19,667 research outputs found

    Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control

    Get PDF
    It is widely accepted that the complex dynamics characteristic of recurrent neural circuits contributes in a fundamental manner to brain function. Progress has been slow in understanding and exploiting the computational power of recurrent dynamics for two main reasons: nonlinear recurrent networks often exhibit chaotic behavior and most known learning rules do not work in robust fashion in recurrent networks. Here we address both these problems by demonstrating how random recurrent networks (RRN) that initially exhibit chaotic dynamics can be tuned through a supervised learning rule to generate locally stable neural patterns of activity that are both complex and robust to noise. The outcome is a novel neural network regime that exhibits both transiently stable and chaotic trajectories. We further show that the recurrent learning rule dramatically increases the ability of RRNs to generate complex spatiotemporal motor patterns, and accounts for recent experimental data showing a decrease in neural variability in response to stimulus onset

    The spectral radius remains a valid indicator of the echo state property for large reservoirs

    Get PDF
    In the field of Reservoir Computing, scaling the spectral radius of the weight matrix of a random recurrent neural network to below unity is a commonly used method to ensure the Echo State Property. Recently it has been shown that this condition is too weak. To overcome this problem, other more involved - sufficient conditions for the Echo State Property have been proposed. In this paper we provide a large-scale experimental verification of the Echo State Property for large recurrent neural networks with zero input and zero bias. Our main conclusion is that the spectral radius method remains a valid indicator of the Echo State Property; the probability that the Echo State Property does not hold, drops for larger networks with spectral radius below unity, which are the ones of practical interest

    NAIS-Net: Stable Deep Networks from Non-Autonomous Differential Equations

    Get PDF
    This paper introduces Non-Autonomous Input-Output Stable Network (NAIS-Net), a very deep architecture where each stacked processing block is derived from a time-invariant non-autonomous dynamical system. Non-autonomy is implemented by skip connections from the block input to each of the unrolled processing stages and allows stability to be enforced so that blocks can be unrolled adaptively to a pattern-dependent processing depth. NAIS-Net induces non-trivial, Lipschitz input-output maps, even for an infinite unroll length. We prove that the network is globally asymptotically stable so that for every initial condition there is exactly one input-dependent equilibrium assuming tanh units, and multiple stable equilibria for ReL units. An efficient implementation that enforces the stability under derived conditions for both fully-connected and convolutional layers is also presented. Experimental results show how NAIS-Net exhibits stability in practice, yielding a significant reduction in generalization gap compared to ResNets.Comment: NIPS 201

    Sensitivity and stability: A signal propagation sweet spot in a sheet of recurrent centre crossing neurons

    No full text
    In this paper we demonstrate that signal propagation across a laminar sheet of recurrent neurons is maximised when two conditions are met. First, neurons must be in the so-called centre crossing configuration. Second, the network’s topology and weights must be such that the network comprises strongly coupled nodes, yet lies within the weakly coupled regime. We develop tools from linear stability analysis with which to describe this regime, and use them to examine the apparent tension between the sensitivity and instability of centre crossing networks

    Incremental construction of LSTM recurrent neural network

    Get PDF
    Long Short--Term Memory (LSTM) is a recurrent neural network that uses structures called memory blocks to allow the net remember significant events distant in the past input sequence in order to solve long time lag tasks, where other RNN approaches fail. Throughout this work we have performed experiments using LSTM networks extended with growing abilities, which we call GLSTM. Four methods of training growing LSTM has been compared. These methods include cascade and fully connected hidden layers as well as two different levels of freezing previous weights in the cascade case. GLSTM has been applied to a forecasting problem in a biomedical domain, where the input/output behavior of five controllers of the Central Nervous System control has to be modelled. We have compared growing LSTM results against other neural networks approaches, and our work applying conventional LSTM to the task at hand.Postprint (published version

    Feedback control by online learning an inverse model

    Get PDF
    A model, predictor, or error estimator is often used by a feedback controller to control a plant. Creating such a model is difficult when the plant exhibits nonlinear behavior. In this paper, a novel online learning control framework is proposed that does not require explicit knowledge about the plant. This framework uses two learning modules, one for creating an inverse model, and the other for actually controlling the plant. Except for their inputs, they are identical. The inverse model learns by the exploration performed by the not yet fully trained controller, while the actual controller is based on the currently learned model. The proposed framework allows fast online learning of an accurate controller. The controller can be applied on a broad range of tasks with different dynamic characteristics. We validate this claim by applying our control framework on several control tasks: 1) the heating tank problem (slow nonlinear dynamics); 2) flight pitch control (slow linear dynamics); and 3) the balancing problem of a double inverted pendulum (fast linear and nonlinear dynamics). The results of these experiments show that fast learning and accurate control can be achieved. Furthermore, a comparison is made with some classical control approaches, and observations concerning convergence and stability are made

    A geometrical analysis of global stability in trained feedback networks

    Get PDF
    Recurrent neural networks have been extensively studied in the context of neuroscience and machine learning due to their ability to implement complex computations. While substantial progress in designing effective learning algorithms has been achieved in the last years, a full understanding of trained recurrent networks is still lacking. Specifically, the mechanisms that allow computations to emerge from the underlying recurrent dynamics are largely unknown. Here we focus on a simple, yet underexplored computational setup: a feedback architecture trained to associate a stationary output to a stationary input. As a starting point, we derive an approximate analytical description of global dynamics in trained networks which assumes uncorrelated connectivity weights in the feedback and in the random bulk. The resulting mean-field theory suggests that the task admits several classes of solutions, which imply different stability properties. Different classes are characterized in terms of the geometrical arrangement of the readout with respect to the input vectors, defined in the high-dimensional space spanned by the network population. We find that such approximate theoretical approach can be used to understand how standard training techniques implement the input-output task in finite-size feedback networks. In particular, our simplified description captures the local and the global stability properties of the target solution, and thus predicts training performance
    • …
    corecore