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Abstract— In this paper we propose some extensions of the

minimum labelling spanning tree problem. The main focus

is on the minimum labelling Steiner tree problem: given

a graph GGG with a color (label) assigned to each edge, and

a subset QQQ of the nodes of GGG (basic vertices), we look for

a connected subgraph of GGG with the minimum number of dif-

ferent colors covering all the basic vertices. The problem has

several applications in telecommunication networks, electric

networks, multimodal transportation networks, among others,

where one aims to ensure connectivity by means of homoge-

neous connections. Numerical results for several metaheuris-

tics to solve the problem are presented.

Keywords— network design, metaheuristics, spanning trees, la-

belling trees, Steiner tree problem.

1. Introduction

Many real-world problems can be modelled by means of

graphs where a label or a weight is assigned to each edge

and the aim is to optimize a certain function of these

weights. In particular, one can think of problems where

the objective is to find homogeneous subgraphs (respect-

ing certain connectivity constraints) of the original graph.

This is the case, e.g., for telecommunication networks (and,

more generally, any type of communication networks) that

are managed by different and competing companies. The

aim of each company is to ensure the service to each ter-

minal node of the network by minimizing the cost (i.e., by

minimizing the use of connections managed by other com-

panies).

This kind of problem can be modelled as follows. The

telecommunication network is represented by a graph

G = (V,E) where with each edge e ∈ E is assigned a set

of colors Le and each color denotes a different company

that manages the edge. The aim of each company is to de-

fine a spanning tree of G that uses the minimum number of

colors. When the graph represents a transportation network

and the colors, assigned to each edge, represent different

modes of transportation, then looking for a path that uses

the minimum number of colors from a given source s to

a given destination t means to look for a path connect-

ing s and t using the minimum number of different modes

of transportation.

We focus on the minimum labelling Steiner tree problem

(MLSteiner): given a graph G = (V,E), with a label (color)

assigned to each edge and a subset Q ⊆ V of nodes of G

(basic vertices or nodes), we look for an acyclic connected

subgraph of G spanning all basic nodes and using the min-

imum number of different colors. This problem is an ex-

tension of the minimum labelling spanning tree problem

(MLST): given a graph G with a label (color) assigned to

each edge we look for a spanning tree of G with the mini-

mum number of different colors.

In this paper, first we review the earlier results existing in

the literature to solve the MLST. Then we discuss how these

approaches can be easily extended to efficiently solve the

MLSteiner and present a comprehensive study of experi-

mental results.

The sequel of the paper is organized as follows. Section 2

summarizes existing approaches for the MLST as well

as some important references on the Steiner problem in

graphs. In Section 3 we sketch some extensions of the

MLST related to the MLSteiner which is the focus of this

study. Section 4 presents our modifications of the solu-

tion approaches for the MLST to solve the MLSteiner. In

Section 5 we present experimental results, and, finally, Sec-

tion 6 gives some further research options.

2. Literature review

2.1. Earlier approaches to solve the MLST

The MLST was initially addressed by Broersma and Li [2].

They proved, on the one hand, that the MLST is NP-hard by

reduction from the minimum dominating set problem, and,

on the other hand, that the “opposite” problem of looking

for a spanning tree with the maximum number of colors is

polynomially solvable. Independently, Chang and Leu [6]

provided a different NP-hardness proof of the problem by

reduction from the set covering problem. They also devel-

oped two heuristics to determine feasible solutions of the

problem and tested the performance of these heuristics by

comparison with the results of an exact approach based on

an A∗ algorithm.

Krumke and Wirth [14] formulated an approximation algo-

rithm (in the sequel referred to as maximum vertex covering

algorithm – MVCA) with logarithmic performance guaran-

tee and showed also that the problem cannot be approxi-

mated within a constant factor. Wan et al. [19] provided

a better analysis of the greedy algorithm given in [14] by

showing that its worst case performance ratio is at most

ln(n−1)+ 1 where n denotes the number of nodes of the

given graph, i.e., n = |V |. Recently, Xiong et al. [23] ob-

tained the better bound 1 + lnb where each color appears

at most b times. Moreover, Xiong et al. [21] proposed

a genetic algorithm to solve the MLST and provided some

experimental results.
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In [5] we presented several metaheuristic approaches to

solve the MLST (namely, simulated annealing, reactive tabu

search, the pilot method and variable neighborhood search)

and compared them with the results provided by the MVCA

heuristic presented in [14, 21]. Recently, a modification of

our pilot method combined with the genetic algorithm of

Xiong et al. [21] was shown to be effective by [22].

