
Performance Guarantees of Local Search for
Multiprocessor Scheduling

Petra Schuurman
Hagenkampweg Noord 13, 5616 TC Eindhoven, The Netherlands, petraschaakt@xs4all.nl

Tjark Vredeveld
Maastricht University, Department of Quantitative Economics, P.O.Box 616, 6200 MD Maastricht,

The Netherlands, t.vredeveld@ke.unimaas.nl

Increasing interest has recently been shown in analyzing the worst-case behavior of local

search algorithms. In particular, the quality of local optima and the time needed to find the

local optima by the simplest form of local search has been studied. This paper deals with

worst-case performance of local search algorithms for makespan minimization on parallel

machines. We analyze the quality of the local optima obtained by iterative improvement

over the jump, swap, multi-exchange, and the newly defined push neighborhoods. Finally,

for the jump neighborhood we provide bounds on the number of local search steps required

to find a local optimum.

Key words: production-scheduling: multiple machine; approximation heuristics; local search;

analysis of algorithms

History: Accepted by William Cook, Area Editor for Design and Analysis of Algorithms;

received September 2003; revised December 2004; accepted May 2005.

1. Introduction

Local search methods exhibit good empirical behavior, but little is known about their worst-

case performance. In this paper, we analyze the quality of several local optima from such

a worst-case perspective. Moreover, for the simplest form of local search, we make some

remarks about the time needed to obtain a local optimum. The problems under consideration

are multiprocessor scheduling problems, where we are given a set of n jobs, J1, . . . , Jn, each

of which has to be processed without preemption on one of m machines, M1, . . . , Mm. A

machine can process at most one job at a time and all jobs and machines are available at

time 0. The objective we consider is makespan minimization, i.e., we want the last job to

complete as early as possible. The time, pij, it takes for a job Jj to be fully processed on a

machine Mi depends on the machine environment:

1

• Identical parallel machines, denoted by P : a job has the same processing time on all

machines, i.e., pij = pj, where pj is a positive integer.

• Uniform parallel machines, denoted by Q: the machines have positive integral speeds,

s1, . . . , sm, and each job has a given positive integral processing requirement pj; the

processing time is pij = pj/si.

• Unrelated parallel machines, denoted by R: the time it takes to process job Jj on

machine Mi is dependent on the machine as well as the job; pij is a positive integer.

If the number of machines is part of the input, Graham et al. (1979) denote these problems

by P‖Cmax, Q‖Cmax, and R‖Cmax. If the number of machines is a constant m, then they

denote the problems by Pm‖Cmax, etc.

Even the simplest case, P2‖Cmax, is NP-hard (Garey and Johnson 1979), so we search for

approximate solutions. If an algorithm is guaranteed to deliver a solution that has value at

most ρ times the optimal solution value, we call it a ρ-approximation algorithm. ρ is called

the worst-case performance guarantee. For P‖Cmax and Q‖Cmax, Hochbaum and Shmoys

(1987, 1988) develop so-called polynomial-time approximation schemes, i.e., for each ε > 0,

there exists a polynomial-time (1 + ε)-approximation algorithm. For R‖Cmax, Lenstra et al.

(1990) present a polynomial-time 2-approximation algorithm; they also prove that there does

not exist a polynomial-time (3
2
− ε)-algorithm for ε > 0, unless P=NP.

A way to find approximate solutions is through local search. Local search methods it-

eratively search through the set of feasible solutions. Starting from an initial solution, a

local search procedure moves from a feasible solution to a neighboring solution until some

stopping criteria are met. The choice of a suitable neighborhood function has an important

influence on the performance of local search. We analyze the performance of local search for

the jump, the swap, the multi-exchange, and the newly defined push neighborhood from a

worst-case perspective.

The simplest form of local search is iterative improvement, also called local improvement

or, in the case of minimization problems, descent algorithms. This method iteratively chooses

a better solution in the neighborhood of the current solution and it stops when no better

solution is found; we say that the current solution is a local optimum.

We analyze the quality of some local optima and the time needed to find some of them.

Previous results on worst-case analysis of local search include the following. In the area

2

of facility location we refer to Korupolu et al. (2000), Charikar and Guha (1999), Chudak

and Williamson (2005), Pál et al. (2001), and Arya et al. (2004). In Hurkens and Schrijver

(1989), Arkin and Hassin (1998), and De Bontridder et al. (2003), set-packing problems

are considered and local search algorithms for the metric labeling problem are studied in

Boykov et al. (1999) and Gupta and Tardos (2000). Lu and Ravi (1992) and Brüggemann

et al. (2003) consider some spanning-tree problems, and Vredeveld and Lenstra (2003) show

that the simplest form of local search can be arbitrarily bad for a generalized form of graph

coloring. Improvements by local search of the Goemans and Williamson (1995) solution for

the max-cut problem are given in Feige et al. (2002) and for complexity aspects we refer to

Ausiello and Protasi (1995). In the area of scheduling, the first worst-case analysis of local

search is Finn and Horowitz (1979), who give a guarantee on the quality of what we call

jump optimal solutions and they also claim a bound on the time needed to obtain such a

local optimum by iterative improvement. Hurkens and Vredeveld (2003) present an example

showing that this bound is incorrect. Brucker et al. (1996, 1997) give the correct time bound.

The rest of this paper is organized as follows. In the following section we discuss the

neighborhoods and in Section 3 we establish performance guarantees for the various local

optima and scheduling problems. In Section 4, we remark on the running time for iterative

improvement to obtain the local optima, and finally we make some concluding remarks.

2. Neighborhoods

Before discussing the neighborhoods, we first describe our representation of a schedule. As

the sequence in which the jobs are processed does not influence the makespan of a schedule

for a given assignment of the jobs to the machines, we represent a schedule by such an

assignment. This is equivalent to a partitioning of the set of jobs into m disjoint subsets

J1, . . . ,Jm, where Ji is the set of jobs scheduled on Mi. The load of a machine is the total

processing time of its jobs. A critical machine is a machine with maximum load.

The first neighborhood that we consider is the jump neighborhood, also known as the

move neighborhood: we select a job Jj and a machine Mi on which job Jj is not scheduled.

The neighbor is obtained by moving Jj to Mi, as shown in Figure 1. We say that we are in a

jump-optimal solution if no jump decreases the makespan or the number of critical machines

without increasing the makespan.

For a swap neighbor, we select two jobs, Jj and Jk, scheduled on different machines. A

3

Mi

Jj Mh

σ

Mh

σ′

Mi Jj

Figure 1: Jump

Mh

σ

Mi

Jj

Jk

σ′

Mh

Mi

Jk

Jj

Figure 2: Swap

swap neighbor is formed by interchanging the machine allocations of the jobs (Figure 2).

If all jobs are scheduled on the same machine, then no swap neighbor exists; therefore, we

define the swap neighborhood as one that consists of all possible jumps and all possible

swaps. A swap-optimal solution is one in which no swap or jump decreases the makespan or

the number of critical machines without increasing the makespan.

