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Recurrent neural networks have been extensively studied in the context of neuroscience and machine learning
due to their ability to implement complex computations. While substantial progress in designing effective
learning algorithms has been achieved in the last years, a full understanding of trained recurrent networks is still
lacking. Specifically, the mechanisms that allow computations to emerge from the underlying recurrent dynamics
are largely unknown. Here we focus on a simple, yet underexplored computational setup: a feedback architecture
trained to associate a stationary output to a stationary input. As a starting point, we derive an approximate
analytical description of global dynamics in trained networks which assumes uncorrelated connectivity weights in
the feedback and in the random bulk. The resulting mean-field theory suggests that the task admits several
classes of solutions, which imply different stability properties. Different classes are characterized in terms of
the geometrical arrangement of the readout with respect to the input vectors, defined in the high-dimensional
space spanned by the network population. We find that such approximate theoretical approach can be used to
understand how standard training techniques implement the input-output task in finite-size feedback networks.
In particular, our simplified description captures the local and the global stability properties of the target
solution, and thus predicts training performance.

1 Introduction

Over the last decades, trained networks have been used as a test-bed for understanding how complex computations
can be performed by large ensembles of elementary non-linear units (Rosenblatt, 1958; Tsoi and Back, 1997;
LeCun et al., 2015). Trained recurrent networks, moreover, can be interpreted as models of cortical circuits that
one can easily probe and analyze in an in-silico setup (Mante et al., 2013; Sussillo, 2014; Rajan et al., 2016; Wang
et al., 2018; Barak, 2017). Because of the long temporal dependencies generated by the intricate connectivity,
designing efficient learning algorithms for recurrent networks is, however, a difficult task. Only recently, advances
in technology and machine learning algorithms (Atiya and Parlos, 2000; Martens and Sutskever, 2011; Pascanu
et al., 2013) have made possible to effectively train large recurrent networks by overcoming severe stability issues
(Doya, 1992; Bengio et al., 1994).

A first strategy to circumvent the problem of dealing with recurrent temporal dependencies was proposed
in the work by Jaeger (Jaeger and Haas, 2004) and Maass (Maass et al., 2007). In these frameworks, external
feedback loops were implemented to control and reshape the disordered dynamics that spontaneously appear in
large random networks. In such feedback architectures, the task-specific component of the recurrent dynamics is
totally specified by the feedback input from the readout unit to the random reservoir. As a result, learning can
be restricted to the readout weights, which are trained by clamping the feedback input to the target of the task
(Jaeger, 2001; Lukosevicius, 2012), or by fast weights modification within an online training scheme (Jaeger,
2002; Sussillo and Abbott, 2009).

From a mathematical perspective, feedback loops can be interpreted as rank-one perturbations of the originally
random connectivity. Such a low-rank perturbation can significantly modify the characteristics of the original
matrix (Tao, 2013), and generates the articulate dynamics which are required by complex tasks like pattern
generation and decision making (Sussillo and Abbott, 2009). In order to obtain arbitrary activity profiles, the
entries of the rank-one term are often tightly fine-tuned to the entries of the original random matrix. As learning
potentially relies on amplifying the correlations which exist between the readout vector and the finite-size random
bulk, developing a formal understanding of the resulting network dynamics has proved to be a difficult theoretical
task (Sussillo and Barak, 2013; Massar and Massar, 2013; Rivkind and Barak, 2017).

In this work, we focus on a simple, yet not fully explored scenario: the feedback network is trained to produce
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a stationary output signal in response to a constant pattern of external inputs (Rivkind and Barak, 2017). To
characterize the problem from a theoretical perspective, we focus on a restricted class of simple training solutions
for which a complete analytical description can be developed. These training solutions correspond to readouts
which are strongly aligned with the external and feedback input weights, but are uncorrelated with respect
to the random synaptic weights within the reservoir. For such readouts, we derive a mean-field theory which
captures the network behaviour in terms of a few representative macroscopic variables (Sompolinsky et al.,
1988; Mastrogiuseppe and Ostojic, 2018) and allows us to isolate the relevant geometrical components of the
readout vector which dominantly contribute to the final network dynamics. In particular, we find that different
combinations of these components can be mapped into different output states of the final feedback network.