A variant of the problem has been studied by Brüggemann

et al. [3], where the MLST with bounded color classes has

been addressed. In this variant, each color of the graph is

assumed to appear at most r times. This special case of

the MLST is polynomially solvable for r = 2, and NP-hard

and APX-complete for r ≥ 3. Local search algorithms for

this variant, that are allowed to switch up to k of the colors

used in a feasible solution have been studied, too. For

k = 2, the authors showed that any local optimum yields

an
(r+1)

2
-approximation of the global optimum, and this

bound is best possible. For every k≥ 3, there exist instances

for which some local optimum is a factor of r
2

away from

the global optimum.

2.2. The Steiner tree problem

Consider an undirected connected graph G = (V,E) with

node set V , edge set E , and nonnegative weights associ-

ated with the edges. Given a set Q ⊆ V of specified ver-

tices (called terminals or basic vertices) Steiner’s problem

in graphs (SP) is to find a minimum cost subgraph of G

such that there exists a path in the subgraph between every

pair of basic vertices. In order to achieve this minimum

cost subgraph additional vertices from the set S := V \Q,

called Steiner vertices, may be included. Since all edge

weights are assumed to be nonnegative, there is an optimal

solution which is a tree, called Steiner tree.

Correspondingly, Steiner’s problem in directed graphs

(SPD) is to find a minimum cost directed subgraph of

a given graph that contains a directed path between a root

node and every basic vertex. Applications of the SP and

the SPD are frequently found in many problems related

to network design and telecommunications. Beyond that,

SP and SPD have equal importance also for the layout of

connection structures in networks as, e.g., in topological

network design, location science and VLSI (very large scale

integrated circuits) design.

The SP is a well-studied problem and there is a wealth of

excellent reference providing information on Steiner prob-

lems, such as [11]. Additional surveys on quite broad as-

pects of Steiner tree problems are provided by [10, 16, 20]

as well as, most recently, [17].

3. Extension of the MLST

Steiner tree problems refer to important problem classes in

graphs. The SP may be called one of the most important

combinatorial optimization problems. Modifications and

generalizations of Steiner tree problems will certainly arise

and become a core focus of research and telecommunica-

tions applications including additional online optimization

problems as well as stochastic optimization approaches. In

that sense we have defined the MLSteiner as an extension

of both, the MLST as well as the SP. But in this section

we go beyond this.

Examples for possible generalizations may include,

e.g., a weighted labelling Steiner tree problem with bud-

get constraints. Here we are given a graph G with a label

(color) assigned to each edge and we look for a spanning

tree with respect to a given subset Q of the nodes of G

with the minimum number of different colors. Further-

more, one may incorporate some weights on the edges and

define a budget constraint on the sum of the weights of

included edges while still minimizing the number of labels

or more versatile capacitated Steiner tree problems.

Other ideas on generalizations of the MLST refer to certain

ring network design problems with or without budget con-

straints (see, e.g., [8]) that may be formulated in terms of

minimizing the number of labels once they are to be defined

and considered. While these generalizations may prove to

be important, subsequently we focus on the MLSteiner.

4. Different metaheuristic approaches

to solve the MLSteiner

We aim for a Steiner tree which connects all required or ba-

sic nodes with a minimum number of colors/labels. Within

the steps of the search process only those edges that are

colored according to the currently activated colors may be

used. For describing different metaheuristic approaches for

the MLSteiner we heavily rely on our previous approaches

for the MLST described in [5]. We have adapted our code

for the MLST so that the algorithm checks whether the re-

sulting subgraph (restricted to the edges with actually used

or activated colors) connects all required nodes. If there are

disconnections, large penalty values are added to the objec-

tive function so that the search process is directed towards

feasibility.

Before going into detail let us introduce some notation.

