plus effective spatial adaptation to gradients and irregular boundaries, substantiating the usefulness of this operator for filtering SAR data of natural areas with the purpose of classification

    Local texture stationarity indicator for filtering DoÑana wetlands SAR images.

    No full text

    Local texture stationarity indicator for filtering Doñana wetlands SAR images

    No full text
    This paper defines a new operator, named Ds, for local texture stationarity assessment on SAR images. . The aim is to discriminate heterogeneous targets from land cover types of high normalized variance values, as those observed in flooded vegetation areas of Doñana wetlands. Suitable Ds thresholds for such discrimination were estimated for different window sizes through Monte Carlo simulations of synthetic textures. Maximum stationary texture windows were then determined on Doñana ASAR scenes by Ds multi-resolution thresholding and averaging was applied within. Results reveal the substantial degree of smoothing achieved over high variance cover types, while edges among different targets were properly preserved

    Time series analysis of high resolution remote sensing data to assess degradation of vegetation cover of the island of Socotra (Yemen)

    Get PDF
    The island of Socotra has long been in geographical isolation, hence nearly 30% of the plant species are believed to be endemic to the island. Until the end of 20th century there was only very little and incomplete information and literature about the vegetation on the island. This isolation broke down in 1990 with the country unification in which then the island received much attention. Subsequently the scientific knowledge of the local flora slowly increased, but many of plant species are now reported to be confined into small populations, hence being particularly vulnerable to habitat loss, overgrazing, as well as urban expansion. 1. The overall objective of this research attempted to assess and examine the trends of vegetation changes since 1972 to 2010 with the use of Landsat MSS, TM and ETM+ images and to investigate the related driving factors, such as rainfall, grazing pressure changes and underlying spatial variability of the landscape. This is to answer the overall question: Is there a trend in biomass, cover and species composition on Socotra Island over the last 40 years? If so, is that trend associated with the rainfall patterns? What are the drivers behind the vegetation change? And then how can we define changes in patterns or changes in this study area? 2. From a methodological point of view, our approach of systematically using remote sensing technology data proved scientifically an applicable tool to improve our understanding of the spatial complexity and heterogeneity of the vegetation cover as well as to provide a conceptual method with specific data for monitoring the changes over this time period. Our data obtained from these different Landsat sensors during the study period were - after many sophisticated processing steps - essentially able to provide time series information for Normalized Difference Vegetation Index (NDVI) data and to assess the long term trend in vegetation cover in the island. 3. Moreover, our approach combining supervised maximum-likelihood and unsupervised classification with the pre- and the post-classification approaches besides the knowledge based classification was table to provide sufficient results to distinguish and to map nine (9) terrestrial vegetation cover classes. The overall accuracy (compared with ground truth data) was about 91%, 77%, 70% and 72% for the images 2005, 1994, 1984 and 1972 respectively. Consecutively, the GIS analysis allowed estimates of highly valuable information as absolute areas and relative coverage of particular vegetation classes over the island with their spatial distribution and also their ecological requirements. Analysis of climatic conditions and NDVI 4. As a results of the complex topography of the study area and the wide climate range, with the guidance of prior knowledge of functional relationships between site parameters, ecosystem and the specific form of biological production, our work resulted in a division of the entire area into six variously sized ecosystem units, which were enough to properly depict the spatial heterogeneity of the rainfall and vegetation and to assist reflecting the influence and reaction between environmental parameters as well as it might have significance both for development of resources and for conservation of environment

    Climate-Smart Forestry in Mountain Regions

    Get PDF
    This open access book offers a cross-sectoral reference for both managers and scientists interested in climate-smart forestry, focusing on mountain regions. It provides a comprehensive analysis on forest issues, facilitating the implementation of climate objectives. This book includes structured summaries of each chapter. Funded by the EU’s Horizon 2020 programme, CLIMO has brought together scientists and experts in continental and regional focus assessments through a cross-sectoral approach, facilitating the implementation of climate objectives. CLIMO has provided scientific analysis on issues including criteria and indicators, growth dynamics, management prescriptions, long-term perspectives, monitoring technologies, economic impacts, and governance tools

    Climate-Smart Forestry in Mountain Regions

    Get PDF
    This open access book offers a cross-sectoral reference for both managers and scientists interested in climate-smart forestry, focusing on mountain regions. It provides a comprehensive analysis on forest issues, facilitating the implementation of climate objectives. This book includes structured summaries of each chapter. Funded by the EU’s Horizon 2020 programme, CLIMO has brought together scientists and experts in continental and regional focus assessments through a cross-sectoral approach, facilitating the implementation of climate objectives. CLIMO has provided scientific analysis on issues including criteria and indicators, growth dynamics, management prescriptions, long-term perspectives, monitoring technologies, economic impacts, and governance tools

    Reliability analysis of flood defence structures and systems in Europe

    Full text link
    corecore