In a second step, we consider the more general training solutions which are found by standard learning
techniques, such as least-squares (LS) (Jaeger, 2001; Lukosevicius, 2012) and recursive least-squares (RLS)
algorithms (Sussillo and Abbott, 2009; Laje and Buonomano, 2013). We use our mean-field framework to derive
approximate analytical descriptions of such solutions, where the full trained readout vector is replaced by its
projection on the hyperplane spanned by the external and feedback input vectors. We show that such simplified
portraits predict with good precision the output states that are displayed by trained networks, together with
their stability: our simplified description completely neglects the correlations existing between the readout
vector and the random bulk, but still accurately predicts how the network phase space is reshaped by training.
Specifically, we show that learning through the rank-one feedback can induce severe dynamical instabilities even
in an extremely simple task. We use our theoretical framework to unveil and compare the strategies that the LS
and RLS algorithms adopt to solve the task, and to clarify the reasons of their failures and successes.

2 The setup

We consider a rate-based network model, where every unit i is characterized by a continuous activation variable
xi and its non-linear transform φ(xi) (Sompolinsky et al., 1988). In line with many classical studies (Jaeger, 2001;
Sussillo and Abbott, 2009; Laje and Buonomano, 2013; Rivkind and Barak, 2017), we chose φ(x) = tanh(x).
The case of rate networks characterized by a threshold-linear activation function is discussed in Appendix C.

To begin with, we consider a random reservoir network driven by an external input consisting of an
N−dimensional stationary pattern I. Its dynamics read:

ẋi(t) = −xi(t) + g

N∑
i=1

χijφ(xj(t)) + Ii, (1)

where we have rescaled time to set the time constant to unity. The parameter g quantifies the strength of the
random connectivity χ, whose entries are generated from a centered Gaussian distribution of variance 1/N
(Sompolinsky et al., 1988). The network output is defined at the level of a linear readout:

z(t) =

N∑
i=1

niφ(xi(t)), (2)

where vector n sets the output readout direction.
A task specifies how the network needs to map the external input I into the output signal z(t). The task is

solved when an appropriate readout vector n has been learned, such that the readout z correctly matches the
target. Here we consider a specific fixed point task, in which the network has to hold an arbitrary stationary
output signal: z(t) = A.

The random reservoir in Eq. 1 admits a unique input-driven stable state (Kadmon and Sompolinsky, 2015;
Mastrogiuseppe and Ostojic, 2017), where single units activity is a combination of the feedforward input and
the recurrent dynamics generated by random synapses. For reasons that will become clear in a moment, we
refer to this attractor as the feedback-free activity state. Once the network activity has relaxed into such a state,
the task can be solved by tuning the readout weights ni until the network output matches the target A. This
training protocol results into a feedback-free implementation of the task, for which the dynamics of the reservoir
is independent of the choice of the readout weights.

While they are suitable for implementing many simple input-output associations, feedback-free reservoirs
have a limited range of applications. As pointed out in a series of seminal studies (Jaeger, 2001; Maass et al.,
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2007; Sussillo and Abbott, 2009), more flexible architectures can be obtained by using the readout signal z(t)
as an additional external input, which acts as an external feedback to the random reservoir (Fig. 1 a). The
dynamics of the network obey:

ẋi(t) = −xi(t) + g

N∑
i=1

χijφ(xj(t)) +miz(t) + Ii, (3)

where the N -dimensional vector m defines the input direction of the feedback signal. In standard training
procedures (Jaeger, 2001; Sussillo and Abbott, 2009), vector m is considered to be fixed across learning, and is
generated with random entries.