Given an undirected graph G = (V,Q,E) with V being the

set of nodes, Q⊆V the subset of basic nodes and E denot-

ing the set of edges, let ce be the color (label) associated

with edge e ∈ E and L = {c1,c2, . . . ,cl} be the set of all

colors. We denote by C(F) =
⋃

e∈F ce the set of colors as-

signed with edges in F ⊆ E . Any subgraph T of G can be

represented by the set of its colors C(T ). Given a set of col-

ors C, we define by V (C) the subset of nodes of G covered

by the edge set defined by C, i.e., V (C) = {i ∈V : e ∈ E is

incident to i and ce ∈C}. A set of colors C is feasible for

the MLSteiner if and only if the corresponding set of edges

defines a connected subgraph GC = (V ′,E ′) that spans all

the basic nodes of G, i.e., V ′∩Q = Q. (Moreover, we note

in passing that we assume |Le|= 1 throughout the remain-

der of this paper. That is, exactly one color is assigned to

each edge.).
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4.1. Greedy

The algorithm starts with an empty set of edges. Then,

it iteratively selects one color among the unused ones and

inserts all edges of that color in the graph until all the basic

nodes are connected. At each iteration it tests all the unused

colors and chooses a color in that way that the decrease in

the number of Steiner connected components is as large as

possible, where we define a Steiner connected component

as a connected component H = (V ′,E ′) of the graph that

contains at least one basic node, e.g., V ′ ∩Q 6= /0. The

proposed algorithm is illustrated below.

Algorithm: The greedy heuristic

Let C = /0 be the set of used colors.

Repeat

let H be the subgraph of G restricted to edges

with colors from C;

let H ′ be the subgraph of H restricted to

the Steiner connected components of H;

for all ci ∈ L\C do

determine the number of Steiner connected

components when inserting all edges with

color ci in H;

end for

choose color ci with the smallest resulting number

of Steiner connected components and do:

C = C∪{ci};

until H ′ is connected.

The greedy strategy we adopt differs from the MVCA

heuristic since it carries out operations on the Steiner con-

nected components of subgraph H, while MVCA considers

all the connected components of such a graph.

The running time of the proposed greedy strategy is O(l2n),
where l is the total number of different colors in G. Indeed,

the repeat loop will take O(l) steps and we have O(ln) to

carry out the for-loop.

Since the MLST is a special case of the MLSteiner, then,

by applying the same reasoning introduced in [19], we can

derive the following approximation result.

Theorem 1: Given any MLSteiner instance with n nodes

and q basic nodes (q < n, n > 1), the greedy algorithm

provides an (ln(q−1)+ 1)-approximation.

4.2. Variable neighborhood search

Variable neighborhood search (VNS) goes back to Mlade-

nović and Hansen [15]. The underlying idea of VNS is to

generalize the classical local search based approaches by

considering a multi-neighborhood structure, i.e., a set of

pre-selected neighborhood structures N = {N1,N2, . . . ,Ns}

such that N j(C), j = 1,2, . . . ,s is the set of solutions in

the jth neighborhood of C. The basic VNS algorithm, ap-

plied to solve the MLSteiner, is described below.

Algorithm: The basic VNS algorithm

Step 1. Consider an initial feasible solution C ⊆ L

and set k← 1.

Step 2. Generate at random a solution C′ ∈ Nk(C).

Step 3. Apply a local search algorithm, starting from

the initial solution C′, to obtain a local opti-

mum C′′.

Step 4. If |C′′|< |C| then: C←C′′ and set k← 1

otherwise k← k + 1 .

Step 5. If k ≤ kmax then go to Step 1, else Stop.

We implemented VNS by using three different neighbor-

hood structures, in order to check whether one neighbor-

hood is better than the other. In particular, given a feasible

color set C, we consider the following neighborhood struc-

tures:

• k – switch neighborhood N1

k (C)
A set C′ ∈ N1

k (C) if and only if we can get the color

set C′ from the color set C by removing up to k col-

ors from C and adding up to k new colors. That is,

N1

k (C) = {C′ ⊆ L : |C′\C| ≤ k and |C\C′| ≤ k}.

• k – covering neighborhood N2

k (C)
A set C′ ∈ N2

k (C) if and only if the common col-

ors between C and C′ cover at least k basic nodes.

That is, N2

k (C) = {C′ ⊆ L : |V (C′ ∩C) ∩ Q| ≥ k

and |C′| ≤ |C|}.