Based on Ahuja et al. (2001), Frangioni et al. (2004) define so-called multi-exchange

neighborhoods. For a cyclic-exchange neighbor, we select a sequence of jobs C = (Jj1 , . . . , Jjk
)

such that all jobs are assigned to different machines. The neighbor is obtained by moving

job Jjl
to the machine on which Jjl+1

is currently scheduled (l = 1, . . . , k − 1) and moving

Jjk
to the machine of Jj1 . For a path-exchange neighbor we are given a sequence P =

(Jj1 , . . . , Jjk
,Mi) of jobs and one machine Mi such that no two jobs are scheduled on the

same machine and none of them is assigned to machine Mi. The neighbor is obtained in

the same way as in the cyclic exchange neighborhood, except that job Jjk
is moved to

machine Mi. Note that jump and swap are special cases of the path and cycle exchanges in

which the length of the sequence is restricted to two. If there are only two machines, these

multi-exchange neighborhoods are equivalent to the jump and swap neighborhood, due to

the restriction that all jobs in the sequence need to be scheduled on different machines.

In contrast to the jump and swap neighborhood, the number of path and cyclic-exchange

neighbors can grow exponentially with respect to the problem size. Moreover, Frangioni et al.

showed that deciding whether there exists an improving cyclic or path-exchange neighbor is

NP-complete. We say that a schedule is multi-exchange optimal if no cyclic or path exchange

decreases the makespan or the number of critical machines without increasing the makespan.

4

As we will show in the next section, the above-defined neighborhoods have no constant

performance guarantee for uniform machines. Therefore, we introduce a push neighborhood,

for which any local optimum is at most a factor 2− 2
m+1

of optimal for the problem on uniform

parallel machines. The push neighborhood is a form of variable-depth search, introduced by

Kernighan and Lin (1970) for graph partitioning and the traveling-salesman problem (Lin

and Kernighan 1973). A push is a sequence of jumps.

Starting with a schedule σ = (J1, . . . ,Jm) having makespan Cmax(σ), a push is initiated

by selecting a job Jk on a critical machine and a machine Mi to which to move it. We say

that Jk fits on Mi if
∑

Jj∈Ji:pij≥pik
pij + pik < Cmax(σ). If Jk does not fit on any machine,

then it cannot be pushed. If, after moving Jk to Mi, the load of this machine is at least

as large as the original makespan, i.e., if
∑

Jj∈Ji
pij + pik ≥ Cmax(σ), then we iteratively

remove the smallest job from Mi until the load of Mi is less than Cmax(σ). The removed jobs

are gathered in a queue. We now have a queue of pending jobs and a partial schedule that

has lower makespan or fewer critical machines. If the queue is non-empty, then the largest

job in the queue is removed and moved to some machine on which it fits, in the same way

as the first job was pushed. Thus, if necessary, we allow some smaller jobs to be removed.

If the largest job in the queue does not fit on any machine, then we say that the push is

unsuccessful. We repeat the procedure of moving the largest job in the queue to a machine

until the queue is empty or we have determined that the push is unsuccessful. When pushing

all jobs on the critical machines is unsuccessful, we are in a push-optimal solution.

We illustrate a push in the following example.

Example 1 Consider m = 3 identical machines with n = 8 jobs. The processing times

are p1 = 8, p2 = p3 = p4 = 6, p5 = p6 = 5, p7 = 3, and p8 = 2. The starting schedule

is σ = (J1,J2,J3), with J1 = {J2, J5, J6}, J2 = {J1, J7, J8}, and J3 = {J3, J4}, and has

makespan Cmax(σ) = 16 (Figure 3a). In the first step of the push, we select job J6, with

p6 = 5, to be pushed onto machine M2. Note that J6 does not fit on M3. When moving J6

to M2, jobs J8 and J7 have to be removed from M2 (Figure 3b). At this point, we have a

partial schedule σ′ = (J ′
1,J ′

2,J ′
3), J ′

1 = {J2, J5}, J ′
2 = {J1, J6}, J ′

3 = {J3, J4}, and a queue

of pending jobs containing J7 and J8. In the next step, we remove J7 from the queue and

move it to M1 and then we move J8 to M3. After moving J8, the queue is empty and we have

a new schedule σ̄ = (J̄1, J̄2, J̄3), with J̄1 = {J2, J5, J7}, J̄2 = {J1, J6}, and J̄3 = {J3, J4, J8},
which has makespan Cmax(σ̄) = 14 (Figure 3c).

5

6 6 2

8 5

2

3356

5

3 2

6

6

8 5

6

2

3

8 2

6

556

3

6

M3

M2

M1

Cmax(σ̄) = 14 Queueσ̄

(c)

M3

M2

M1

(b)

σ′ Cmax(σ) = 16 Queue

Cmax(σ) = 16

M2

(a)

M3

M1

σ

Figure 3: Push

6

9 6 5

3348

M1

M2

Figure 4: Push Optimal Schedule

A push-optimal solution is given in Example 2. As the schedule in this example is not

swap-optimal, it shows that a push-optimal solution is not necessarily swap-optimal. Of

course, as a push is a sequence of one or more jumps, a push-optimal solution is jump

optimal.

Example 2 In Figure 4, we give an example for m = 2 identical machines. There are n = 7

jobs, J1, . . . , J7, and the processing times are p1 = 9, p2 = 8, p3 = 6, p4 = 5, p5 = 4, and

p6 = p7 = 3. The schedule σ = (J1,J2), with J1 = {J1, J3, J4} and J2 = {J2, J5, J6, J7},
is push-optimal. When trying to push J1, jobs J7, J6, and J5 are moved to the queue of

pending jobs. Then jobs J5 and J6 are moved to machine M1, resulting in a partial schedule

with a load of 18 for M1 and of 17 for M2. The queue of pending jobs consists of job J7 of

length p7 = 3. As 18 + 3 ≥ 20 = Cmax(σ) and 17 + 3 ≥ 20 = Cmax(σ), J7 does not fit on

M1 as well as on M2. Hence, pushing J1 is unsuccessful. In the same manner, we see that

pushing J3 or J4 is also unsuccessful. The schedule σ can be improved by swapping e.g. J1

and J2, and thus it is not swap-optimal.

By our way of defining a push, we know that when moving a job Jk, only jobs smaller

than Jk can be removed from the machine. Hence, during one push, at most n jobs need

to be moved. As one move can straightforwardly be implemented such that it needs O(n)

time, a push requires O(n2) elementary operations. If we use appropriate data structures,

like binary heaps for the queue of pending jobs and for the list of machines and doubly linked

lists for the jobs, and if we select the machine to which to move a job in a greedy manner,

a push neighbor can be found in O(n log n) time.

Note that, as we always take the largest job from the queue, the push neighborhood

is defined only for scheduling problems where the largest job is defined unambiguously.

Therefore, in the case of unrelated parallel machines, a push is not well defined.

