18 research outputs found

    Constructive Heuristics for the Minimum Labelling Spanning Tree Problem: a preliminary comparison

    Get PDF
    This report studies constructive heuristics for the minimum labelling spanning tree (MLST) problem. The purpose is to find a spanning tree that uses edges that are as similar as possible. Given an undirected labeled connected graph (i.e., with a label or color for each edge), the minimum labeling spanning tree problem seeks a spanning tree whose edges have the smallest possible number of distinct labels. The model can represent many real-world problems in telecommunication networks, electric networks, and multimodal transportation networks, among others, and the problem has been shown to be NP-complete even for complete graphs. A primary heuristic, named the maximum vertex covering algorithm has been proposed. Several versions of this constructive heuristic have been proposed to improve its efficiency. Here we describe the problem, review the literature and compare some variants of this algorithm

    Performance Guarantees of Local Search for Multiprocessor Scheduling

    Get PDF
    Increasing interest has recently been shown in analyzing the worst-case behavior of local search algorithms. In particular, the quality of local optima and the time needed to find the local optima by the simplest form of local search has been studied. This paper deals with worst-case performance of local search algorithms for makespan minimization on parallel machines. We analyze the quality of the local optima obtained by iterative improvement over the jump, swap, multi-exchange, and the newly defined push neighborhoods. Finally, for the jump neighborhood we provide bounds on the number of local search steps required to find a local optimum.operations research and management science;

    Labeled Traveling Salesman Problems: Complexity and approximation

    Get PDF
    We consider labeled Traveling Salesman Problems, defined upon a complete graph of n vertices with colored edges. The objective is to find a tour of maximum or minimum number of colors. We derive results regarding hardness of approximation and analyze approximation algorithms, for both versions of the problem. For the maximization version we give a 1/21/2-approximation algorithm based on local improvements and show that the problem is APX-hard. For the minimization version, we show that it is not approximable within n1ϵn^{1-\epsilon} for any fixed ϵ>0\epsilon>0. When every color appears in the graph at most rr times and rr is an increasing function of nn, the problem is shown not to be approximable within factor O(r1ϵ)O(r^{1-\epsilon}). For fixed constant rr we analyze a polynomial-time (r+Hr)/2(r +H_r)/2 approximation algorithm, where HrH_r is the rr-th harmonic number, and prove APX-hardness for r=2r = 2. For all of the analyzed algorithms we exhibit tightness of their analysis by provision of appropriate worst-case instances

    Performance Analysis of Evolutionary Algorithms for the Minimum Label Spanning Tree Problem

    Get PDF
    Some experimental investigations have shown that evolutionary algorithms (EAs) are efficient for the minimum label spanning tree (MLST) problem. However, we know little about that in theory. As one step towards this issue, we theoretically analyze the performances of the (1+1) EA, a simple version of EAs, and a multi-objective evolutionary algorithm called GSEMO on the MLST problem. We reveal that for the MLSTb_{b} problem the (1+1) EA and GSEMO achieve a b+12\frac{b+1}{2}-approximation ratio in expected polynomial times of nn the number of nodes and kk the number of labels. We also show that GSEMO achieves a (2ln(n))(2ln(n))-approximation ratio for the MLST problem in expected polynomial time of nn and kk. At the same time, we show that the (1+1) EA and GSEMO outperform local search algorithms on three instances of the MLST problem. We also construct an instance on which GSEMO outperforms the (1+1) EA

    Extensions of the minimum labelling spanning tree problem, Journal of Telecommunications and Information Technology, 2006, nr 4

    Get PDF
    In this paper we propose some extensions of the minimum labelling spanning tree problem. The main focus is on the minimum labelling Steiner tree problem: given a graph G with a color (label) assigned to each edge, and a subset Q of the nodes of G (basic vertices), we look for a connected subgraph of G with the minimum number of different colors covering all the basic vertices. The problem has several applications in telecommunication networks, electric networks, multimodal transportation networks, among others, where one aims to ensure connectivity by means of homogeneous connections. Numerical results for several metaheuristics to solve the problem are presented

    Local search for the minimum label spanning tree problem with bounded color classes

    Get PDF
    In the Minimum Label Spanning Tree problem, the input consists of an edge-colored undirected graph, and the goal is to find a spanning tree with the minimum number of different colors. We investigate the special case where every color appears at most r times in the input graph. This special case is polynomially solvable for r=2, and NP- and APX-complete for any fixed r3.\ud \ud We analyze local search algorithms that are allowed to switch up to k of the colors used in a feasible solution. We show that for k=2 any local optimum yields an (r+1)/2-approximation of the global optimum, and that this bound is tight. For every k3, there exist instances for which some local optima are a factor of r/2 away from the global optimum.\u
    corecore