• k – mixed neighborhood N3

k (C)
A set C′ ∈ N3

k (C) if and only if C′ contains exactly

|C|− k colors in common with C and all the remain-

ing different colors cover a greater number of ba-

sic vertices. That is, N3

k (C) = {C′ ⊆ L : |C\C′| = k,

|C′\C| ≤ k and |V (C\C′)∩Q| ≤ |V (C′\C)∩Q|}.

For each of the neighborhood structures described above,

the procedure starts from an initial feasible solution C pro-

vided by the greedy algorithm described in Subsection 4.1.

At each generic iteration the VNS:

– selects at random a feasible solution C′ in the neigh-

borhood Ni
k(C);

– applies a local exchange strategy that, for a maxi-

mum number hmax of iterations, tries to decrease the

size of C′ to obtain a possible better solution C′′ by

removing π labels and adding up to π new labels,

where π = 2,3, . . . , |C′|;

– defines the new neighborhood to be explored in the

next iteration.
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In our implementation of VNS, we let parameter kmax vary

during the execution, that is kmax = min{|C|, l
4
}, where |C|

is the “size” of the current feasible solution whose neigh-

borhood is being explored.

In the sequel we refer to the implementations of VNS using

N1

k (), N2

k () and N3

k () as VNS1, VNS2 and VNS3, respec-

tively.

4.3. Simulated annealing

Simulated annealing (SA) extends basic local search by al-

lowing moves to worse solutions [13]. The basic concept

of SA is the following: starting from an initial solution

(in our implementation from an empty set of activated col-

ors as in the greedy heuristic), successively, a candidate

move is randomly selected. This move is accepted if it

leads to a solution with a better objective function value

than the current solution, otherwise the move is accepted

with a probability that depends on the deterioration ∆ of

the objective function value. The acceptance probability is

computed according to the Boltzmann function as e
−∆/T ,

using a temperature T as control parameter.

Following [12], the value of T is initially high, which

allows many worse moves to be accepted, and is gradu-

ally reduced through multiplication by a parameter cooling

factor according to a geometric cooling schedule. Given

a parameter size factor, size factor× l candidate moves

are tested (note that l denotes the neighborhood size) be-

fore the temperature is reduced. The starting temperature

is determined as follows: given a parameter initial ac-

ceptance fraction and based on an abbreviated trial run,

the starting temperature is set so that the fraction of ac-

cepted moves is approximately initial acceptance fraction.

A further parameter, frozen acceptance fraction is used

to decide whether the annealing process is frozen and

should be terminated. Every time a temperature is com-

pleted with less than frozen acceptance fraction of the

candidate moves accepted, a counter is increased by one,

while this counter is re-set to 0 each time a new best so-

lution has been obtained. The whole procedure is termi-

nated when this counter reaches a parameter frozen limit.

For our implementation we follow the parameter setting

of [12], which was reported to be robust for various prob-

lems. That is, we use α = 0.95, initial acceptance frac-

tion = 0.4, frozen acceptance fraction = 0.02, size fac-

tor = 16 and frozen limit = 5.

4.4. Reactive tabu search

The basic paradigm of tabu search (TS) is to use informa-

tion (in the sense of an adaptive memory) about the search

history to guide local search approaches to overcome local

optimality (see [9] for a survey on tabu search). In gen-

eral, this is done by a dynamic transformation of the local

neighborhood. Based on some sort of memory certain

moves may be forbidden, they are defined tabu (and ap-

propriate move attributes such as a certain index indicating

a specific color put into a list, called tabu list). As for SA,

the search may imply acceptance of deteriorating moves

when no improving moves exist or all improving moves of

the current neighborhood are set tabu. At each iteration

a best admissible neighbor may be selected. A neighbor,

respectively a corresponding move, is called admissible, if

it is not tabu.

Reactive TS (RTS) aims at the automatic adaptation of the

tabu list length [1]. The idea is to increase the tabu list

length when the tabu memory indicates that the search is

revisiting formerly traversed solutions. A possible specifi-

cation is the following. Starting with a tabu list length s

of 1, it is increased to min{max{s + 2,s× 1.2},bu} every

time a solution has been repeated, taking into account an

appropriate upper bound bu (to guarantee at least one ad-

missible move). If there is no repetition for some iterations,

we decrease it to max{min{s−2,s/1.2},1}. To accomplish

the detection of a repetition of a solution, one may apply

a trajectory based memory using hash codes.