7

Table 1: Guarantees on Ratio Between Value of Local Optimum and Optimal Value; † Up-
per Bound due to Finn and Horowitz (1979), ‡ Upper Bound due to Cho and Sahni (1980)

jump swap and push
multi-exchange

P2‖Cmax
4
3

† 4
3

† 8
7

P‖Cmax 2− 2
m+1

†
2− 2

m+1

†
UB = 4

3
− 1

3m

LB = 4m
3m+1

Q2‖Cmax
1+
√

5
2

‡
1+
√

5
2

‡ √
17+1
4

Q‖Cmax
1+
√

4m−3
2

‡ 1+
√

4m−3
2

‡
UB = 2− 2

m+1

LB = 3
2
− ε

R2‖Cmax LB = pmax

C∗max
LB = n− 1 undefined

R‖Cmax LB = pmax

C∗max
LB = pmax

C∗max
undefined

3. Performance Guarantees

In this section, we establish performance guarantees for the various local optima and schedul-

ing problems, given in Table 1. “UB = ρ” denotes that ρ is a performance guarantee and

“LB = ρ” denotes that the performance guarantee cannot be less than ρ; “ρ” denotes that

UB = ρ and LB = ρ. For the unrelated-parallel-machines cases, we use pmax = maxi,j pij.

In the following subsection we prove the performance guarantees for the identical-parallel-

machines cases, and in the subsequent two subsections we consider the cases of uniform and

unrelated parallel machines, respectively. The value of an optimal schedule is denoted by

C∗
max, and Cj

max, Cs
max, Cm

max, and Cp
max denote the makespans of respectively a jump-optimal,

swap-optimal, multi-exchange-optimal, and push-optimal schedule, respectively.

3.1 Identical Parallel Machines

Recall that in the identical-parallel-machine environment, all machines need the same amount

of time for a job. Hence the processing time of a job Jj on a machine Mi is pij = pj. Finn

and Horowitz (1979) showed the following result for the jump neighborhood.

Theorem 1 (Finn and Horowitz 1979) A jump-optimal schedule for P‖Cmax has makespan

at most 2− 2
m+1

times the optimal solution value.

8

KmKmM1

M2

...

Mm

Figure 5: Swap Optimal Schedule

Corollary 1 A swap- or multi-exchange-optimal schedule for P‖Cmax has makespan at most

2 − 2
m+1

times the optimal makespan.

The bounds given in Theorem 1 and Corollary 1 are tight, as can be seen in the following

example.

Example 3 For given K > 1, consider the instance in which there are m machines and

n = 2 + (m−1)(Km+1) jobs. The processing times of the jobs are p1 = p2 = Km and

pj = 1 (j = 3, . . . , n). The optimal makespan is obtained by a schedule in which jobs J1

and J2 are processed on different machines and the other jobs are divided over the machines

such that the loads of any two machines differ by at most 1. The optimal makespan is

C∗
max = K(m + 1) + 1.

In Figure 5, a swap- and multi-exchange-optimal schedule is given: jobs J1 and J2 are both

processed on machine M1 and the other jobs are equally divided over machines M2, . . . , Mm.

It is easy to see that this schedule is multi-exchange-optimal as the only improvement can

be obtained by moving J1 or J2. However, moving J1 or J2 to any other machine does not

decrease the makespan, as by definition of the neighborhood no two jobs scheduled on the

same machine may be moved. The value of this schedule is at least Cs
max = Cm

max = 2Km =

(2m
m+1+1/K

)C∗
max and for large values of K, the ratio Cm

max / C∗
max is close to 2 − 2

m+1
. For a

jump-optimal schedule, we can even remove one job from each of the machines M2, . . . , Mm.

The value of the optimum is then C∗
max = K(m + 1) and the jump-optimal schedule remains

Cj
max = 2Km = (2− 2

m+1
)C∗

max.

For a push-optimal schedule, we can prove a better performance guarantee.

Theorem 2 A push-optimal schedule for the problem on identical parallel machines is at

most 4
3
− 1

3m
times the optimal makespan.

9

Proof: Consider a push-optimal schedule with makespan Cp
max, and consider pushing a

job which is currently scheduled on a critical machine. This leads to an unsuccessful push.

Hence, there will be a partial schedule, (J ′
1, . . . ,J ′

m) and a non-empty queue of pending jobs.

Let job Jk be the largest job in this queue. Then, we know that this job does not fit on any

machine, i.e.,

L′i + pk ≥ Cp
max,

where L′i =
∑

j∈J ′i :pj≥pk
pj. Summing this inequality over all machines leads to

Cp
max ≤

1

m
(
∑

i

L′i + mpk) ≤ 1

m

∑
j

pj +
m− 1

m
pk ≤ C∗

max +
m− 1

m
pk. (1)

If pk ≤ 1
4
Cp

max, then rewriting (1) yields:

Cp
max ≤

4m

3m + 1
C∗

max ≤
4m− 1

3m
C∗

max.

If pk > 1
4
Cp

max, there are at most three large jobs, i.e., at least as large as job Jk, scheduled

on each machine. We will show that in this case either the push-optimal schedule is globally

optimal or there exists a machine in the optimal schedule that processes at least three large

jobs. For the latter, we use C∗
max ≥ 3pk in (1) and obtain

Cp
max ≤ C∗

max +
m− 1

m
pk ≤ 4m− 1

3m
C∗

max.

A push-optimal schedule is globally optimal if, in the partial schedule, there is a machine

without any large job (Cp
max ≤ pk ≤ C∗

max) or if, in the partial schedule, there exists a machine

Mi containing exactly one large job Jj that is processed in the optimal schedule on a machine

containing another large job, i.e., C∗
max ≥ pj +pk ≥ L′i +pk ≥ Cp

max. Hence, if a push-optimal

schedule is not globally optimal, then each machine in the partial schedule contains at least

one large job, and the number of machines processing two or three large jobs in the optimal

schedule is not more than this number for the partial schedule. As job Jk is not assigned

to any machine in the partial schedule, we know by the pigeon-hole principle that in the

optimal schedule there exists at least one machine processing three large jobs. ¤

In contrast to the jump- and swap-optimal solutions, we have no tightness guarantees.

The following example shows that the performance guarantee for push-optimal schedules for

identical machines cannot be less than 4m
3m+1

. The gap between the upper and lower bound

is m−1
3m(3m+1)

, which is at most 1
45

for m ≥ 3.

10

m m

2m− 1

2m− 1

d3m/2e

m m

m + 1

m + 1

d(3m− 1)/2e

M1

M3

...

M2

Mm

Figure 6: Push Optimal Schedule

Example 4 Consider m machines and n = 2m + 2 jobs. The processing times of jobs

J1, . . . , Jn−4 are pj = m+ d j
2
e for j = 1, . . . , n−4, i.e., there are exactly two jobs of size p for

p = m + 1, . . . , 2m− 1. The processing times of the last four jobs are pn−3 = pn−2 = pn−1 =

pn = m. The optimal makespan is C∗
max = 3m + 1 and is attained by σ∗ = (J ∗

1 , . . . ,J ∗
m),

with J ∗
1 = {J1, Jn−3, Jn−2}, J ∗

2 = {J2, Jn−1, Jn}, and J ∗
i = {Ji, Jn−1−i} for i = 3, . . . ,m.