The feedback loop from the readout to the reservoir introduces a novel, one-dimensional element of recurrent
dynamics in the network. Substituting Eq. 2 into Eq. 3 allows to verify that the final feedback architecture can
be described by an equivalent connectivity matrix, which contains the original random bulk together with a
rank-one matrix specified by the feedback vectors:

ẋi(t) = −xi(t) +

N∑
i=1

(gχij +minj)φ(xj(t)) + Ii. (4)

As observed in a variety of studies (Jaeger, 2001; Lukosevicius, 2012), such a low-rank matrix perturbation
can deeply reshape the dynamical landscape of the reservoir network. The number of activity states and their
stability properties, which directly affect training performance in practical applications, strongly depend on the
choice of the readout vector n. Building an exact causal relationship between the different readout solutions and
the corresponding emerging dynamics is, however, a non-trivial theoretical problem (Massar and Massar, 2013;
Rivkind and Barak, 2017; Landau and Sompolinsky, 2018).

In this work, we characterize the dynamics emerging in feedback networks (Eq. 3) trained to solve the fixed
point task. The input vectors m and I determine the fixed geometry of the task by specifying two preferred
directions in the N -dimensional phase space spanned by the reservoir population. In our framework, vectors m
and I are generated as random patterns of variance σ2

m and σ2
I . Their entries are extracted from joint Gaussian

distributions of null mean. The two vectors can thus be constructed as:

m = σm

(
ρξ +

√
1− ρ2 ηm

)
I = σI

(
ρξ +

√
1− ρ2 ηI

) (5)

where ξ, ηm and ηI are standard Gaussian vectors. The parameter ρ quantifies the strength of correlations
between the input vectors m and I, defined onto the overlap direction ξ (alternatively, the overlap direction ξ
can be taken to be parallel to the unitary vector u = (1, ..., 1), resulting in input vectors m and I characterized
by random and uncorrelated entries of non-zero mean). From this setup, the feedback-free implementations can
be retrieved as a special case by setting the feedback inputs to zero through σm = 0.

3 General classes of solutions

As a first step, we approach the problem from a theoretical perspective. We analyze the space of all the possible
task solutions by focusing on the limit of a large random bulk (N →∞).

The specific task we consider requires a constant readout signal, which is trivially obtained in stationary
network states. Equilibrium solutions, which are obtained by setting ẋi(t) = 0 in Eq. 3, can be written as:

xi = miz + Ii + δi, (6)

where the term δi corresponds to self-consistent recurrent input generated by the random part of the connectivity:

δi = g

N∑
j=1

χijφ(xj(t)). (7)
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The value of the readout z can thus be re-expressed as:

z =

N∑
i=1

niφ(miz + Ii + δi)

= N〈ni φ(miz + Ii + δi)〉,

(8)

where the notation 〈.〉 indicates an average over the population of units.
For a broad range of φ(x) functions, the output z is thus determined by the correlations between the readout

n and the vectors defining the direction of the network activity: m, I and δ. While vectors m and I are
considered to be fixed, the direction of the residual input δ varies from one realization to the other of the random
connectivity χ. For a given matrix χ, furthermore, the direction of vector δ varies in the different dynamical
states admitted by the network. For these reasons, the residual input δ represents the hardest term to evaluate
and control.

One approach consists in fixing the random connectivity matrix and computing δ in the open-loop configuration,
obtained by clamping the readout signal to the target: z(t) = A (Jaeger, 2001; Rivkind and Barak, 2017). Such
a value for δ, however, holds only locally – that is, in the vicinity of the target fixed point. As a consequence,
this approach does not allow us to control the full, global dynamics that the readout n imposes on the final
feedback network. For example, it does not allow to predict whether additional, spurious attractors are created
together with the desired output state.

A different approach is used in classical mean-field studies of purely random networks (Sompolinsky et al.,
1988; Molgedey et al., 1992; Cessac et al., 1994; Schuecker et al., 2016; Martí et al., 2018). In that case, the
recurrent input δ is approximated by a vector of uncorrelated white noise of self-consistent amplitude. Such an
approximation is justified by the disorder in the random connectivity, which effectively decorrelates the input to
different units. This procedure washes out any dependence on the specific instantiation of the random matrix χ,
so that classical mean-field theories cannot be easily used to describe solutions where the readout vector n is
tightly correlated with δ.