For RTS, it is appropriate to include means for diversify-

ing moves whenever the tabu memory indicates that one is

trapped in a certain basin of attraction. As a trigger mech-

anism one may use, e.g., the combination of at least three

solutions each having been traversed three times. A very

simple escape strategy is to perform randomly a number of

moves (depending on the average of the number of itera-

tions between solution repetitions). For our implementation

of RTS we consider as initial solution (as for the SA and

the greedy heuristic) an empty set of activated colors. As

termination criterion we consider a given time limit.

4.5. Pilot method

Using a greedy construction heuristic such as the MVCA

as a building block or application process, the pilot method

is a metaheuristic with the primary idea of performing rep-

etition exploiting the application process as a look ahead

mechanism [7, 18]. In each iteration (of the pilot method)

one tentatively determines for every possible local choice

(i.e., move to a neighbor of the current solution, called

master solution) a look ahead or pilot solution, recording

the best results in order to extend at the end of the it-

eration the master solution with the corresponding move.

This strategy may be applied by successively performing,

e.g., a construction heuristic for all possible local choices

(i.e., starting a new solution from each incomplete solution

that can result from the inclusion of any not yet included

element into the current incomplete solution).

We apply the pilot method in connection with a greedy local

search strategy operating on a solution space that includes

incomplete (infeasible) solutions and a neighborhood that

considers the addition of colors (see MVCA). We take into

account infeasibilities by adding appropriate penalty val-

ues. The pilot method successively chooses the best local

move (regarding the additional activation of one color) by

evaluating such neighbors with a steepest descent until a lo-

cal optimum, and with that a feasible solution, is obtained.

(Note that as for the MVCA, at the end it may be beneficial

to greedily drop colors while retaining feasibility.)
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5. Experimental results

In this section we report some of our computational results.

We considered different groups of instances in order to eval-

uate how the performance of the algorithms is influenced

by both

– the number and distribution of the basic nodes;

– the distribution of the labels on the edges.

In particular, we defined different scenarios based on differ-

ent parameter settings: n – number of nodes of the graph;

l – total number of colors assigned to the graph; m – total

number of edges of the graph computed by m = d(n−1)n
2

,

where d is a measure of density of the graph, and, q – the

number of basic nodes of the graph. Parameter settings

are: n = 50, 100, l = 0.25n, 0.5n, n, 1.25n, d = 0.2,0.5,0.8
and q = 0.2n,0.4n, for a total of 48 different scenarios. For

each scenario we generated ten different instances. All the

generated data are available upon request from the authors.