In the schedule in Figure 6 the jobs of size pj = m are assigned to M1 and Mi processes

Ji−1 and Jn−i−2, for i = 2, . . . ,m. This is push-optimal with makespan Cp
max = 4m = 4m

3m+1
C∗

max.

If there are only two identical parallel machines, we can prove a tight performance guar-

antee of 8/7.

Theorem 3 A push-optimal solution for P2‖Cmax has value at most 8/7 times the optimal

solution value.

Proof: Suppose, to the contrary, that there exists a push-optimal schedule with makespan

Cp
max > 8

7
C∗

max. Let Li =
∑

Jj∈Ji
pj be the load of machine Mi (i = 1, 2). W.l.o.g. we assume

that L1 ≥ L2, thus Cp
max = L1.

For the difference in loads of the two machines, we know that

L1 − L2 = L1 − (
∑

j

pj − L1) ≥ 2L1 − 2C∗
max >

1

4
L1.

The first inequality is due to the lower bound C∗
max ≥ 1

2

∑
j pj and the second inequality is

due to the assumption that L1 > 8
7
C∗

max. Let J1 be the smallest job on M1. Then, by push

11

optimality, we know that p1 ≥ L1 − L2 > 1
4
L1. Hence, there are at most three jobs on M1.

We assume that M1 processes three jobs, i.e., J1 = {J1, J2, J3}, J2 = {J4, . . . , Jn}, and that

p1 ≤ p2 ≤ p3 and p4 ≥ · · · ≥ pn. Let Jk be defined by the following two inequalities.

p4 + · · ·+ pk−1 + p1 < L1,

p4 + · · ·+ pk + p1 ≥ L1. (2)

Informally, this means that the smaller of job J1 and Jk is to be removed from machine M2

when pushing job J1 to M2.

We claim that our assumptions imply that L2 < 3p1 and pk ≥ p1. Hence, M2 processes

at most two jobs of size greater than or equal to pk.

To show the first claim, note that push optimality implies that p1 ≥ L1 − L2 > 1
4
L1.

Moreover, from L1 − L2 > 1
4
L1 it also follows that L2 < 3

4
L1 < 3p1, which shows our claim.

Second, from L1 − L2 > 1
4
L1 ≥ 3

4
p1 we know that L2 + p1 < L1 + 1

4
p1 and

1

4
p1 > L2 + p1 − L1

(2)

≥ L2 − (p4 + · · ·+ pk) = pk+1 + · · ·+ pn. (3)

Because of push optimality, we know that p1 ≤ pk + · · ·+ pn and thus

pk ≥ p1 − (pk+1 + · · ·+ pn)
(3)
>

3

4
p1. (4)

Suppose that pk < p1, then by pushing J1 to M2, Jk is moved to M1 and jobs Jk+1, . . . , Jn

are distributed among M1 and M2 yielding a schedule with makespan

C ′
max ≤ max(L1 − p1 + pk, L2 + p1 − pk)

(3),(4)
< max(L1, L1 − 1

2
p1) = L1.

Thus the schedule is not push-optimal and it must be the case that p1 ≤ pk.

If M2 processes only one job of size at least pk, i.e., k = 4, then the current schedule is

optimal, as the sub-schedule for J1, J2, J3, J4 is optimal, because by (2) p1 +p4 ≥ p1 +p2 +p3.

In the case that M2 processes two jobs of size at least pk, i.e., p4 ≥ p5 = pk, we consider

two sub-cases: p3 ≤ p5 and p3 > p5. If p3 ≤ p5, then the sub-schedule for J1, . . . , J5 is

optimal and C∗
max ≥ C∗

max[1, 5] = L1 = Cp
max, where C∗

max[1, 5] denotes the makespan of an

optimal sub-schedule for J1, . . . , J5.

If p3 > p5, then an optimal schedule for J1, . . . , J5 has value C∗
max[1, 5] ≥ p1 + p2 + p5. As

L2 < 3p1, we know that p4 < 2p1 and by push optimality we know that p5 +
∑

j≥6 pj ≥ p3.

Hence,

Cp
max

C∗
max

≤ p1 + p2 + p3

p1 + p2 + p5

≤ p1 + p2 + p5 + . . . + pn

p1 + p2 + p5

(3)

≤ 1 +
1/4p1

3p1

=
13

12
<

8

7
.

12

This contradicts the assumption that Cp
max > 8

7
C∗

max.

If M1 processes only two jobs, i.e., J1 = {J1, J2} and J2 = {J3, . . . , Jn}, we can prove in

a similar way that C∗
max = Cp

max. If M1 only processes J1, then Cp
max = C∗

max.

Hence, Cp
max ≤ 8

7
C∗

max. ¤

The bound in Theorem 3 is tight: if we set m = 2 in Example 4, we have a push-optimal

schedule with makespan Cp
max = 8

7
C∗

max.

3.2 Uniform Parallel Machines

In this environment, jobs have processing requirements pj, for j = 1, . . . , n, and machines

have speeds si, for i = 1, . . . , m. The processing time of job Jj on machine Mi is pij = pj/si.

Lemma 1 of Cho and Sahni (1980) shows that the quality of a schedule for uniform

parallel machines, obtained by list scheduling is no worse than 1
2
(1 +

√
4m− 3). Using the

same techniques, we are able to prove the same guarantee for jump-optimal schedules in the

uniform-parallel-machines environment.

Theorem 4 (Cho and Sahni 1980) A jump-optimal schedule for Q‖Cmax has makespan at

most 1+
√

4m−3
2

times the optimal makespan.

Corollary 2 A swap- or multi-exchange-optimal schedule for Q‖Cmax has makespan at most
1+
√

4m−3
2

times the optimum.

For m ≥ 3, Cho and Sahni show a better guarantee than 1
2
(1+

√
4m− 3) for list schedules.

Example 5 shows that we cannot hope for a better guarantee for a jump-, swap-, or multi-

exchange-optimal solution.

Example 5 For given integral s > 1, there are n = m + 1 jobs and m = s2 − s + 1

machines, i.e., s = 1+
√

4m−3
2

. Job J1 has processing requirement p1 = s and all other

jobs have processing requirement pj = 1 (j = 2, . . . , n). Machine M1 has speed s1 = s

and all other machines have speed si = 1 (i = 2, . . . , m). In an optimal schedule, machine

M1 processes job J1 and one job of unit length and each of machines M2, . . . , Mm processes

exactly one job of unit length. The optimal makespan is C∗
max = 1 + 1

s
.

In Figure 7 a multi-exchange-optimal schedule is given. The second machine processes

job J1 and machine M1 processes all other jobs. The makespan is Cm
max = s = s

1+1/s
C∗

max

and for large s the ratio Cm
max / C∗

max is close to s = 1+
√

4m−3
2

. For a jump-optimal schedule,

13

we can even remove one of the unit-sized jobs, so that the optimum has value C∗
max = 1 and

the value of the local optimal solution remains Cj
max = s = 1+

√
4m−3
2

C∗
max.