Our results are reported in Tables 1–4. In each table the first

three columns show the parameters characterizing the dif-

ferent scenarios (n, l, d, while the values of q determine the

different tables). The remaining columns give the results

Table 1

Computational results for n = 50 and q = 0.2n

n l d Greedy VNS1 VNS2 VNS3 SA RTS Pilot

50 12.5 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0

50 12.5 0.5 1.1 1.1 1.1 1.1 1.1 1.1 1.1

50 12.5 0.2 2.1 2.0 2.0 2.1 2.0 2.0 2.0

50 25 0.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2

50 25 0.5 1.9 1.9 1.9 1.9 1.9 1.9 1.9

50 25 0.2 2.9 2.9 2.9 2.9 2.9 2.9 2.9

50 50 0.8 2.0 2.0 2.0 2.0 2.0 2.0 2.0

50 50 0.5 2.8 2.8 2.6 2.7 2.7 2.8 2.6

50 50 0.2 4.0 3.9 3.9 4.0 4.0 4.0 3.9

50 62.5 0.8 2.3 2.0 2.0 2.0 2.2 2.2 2.0

50 62.5 0.5 3.1 2.8 2.9 3.0 3.0 3.0 2.8

50 62.5 0.2 4.4 4.3 4.4 4.5 4.4 4.4 4.3

Sum 28.8 27.9 27.9 28.4 28.4 28.5 27.7

Table 2

Computational results for n = 100 and q = 0.2n

n l d Greedy VNS1 VNS2 VNS3 SA RTS Pilot

100 25 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0

100 25 0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

100 25 0.2 2.2 2.1 2.1 2.1 2.1 2.1 2.1

100 50 0.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9

100 50 0.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0

100 50 0.2 3.3 3.2 3.2 3.3 3.5 3.3 3.2

100 100 0.8 2.4 2.1 2.2 2.2 2.5 2.4 2.0

100 100 0.5 3.0 3.0 3.0 3.1 3.4 3.0 3.0

100 100 0.2 4.9 4.6 5.1 5.0 5.2 4.8 4.6

100 125 0.8 2.8 2.8 2.8 2.8 3.0 2.8 2.8

100 125 0.5 3.5 3.4 3.5 3.6 4.0 3.5 3.4

100 125 0.2 5.7 5.3 5.9 5.7 6.2 5.6 5.4

Sum 34.2 32.9 34.2 34.2 36.3 33.9 32.9

of the greedy heuristic and of our metaheuristics: variable

neighborhood search (VNS1, VNS2 and VNS3), simulated

annealing, reactive tabu search and the pilot method, re-

spectively. For the results reported on the greedy heuristic

we note that we have implemented the idea to try at the

end to greedily drop colors while retaining feasibility. In

two of all 480 cases this reduced the objective value by 1.

In general we can say that the pilot method behaves best

with respect to solution quality. The SA is usually outper-

formed by all other metaheuristics and RTS overall behaves

a bit better than the VNS for VNS2 and VNS3. The RTS

and VNS1 are somewhat incomparable as there does not

seem to be a clear picture which method behaves best with

respect to solution quality. Among the VNS implementa-

tions the first version seems to provide better results than

the other two implementations.

Closer inspection of the results reveals a few probably un-

usual behaviours. First of all, we encountered a consid-

erable role of how ties are broken. Assuming that a tie

is broken unfavorably and one encounters an increase or

decrease of the objective function by 1, the percentage de-

viation is affected considerably as most problem instances

tend to have very small objective function values (consid-

ering the pilot method, only in 6 of the cases with q = 0.2n

Table 3

Computational results for n = 50 and q = 0.4n

n l d Greedy VNS1 VNS2 VNS3 SA RTS Pilot

50 12.5 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0

50 12.5 0.5 1.4 1.4 1.4 1.4 1.4 1.4 1.4

50 12.5 0.2 2.6 2.6 2.6 2.6 2.6 2.6 2.6

50 25 0.8 2.0 2.0 2.0 2.0 2.0 2.0 2.0

50 25 0.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0

50 25 0.2 4.3 3.9 3.9 3.9 3.9 4.0 3.9

50 50 0.8 2.4 2.2 2.3 2.2 2.5 2.4 2.1

50 50 0.5 3.2 3.0 3.0 3.0 3.1 3.0 3.0

50 50 0.2 5.9 5.5 5.9 5.8 5.8 5.8 5.3

50 62.5 0.8 2.7 2.7 2.7 2.8 2.9 2.7 2.6

50 62.5 0.5 3.6 3.3 3.2 3.5 3.7 3.6 3.2

50 62.5 0.2 6.2 6.6 6.7 6.5 6.4 6.2 6.0

Sum 37.3 36.2 36.7 36.7 37.3 36.7 35.1

Table 4

Computational results for n = 100 and q = 0.4n

n l d Greedy VNS1 VNS2 VNS3 SA RTS Pilot

100 25 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0

100 25 0.5 1.9 1.9 1.9 1.9 1.9 1.9 1.9

100 25 0.2 3.1 3.0 3.0 3.0 3.0 3.0 3.0

100 50 0.8 2.0 2.0 2.0 2.0 2.0 2.0 2.0

100 50 0.5 2.4 2.2 2.2 2.2 2.4 2.3 2.2

100 50 0.2 4.8 4.4 4.5 4.8 4.4 4.6 4.3

100 100 0.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0

100 100 0.5 3.9 3.6 3.6 3.6 3.8 3.9 3.6

100 100 0.2 6.6 6.9 7.6 7.0 7.4 6.6 6.5

100 125 0.8 3.0 3.0 3.0 3.0 3.4 3.0 3.0

100 125 0.5 4.1 4.1 4.2 4.3 4.9 4.1 4.0

100 125 0.2 7.6 8.1 9.2 8.2 8.1 7.6 7.0

Sum 43.4 43.2 45.2 44.0 45.3 43.0 41.5
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and 32 of the cases with q = 0.4n the objective turned out

to be larger than 5, i.e., 6, 7, or 8). In this sense, a random

neighbor selection within the SA and the VNS implementa-

tions may already lead to an unfavorable objective function

value that is difficult to be overcome which explains the

few cases where the SA results are even worse than those

of the greedy approach.