J2 J3 J4 J5

s2 − s + 1 jobs

Jn

J1M2

M1

.

.

.

Mm

M3

Figure 7: Swap Optimal Schedule for Q‖Cmax.

Corollary 3 The performance guarantee of jump-, swap-, and multi-exchange-optimal sched-

ules for Q2‖Cmax is 1+
√

5
2

and this is tight.

Proof: The performance guarantee is a direct consequence of Theorem 4. To see that the

bound is tight, consider n = 2 jobs with processing requirements p1 = 1+
√

5
2

and p2 = 1, and

with speeds s1 = 1+
√

5
2

and s2 = 1 for machines M1 and M2 respectively. Obviously, the

optimal makespan is C∗
max = 1 and the schedule in which J1 is processed by M2 and J2 is

scheduled on M1 is a jump-optimal schedule with makespan Cj
max = 1+

√
5

2
.

This schedule clearly is not swap-optimal. To make a swap-optimal one, we chop job J2

of unit length into 1
ε

jobs with processing requirements pj = ε, for some ε > 0 such that 1/ε

is integral, and we add one job of size ε. The optimal makespan is C∗
max = 1 + 2ε

1+
√

5
and

the schedule in which all jobs of size ε are scheduled on M1 and J1 is processed by M2 is

swap-optimal, with makespan Cs
max = 1+

√
5

2
. Hence, for small ε the ratio Cs

max / C∗
max is close

to 1+
√

5
2

. ¤

Theorem 5 A push-optimal schedule for Q‖Cmax has makespan at most 2 − 2
m+1

times

the optimal solution value.

Proof: Assume w.l.o.g. that s1 ≥ · · · ≥ sm. If we consider an unsuccessful push, then there

is a partial schedule, (J ′
1, . . . ,J ′

m), and a queue of pending jobs. The largest job in this

14

queue does not fit on any machine. Let job Jk be this job and let L′i =
∑

j∈J ′i :pj≥pk

pj

si
be the

total processing time of the large jobs on machine Mi, i.e., at least as large as Jk. By push

optimality, we know that for all i = 1, . . . , m,

L′i +
pk

si

≥ Cp
max. (5)

Let Mh be the slowest machine on which job Jk has a processing time that is not larger

than the optimal makespan, i.e., h = max{i : pk

si
≤ C∗

max}. Thus C∗
max ≥ pk

sh
. As all large

jobs need to be scheduled on machines M1, . . . , Mh, a second lower bound on the optimal

makespan is

C∗
max ≥

∑
j:pj≥pk

pj∑h
i=1 si

.

By push optimality (5), we know that

h∑
i=1

siC
p
max ≤

h∑
i=1

siL
′
i + hpk ≤

∑
j:pj≥pk

pj + (h− 1)pk. (6)

If s1 ≥ 2sh, then
∑h

i=1 si ≥ (h + 1)sh and rearranging the terms in (6) yields

Cp
max ≤ C∗

max +
h− 1

h + 1

pk

sh

≤ C∗
max +

h− 1

h + 1
C∗

max ≤
2m

m + 1
C∗

max.

The second inequality is due to our choice of h. If s1 ≤ 2sh, then
∑h

i=1 si ≥ h+1
2

s1. We may

assume that C∗
max ≥ 2pk

s1
, as otherwise there are at most h large jobs and the push-optimal

schedule is optimal. Rearranging terms in (6) yields

Cp
max ≤ C∗

max +
h− 1

(h + 1)/2

pk

s1

≤ 2m

m + 1
C∗

max.

¤

Theorem 6 The performance guarantee of push-optimal schedules for Q‖Cmax is at least

3
2
− ε, for ε > 0.

Proof: Consider the following instance for Q‖Cmax. For given r ∈ (2
3
, 1), there are m =

dlogr(
3r−2
2r−1

)e machines and n = m + 1 jobs. The speeds of the machines are given by s1 = 2

and si = rsi−1 + 1, i = 2, . . . , m. The processing requirements are given by pj = rsj for

j = 1, . . . , n − 2 and pn−1 = pn = 1. As by our choice of m we have that 2
sm
≤ r, and the

optimal makespan is C∗
max ≤ r.

The schedule in Figure 8 is push-optimal: M1 processes both jobs of size 1, and Jj is

scheduled on Mj+1 for j = 1, . . . , m − 1. This schedule has makespan Cp
max = 1 ≥ 1

r
C∗

max.

Hence, for any ε > 0 there exists a push-optimal schedule with Cp
max ≥ (3

2
− ε)C∗

max. ¤

15

Jn−2

J2

J1

Jn−1 Jn

M2

M3

Mm

M1

Figure 8: Push Optimal Schedule for Q‖Cmax

In the case of two uniform machines, we establish a better performance guarantee. To do

so, we need the following two lemmata, in which we consider instances with only three jobs

and different speeds for the two machines. We prove in Theorem 7 that a smallest worst-case

instance for push for the problem of scheduling on two uniform parallel machines has exactly

three jobs.

Lemma 1 Consider an instance for Q2‖Cmax with three jobs in which the machines do

not have the same speed. Assume w.l.o.g that p1 ≥ p2 ≥ p3 and s1 > s2. If, in an optimal

schedule, J1 is processed on M1, then in any push-optimal schedule a job of size p1 is scheduled

on M1 and this push-optimal schedule is globally optimal.

Proof: Suppose to the contrary that there is a push-optimal schedule in which J1 is processed

on M2. Then J2 is scheduled on M1, as otherwise a push is possible.

If p1 = p2, then the first part of the lemma is proved. Consider the case that p1 > p2.

If M2 is the critical machine, then J1 can be pushed, and the schedule is not push-optimal.

Therefore, M1 is the critical machine and it processes J2 as well as J3. In the optimal schedule,

J1 is assigned to M1 and the optimal makespan has value C∗
max ≥ min{p1+p3

s1
, p2+p3

s2
}.

As p1+p3

s1
> p2+p3

s1
= Cp

max and p2+p3

s2
> p2+p3

s1
= Cp

max, we have C∗
max > Cp

max, which is a

contradiction. Therefore, in a push-optimal schedule, J1 must be processed by M1, whenever

J1 is scheduled on M1 in an optimal schedule.

By enumerating over all possible schedules with J1 scheduled on M1 for the push-optimal

schedule as well as the optimal schedule, it is easy to see that whenever such a schedule is

push-optimal it is globally optimal. ¤

16

Lemma 2 Consider an instance for Q2‖Cmax with three jobs in which the machines do not

have equal speed. Assume w.l.o.g. that p1 ≥ p2 ≥ p3 and s1 > s2. If Cp
max > C∗

max, then in

the optimal schedule M1 processes J2 and J3, and J1 is scheduled on M2. In a push-optimal

schedule with Cp
max > C∗

max, the machine allocation of the jobs is reversed, that is, J1 is

scheduled on M1, and M2 processes J2 and J3. This push-optimal schedule has makespan

Cp
max = p2+p3

s2
.

Proof: By Lemma 1, we know that whenever Cp
max > C∗

max, in the optimal schedule J1 is

scheduled on M2. As p1+p2

s2
≥ p1+p3

s2
> p2+p3

s1
, J2 as well as J3 is assigned to M1 in the optimal

schedule.

If, in a push-optimal schedule, J1 is processed by M2, then this schedule must be globally

optimal. Hence, for each push-optimal schedule with Cp
max > C∗

max, J1 is scheduled on M1

and the critical machine is M2, as otherwise J1 can be pushed. If J2 or J3 are also scheduled

on M1, then M2 cannot be critical and the schedule is not push-optimal. Therefore, a push-

optimal schedule with makespan Cp
max > C∗

max processes J1 on M1, and J2 and J3 on M2,

and as M2 is the critical machine, Cp
max = p2+p3

s2
. ¤

Theorem 7 A push-optimal schedule for Q2‖Cmax has performance guarantee
√

17+1
4

.

Proof: Consider a push-optimal schedule with Cp
max > 5

4
C∗

max. We may assume that such

a schedule exists as otherwise Cp
max/C

∗
max ≤ 5

4
<

√
17+1
4

. Pushing the smallest job which is

currently scheduled on the critical machine leads to an unsuccessful push. Hence, there is

a largest job in the queue of pending jobs that does not fit on both machines. Let this job

be Jk. Note that this job is at most as large as the smallest job on the critical machine.

Because of push optimality, we now have

∑
Jj∈Ji:pj≥pk

pj

si

+
pk

si

≥ Cp
max, i = 1, 2.

Thus,

(s1 + s2)C
p
max ≤

∑
j:pj≥pk

pj + pk ≤ (s1 + s2)C
∗
max + pk.

By the assumption that Cp
max > 5

4
C∗

max, we have that
∑

j pj ≤ (s1 + s2)C
∗
max < 4pk. Hence,

there are at most three large jobs, i.e., at least as large as Jk.

If we remove all jobs that are smaller than Jk from the push-optimal schedule, then we

still have a push-optimal schedule and the makespan has not changed, as all the jobs that

17

are smaller than Jk are scheduled on the non-critical machine. As the optimal makespan of

the instance with only the large jobs is at most equal to the optimal makespan of the original

instance, the smallest worst-case instance consists of only those (at most three) large jobs.

Any push-optimal schedule on an instance with at most two jobs is an optimal schedule,

and therefore the worst-case instance for the ratio Cp
max/C

∗
max consists of three jobs. Consider

such a worst-case instance, and assume w.l.o.g. that p1 ≥ p2 ≥ p3 and that s1 > s2. Note

that if s1 = s2, then we actually have two identical parallel machines and by Theorem 3 we

know that Cp
max/C

∗
max ≤ 8

7
.

Consider a worst-case instance, and assume w.l.o.g. that p1 ≥ p2 ≥ p3 and that s1 > s2.

By Lemma 2, we know that in this worst-case push-optimal schedule, J1 is scheduled on M1,

and M2 processes J2 and J3. We also know that Cp
max = p2+p3

s2
and C∗

max = max{p1

s2
, p2+p3

s1
}.

By push optimality, we know that p1+p3

s1
≥ p2+p3

s2
, and thus Cp

max/C
∗
max is bounded by

Cp
max/C

∗
max = min{s1

s2

,
p2 + p3

p1

} ≤ min{p1 + p3

p2 + p3

,
p2 + p3

p1

}.

This minimum is maximal, when p1+p3

p2+p3
= p2+p3

p1
. Then (p2 + p3)

2 = p2
1 + p1p3 and thus

Cp
max/C

∗
max ≤

√
p2

1 + p1p3

p1

=

√
1 +

p3

p1

. (7)

As p2 ≥ p3, we know that p2
1 + p1p3 = (p2 + p3)

2 ≥ 4p2
3 and, thus p1 ≥

√
17−1
2

p3. Using this

bound in (7) yields

Cp
max/C

∗
max ≤

√
1 +

2√
17− 1

=

√
17 + 1

4
.

¤

In the following example, we have an instance for Q2‖Cmax and a push-optimal schedule

for which Cp
max =

√
17+1
4

C∗
max.

Example 6 Consider the following instance with three jobs: p1 =
√

17−1
2

, p2 = p3 = 1, and

s1 =
√

17+1
4

and s2 = 1. In the optimal schedule, M1 processes J2 and J3, and J1 is scheduled

on M2. The optimal makespan is C∗
max =

√
17−1
2

. The schedule in which J1 is processed

by M1 and J2 and J3 are scheduled on M2 is push-optimal with makespan Cp
max = 2, and

Cp
max/C

∗
max = 2/(

√
17−1
2

) = 4√
17−1

=
√

17+1
4

.

18

3.3 Unrelated Parallel Machines

In the unrelated-parallel-machine environment, the processing times are job- and machine-

dependent, i.e., the processing time of job Jj on machine Mi is pij. The maximum processing

time is pmax = maxi,j pij.

Theorem 8 The performance guarantee of jump-optimal schedules for R‖Cmax cannot be

smaller than pmax/C
∗
max

Proof: For given K > 1 consider n jobs and m = n machines. The processing times of the

jobs are

pij =

{
1 if i = j,
K otherwise.

In the optimal schedule, machine Mi processes job Ji, and this schedule has makespan

C∗
max = 1. The schedule in which machine M1 processes job Jn and machine Mi processes

job Ji−1 (i = 2, . . . , m) is jump-optimal and has makespan Cj
max = K. ¤

As the above example also is a jump-optimal schedule in the case of only two machines,

we have the following corollary.

Corollary 4 A jump-optimal schedule for R2‖Cmax has a performance guarantee that is not

better than pmax/C
∗
max.

For the environment with identical and uniform parallel machines, a jump-optimal sched-

ule with ratio ρ = Cj
max/C

∗
max can be converted into a swap-optimal schedule with the same

ratio ρ, as in the proof of Corollary 3. For the environment with unrelated parallel ma-

chines, this is not possible. In the following two theorems we establish a lower bound on the

performance guarantee for swap- and multi-exchange-optimal schedules.

Theorem 9 A performance guarantee for a swap- or multi-exchange-optimal solution for

R‖Cmax is not better than pmax/C
∗
max.

Proof: For given K > m consider m machines and n = m + 1 jobs. The processing times

of job J1 are

pi1 =

{
1
2

if i = 1,
K + 1

2
if i 6= 1,

19

for job J2 are

pi2 =

K if i = 1,
1 if i = 2,
K + 1

2
if i 6= 1, 2,

and for job Jm+1 are

pi,m+1 =

1
2

if i = 1,
K if i = 2,
K + 1

2
if i 6= 1, 2.