For RTS the approach first mimics the behaviour of a steep-

est descent like the greedy heuristic. Based on the way in-

feasibilities are penalized, the method usually stays within

the feasible region so that the method may be caught within

some basin of attraction related to the first local optimum

found. That is, the RTS does not really work as expected,

since in most cases (about 95%) the best results have been

obtained within the first second of the computation. After

that the method did not find improvements quite often even

if they would have been possible.

The computations for our methods have been made on

a Pentium IV 1.8 GHz. The termination criteria for the

different methods follow the descriptions given above.

The RTS is terminated after a time limit of 10 seconds

for instances with n = 50 and after 40 seconds for n = 100.

In general the computational times are moderately increas-

ing for decreasing values of d, they are also increasing for

increasing values of q and l, and they are considerably in-

creasing for an increasing number of nodes. While RTS

has a given time limit, computational times for the other

methods tend to be below those numbers for larger val-

ues of d for all methods while they become slightly larger

than those for RTS in case of the VNS implementations

for d = 0.2. Computational times for the VNS implemen-

tations mainly depend on graph density: the more sparse

the graph the larger the times. The computational times for

the pilot method mainly depend on the number of nodes

and the value of l. If l increases then the times for the

pilot method may easily become considerably larger than

those of SA and RTS but also larger than those of the VNS.

Detailed computational times are reported in Table 5 for the

largest instances to get a feeling about the general behaviour

of our methods.

Table 5

Computational times [s] for n = 100 and q = 0.4n

n l d VNS1 VNS2 VNS3 SA RTS Pilot

100 25 0.8 0.4 0.2 4.6 11.1 40.0 1.0

100 25 0.5 0.6 0.6 2.8 9.7 40.0 1.2

100 25 0.2 19.2 23.4 46.0 6.6 40.0 1.4

100 50 0.8 1.1 1.2 7.0 22.1 40.1 6.5

100 50 0.5 12.0 5.2 28.2 17.4 40.0 6.1

100 50 0.2 49.9 81.6 77.0 12.3 40.0 9.1

100 100 0.8 15.3 10.9 57.8 43.5 40.1 43.3

100 100 0.5 44.8 101.9 50.3 33.7 40.0 43.0

100 100 0.2 72.0 128.2 96.2 21.7 40.0 63.5

100 125 0.8 29.0 66.0 36.8 54.0 40.1 73.1

100 125 0.5 50.5 75.5 53.4 40.5 40.1 76.7

100 125 0.2 94.3 174.8 128.0 27.3 40.0 115.1

We should note that a detailed analysis of the results re-

veals that the pilot method usually does not need as much

time as shown to find the indicated solutions, since in al-

most all cases the best result has been obtained in the first

few seconds of the computations. This gives a strong hint

that a small evaluation depth (see [18]) may be used to

reduce the computation times without discarding solution

quality.

6. Conclusions and further research

In this paper we have considered a generalization of the

minimum labeling spanning tree problem to the case where

not necessarily all but only a subset of required nodes

need to be spanned. Common metaheuristics have suc-

cessfully been applied to this generalization and the results

are in line with our expectation gained from experimenta-

tion with the original labeling spanning tree problem. The

most visible result is that the pilot method outperforms the

other approaches with respect to solution quality while the

computation times of the pilot method can be considerably

larger than those of reactive tabu search or simulated an-

nealing especially for larger problem instances. The com-

putation times of our implementations for the pilot method

and the variable neighborhood search are somewhat com-

parable with some exceptions for smaller densities of the

given graphs where the pilot method may be faster. This

motivates one direction of our further research consisting

in the combination of the two metaheuristics that seem to

behave better, the pilot method and the VNS1 [4]. More-

over, the results have been obtained for one generalization

of the labeling spanning tree problem and future research

refers also to extending those ideas to other generalizations

such as the one also proposed in this paper considering ad-

ditional budget constraints. Moreover, allowing for more

than one color assigned to each edge poses an interesting

case motivated by some applications.

Another step in our research refers to developing various

mathematical programming formulations for the MLST as

well as the MLSteiner to obtain optimal solutions to better

judge on the quality of our heuristic solutions at least for

small and moderately sized problem instances.
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