All other jobs have unit length on each machine, i.e., pij = 1 for j = 3, . . . , m and i =

1, . . . , m. The optimal schedule has makespan C∗
max = 1.

Consider the schedule that processes job J1 on machine M3, J2 on M1, and Jm+1 on M2

and all other jobs arbitrarily. This schedule is swap- and multi-exchange-optimal and has

makespan Cs
max = Cm

max = K+ 1
2

= pmax. To see that this schedule is multi-exchange-optimal,

note that only machine M3 is critical. Hence, to improve the schedule we need to move job

J1 to machine M1. If job J2 is not moved, then we still have makespan K + 1
2
. Otherwise,

job J2 has to be moved to machine M2. As the multi-exchange neighborhood ensures that

no two jobs are moved to the same machine, job Jm+1, currently scheduled at M2, cannot

be moved to machine M1 and thus the makespan remains K + 1
2
. ¤

The example in the above proof needs at least three machines. In the case of two machines

a swap-, and thus multi-exchange-optimal schedule can be as bad as n− 1 times the optimal

makespan.

Theorem 10 The performance guarantee of swap- and multi-exchange-optimal schedules

for R2‖Cmax is at least n− 1.

Proof: Consider n jobs, where J1 has processing times

pi1 =

{
1 if i = 1,
n− 1− 1

n−1
if i = 2,

and the other jobs have processing times

pij =

{
1 if i = 1, j > 1,

1
n−1

if i = 2, j > 1.

In the optimal schedule, J1 is scheduled on M1 and the other jobs are processed by M2.

The makespan of this schedule is C∗
max = 1. The schedule in which J1 is processed by M2 and

the other jobs are scheduled on M1 is swap- and multi-exchange-optimal, having makespan

Cs
max = n− 1. ¤

20

4. Running Time

We have focused so far on the quality of local optima with respect to three neighborhoods.

In this section, we remark on the time it takes a form of iterative improvement to find

jump-optimal solutions.

Theorem 11 (Brucker et al. 1996, 1997) A jump-optimal solution for P‖Cmax can be found

by iterative improvement, using O(n2) jumps.

The proof is in Brucker et al. (1996, 1997), who show that the iterative-improvement

procedure that iteratively lets a job jump from the critical machine to a machine with

minimum load finds a jump-optimal solution in O(n2) iterations for P‖Cmax as well as

P2‖Cmax.

The result of Brucker et al. (1996) can be improved for P2‖Cmax by always choosing the

largest job on a critical machine that can be jumped. Using this rule for choosing the job to

jump, the iterative-improvement procedure finds a jump-optimal solution in O(n) iterations.

This is stated by the following theorem.

Theorem 12 The iterative-improvement procedure that always chooses the largest possible

job on a critical machine to jump, finds a jump-optimal solution for P2‖Cmax in O(n) jumps.

Proof: Brucker et al. (1996) show that the iterative-improvement procedure produces a

sequence of feasible schedules with decreasing makespan and increasing minimum load. They

also show that if the critical machine after a jump is the machine that had minimum load

before the jump, then the job that jumped and all jobs that are at least as large as this

job cannot be moved again in the following iterations. Therefore, only smaller jobs can be

moved in the following iterations and these jobs have not been jumped before, as we always

take the largest possible job to jump. Hence, each job can jump at most once and after O(n)

iterations the procedure is finished and has found a jump-optimal solution. ¤

To describe the iterative-improvement procedure that finds jump-optimal solutions in

the case of uniform parallel machines, we need to define the slack of a machine, as the

total amount of processing requirement that can be added to this machine such that its

load does not become larger than the makespan. We denote the slack of machine Mi by

∆i = si(C
′
max − Li), where Li =

∑
Jj∈Ji

pij and C ′
max is the current makespan. Note that

21

when no job on a critical machine has a processing requirement that is less than the maximum

slack, we have found a jump-optimal solution.

Our iterative-improvement procedure iteratively lets a job jump from a critical machine

to a machine with maximum slack.

Theorem 13 The iterative-improvement procedure described above finds a jump-optimal so-

lution for Q‖Cmax after O(n2m) jumps.

Proof: Note that this algorithm computes a sequence of schedules with non-increasing

makespan and maximum slack. We denote the values of Li, C ′
max, ∆i, and ∆ = max1≤i≤m ∆i

in an iteration t by Li(t), etc.

Consider a machine Mi that was critical in iteration t0 and had maximum slack in iter-

ation t1 > t0, where t0 and t1 are chosen such that Mi is neither critical nor has maximum

slack in iterations t, for t0 < t < t1. Note that if none of the machines satisfy this condition,

the algorithm is finished after O(nm) iterations: if a job has been moved onto m different

machines, it will certainly have been moved to a machine from which it was moved before.

Let job Jj be the job that was moved in iteration t0. Then Li(t1) = Li(t0) − pj/si =

C ′
max(t0) − pj/si. By monotonicity of C ′

max, we have ∆(t1) = si(C
′
max(t1) − Li(t1)) ≤

si(C
′
max(t0) − Li(t0)) + pj = pj. So, pj ≥ ∆(t1) and by monotonicity of ∆, job Jj can-

not be moved.

Hence, after at most nm iterations, at least one job cannot be moved, and thus after

O(n2m) iterations no job can move and the algorithm terminates. ¤

Corollary 5 The iterative-improvement procedure described above finds a jump-optimal so-

lution for Q2‖Cmax in O(n2) iterations.

As with the identical-parallel-machine case, this result can be improved for Q2‖Cmax,

when we always choose the largest possible job to jump.

Theorem 14 The iterative-improvement procedure described above that always chooses the

largest possible job to jump finds a jump-optimal solution for Q2‖Cmax in O(n) jumps.

Proof: The algorithm computes a sequence of schedules with decreasing makespan and

maximum slack. Assume w.l.o.g. that, after iteration t, the critical machine changes from

22

M1 to M2, and that Jj jumped in that iteration. Using the same notation as in the proof of

Theorem 13, we have

∆(t + 1) = s1(C
′
max(t + 1)− L1(t + 1)) ≤ s1(C

′
max(t)− (C ′

max(t)−
pj

s1

)) = pj.

Therefore, only jobs smaller than Jj can jump in the following iterations, and as we always

choose the largest possible job to jump, these jobs have not been moved before. Thus each job

jumps at most once and the algorithm finds a jump-optimal solution after O(n) jumps. ¤

Hurkens and Vredeveld (2003) extended the above theorem to the general case of uniform

parallel machines, showing a running time of O(nm) jumps to find a jump-optimal solution

if the iterative-improvement procedure always chooses the largest possible job on a critical

machine to jump.

5. Concluding Remarks

The main focus of this paper was the quality of local optima with respect to four neighbor-

hoods. We have seen that, with respect to these neighborhoods, the local optima have a

constant performance guarantee for the problem of minimizing makespan on identical paral-

lel machines. In the case of uniform parallel machines, the two basic neighborhoods and the

multi-exchange one do not have a constant performance guarantee. The neighborhood based

on variable-depth search provides local optima that have a constant performance guarantee.

It would be interesting to see whether we can extend the push neighborhood to the

unrelated-parallel-machine environment, or whether there exists a neighborhood for this

machine environment that achieves a constant, or at least job-size-independent, performance

guarantee.

We also saw that only a polynomial number of iterations is needed to find a jump-optimal

solution for P‖Cmax and Q‖Cmax. It is still an open question how many iterations iterative

improvement needs to find a swap- or a push-optimal solution. We conjecture that a push-

optimal solution cannot be found in polynomial time through iterative improvement. For

the multi-exchange neighborhood, even finding an improving neighbor is already NP-hard,

and therefore it cannot be hoped that there will be a polynomial-time iterative-improvement

procedure that finds a local optimum with respect to this neighborhood.

23

Acknowledgments

The authors thank Jan Karel Lenstra and Cor Hurkens for their useful comments, and two

anonymous referees for their helpful comments to improve the exposition. Moreover, we

thank one anonymous referee for pointing out the paper by Frangioni et al. (2004).

The second author was supported by the project “High performance methods for mathe-

matical optimization” of the Netherlands Organization for Scientific Research (NWO), by the

EU project AMORE grant HPRN-CT-1999-00104, and by DFG research center Matheon

“Mathematics for Key Technologies.”

A preliminary version of this paper appeared as Schuurman and Vredeveld (2001). The

research was done while both authors were with the Department of Mathematics and Com-

puter Science of Eindhoven University of Technology.

References

Ahuja, R.K., J.B. Orlin, D. Sharma. 2001. New neighborhood search structures for the

capacitated minimum spanning tree problem. Mathematical Programming 91 71–97.

Arkin, E.M., R. Hassin. 1998. On local search for weighted k-set packing. Mathematics of

Operations Research 23 640–648.

Arya, V., N. Garg, R. Khandekar, A. Meyerson, K. Munagala, V. Pandit. 2004. Local search

heuristic for k-median and facility location problems. SIAM Journal of Computing 33

544–562.

Ausiello, G., M. Protasi. 1995. Local search, reducibility and approximability of NP opti-

mization problems. Information Processing Letters 54 73–79.

Boykov, Y., O. Veksler, R. Zabih. 1999. A new algorithm for energy minimization with

discontinuities. International Workshop on Energy Minimization Methods in Computer

Vision and Pattern Recognition. Springer, Berlin, Germany, 205–220.

Brucker, P., J. Hurink, F. Werner. 1996. Improving local search heuristics for some scheduling

problems I. Discrete Applied Mathematics 65 97–122.

Brucker, P., J. Hurink, F. Werner. 1997. Improving local search heuristics for some scheduling

problems II. Discrete Applied Mathematics 72 47–69.

24

Brüggemann, T., J. Monnot, G.J. Woeginger. 2003. Local search for the minimum label

spanning tree problem with bounded color classes. Operations Research Letters 31 195–

201.

Charikar, M., S. Guha. 1999. Improved combinatorial algorithms for the facility location and

k-median problems. Proceedings of the 40th Annual IEEE Symposium on Foundations of

Computer Science. 378–388.

Cho, Y., S. Sahni. 1980. Bounds for list schedules on uniform processors. SIAM Journal on

Computing 9 91–103.

Chudak, F.A., D.P. Williamson. 2005. Improved approximation algorithms for capacitated

facility location problems. Mathematical Programming 102 207–222.

De Bontridder, K.M.J., B.V. Halldórsson, M.M. Halldórsson, C.A.J. Hurkens, J.K. Lenstra,

R. Ravi, L. Stougie. 2003. Approximation algorithms for the test cover problem. Mathe-

matical Programming 98 477–491.

Feige, U., M. Karpinski, M. Langberg. 2002. Improved approximation of Max-Cut on graphs

of bounded degree. Journal of Algorithms 43 201–219.

Finn, G., E. Horowitz. 1979. A linear time approximation algorithm for multiprocessor

scheduling. BIT 19 312–320.

Frangioni, A., E. Necciari, M.G. Scutellà. 2004. A multi-exchange neighborhood for minimum

makespan parallel machine scheduling problems. Journal of Combinatorial Optimization

8 195–220.

Garey, M.R., D.S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of

NP-Completeness . Freeman, San Francisco, CA.

Goemans, M.X., D.P. Williamson. 1995. Improved approximation algorithms for maximum

cut and satisfiability problems using semidefinite programming. Journal of the ACM 42

1115–1145.

Graham, R. L., E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan. 1979. Optimization and

approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete

Mathematics 5 287–326.

25

Gupta, A., É. Tardos. 2000. A constant factor approximation algorithm for a class of classifi-

cation problems. Proceedings of 32nd ACM Symposium on Theory of Computing . 652–658.

Hochbaum, D.S., D.B. Shmoys. 1987. Using dual approximation algorithms for scheduling

problems: theoretical and practical results. Journal of the ACM 34 144–162.

Hochbaum, D.S., D.B. Shmoys. 1988. A polynomial approximation scheme for machine

scheduling on uniform processors: using the dual approximation approach. SIAM Journal

on Computing 17 539–551.

Hurkens, C.A.J., A. Schrijver. 1989. On the size of systems of sets every t of which have an

sdr, with an application to the worst-case ratio of heuristics for packing problems. SIAM

Journal on Discrete Mathematics 2 68–72.

Hurkens, C.A.J., T. Vredeveld. 2003. Local search for multiprocessor scheduling: how many

moves does it take to a local optimum? Operations Research Letters 31 137–141.

Kernighan, B.W., S. Lin. 1970. An efficient heuristic procedure for partitioning graphs. Bell

System Technical Journal 49 291–307.

Korupolu, M.R., C.G. Plaxton, R. Rajaraman. 2000. Analysis of a local search heuristic for

facility location problems. Journal of Algorithms 37 146–188.

Lenstra, J.K., D.B. Shmoys, É. Tardos. 1990. Approximation algorithms for scheduling

unrelated parallel machines. Mathematical Programming 46 259–271.

Lin, S., B.W. Kernighan. 1973. An effective heuristic for the traveling salesman problem.

Operations Research 21 498–516.

Lu, H., R. Ravi. 1992. The power of local optimization: approximation for maximum-leaf

spanning tree. Proceedings of the 13th Annual Allerton Conference on Communication,

Control, and Computing . 533–542.

Pál, M., Éva Tardos, T. Wexler. 2001. Facility location with nonuniform hard capacities.

Proceedings of the 42nd Annual IEEE Symposium on the Foundations of Computer Sci-

ence. 329–338.

26

Schuurman, P., T. Vredeveld. 2001. Performance guarantees of local search for multiproces-

sor scheduling. Proceedings of 8th Integer Programming and Combinatorial Optimization

Conference. LNCS 2081, Springer, Berlin, Germany, 370–382.

Vredeveld, T., J.K. Lenstra. 2003. On local search for the generalized graph coloring problem.

Operations Research Letters 31 28–34.

27