For the simple task we consider here, one can focus on the restricted class of solutions where the readout n is
only correlated with the input vectors m and I. We show in the next paragraph that the classical mean-field
approaches can be easily used in this case to map any readout vector into a full description of the network output
states. As they do not rely on correlations with the random bulk χ, readout solutions in this class generate an
output which is robust with respect to changes in the random part of the connectivity.

From Eq. 5, a minimal and general solution in this class can be written as:

n =
c

N
(pξ + pmηm + pIηI) . (9)

The geometry of the readout vector is determined by the relative weights of the three coefficients (p, pm, pI),
which quantify how much the readout direction is distributed on the three axes defined by the non-trained part
of the network architecture.

When the readout vector is aligned with one of the three axes ξ, ηm or ηI , the population average in Eq. 8
takes finite O(1) values (see below). As a consequence, training solutions in the form of Eq. 9 need to scale as
the inverse of the network size (ni ∼ O(1/N)) in order to prevent diverging activity and outputs. The weights
(p, pm, pI) are furthermore normalized through the constant c, which fixes the output z to the exact target value
specified by the task.

In the remaining of this section, we characterize analytically the dynamics emerging in trained networks
where the readout vector belongs to the restricted class defined by Eq. 9. To this end, we introduce the key
equations of the mean-field description and we analyze in detail three simple geometries (p, pm, pI) which satisfy
the task through rather different output dynamics. In Sections 4 and 5, we exploit our simplified mean-field
framework to analyze the more general readout solutions which are generated through learning by standard
training algorithms.

3.1 Mean-field description
For every fixed readout vector in the form of Eq. 9, we follow Mastrogiuseppe and Ostojic (2018) to derive a
macroscopic, effective description of the network activity. As in standard mean-field theories for random recurrent
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networks (Sompolinsky et al., 1988; Rajan et al., 2010; Kadmon and Sompolinsky, 2015), we approximate the
equilibrium activation vector x by the statistical distribution of its elements. In particular, every element xi can
be thought as extracted from a Gaussian distribution of variance ∆ ≡ 〈[x2i ]〉 − 〈[xi]〉2, where 〈.〉 indicates an
average over the population and [.] an average across different realizations of the random bulk.

From here on, we consider the overlap direction ξ to be generated as a standard Gaussian vector. In this
case, the mean of the distribution of x vanishes, as 〈mi〉 = 〈Ii〉 = [χij ] = 0. As shown in Mastrogiuseppe and
Ostojic (2018), if the overlap direction ξ coincides instead with the unitary vector, the mean-field equations take
a slightly different form, which includes finite mean values but result in qualitatively identical results.

In order to derive a self-consistent expression for ∆, we first consider the average over the bulk connectivity
χ. By direct averaging of Eq. 6 we get:

µi = [xi] = mi[z] + Ii

∆i = [x2i ]− [xi]
2 = m2

i

(
[z2]− [z]2

)
+ [δ2i ].

(10)

As in standard mean-field derivations (Sompolinsky et al., 1988), we have [xixj ] = [xi][xj ] and:

[δ2i ] = g2
N∑
j=1

N∑
k=1

[χijχik][φ(xj)φ(xk)] = g2
N∑
j=1

[χ2
ij ][φ(xj)

2] = g2〈[φ(xi)
2]〉, (11)

since [χ2
ij ] = 1/N . In the thermodynamic limit, furthermore, the variance of z vanishes, as ni is characterized

by a weaker scaling with N (from Eq. 9, n2i ∼ O(1/N2)). The readout signal z is thus self-averaging in large
networks. For this reason, we drop the brackets in [z], and we compute the readout signal self-consistently
through:

z = c 〈{pξi + pmηmi + pIηIi} [φ(xi)]〉. (12)

Note that Eq. 10 allows to effectively replace the recurrent input δ with white noise of self-consistent amplitude:

xi = µi + δi ∼ µi +
√

∆iwi (13)

where ∆i = g2〈[φ(xi)
2]〉 and wi is a standard Gaussian variable.

By averaging again across units, we find that the population distribution of the equilibria xi obeys the
following statistics:

µ = 〈[xi]〉 = 0

∆ = 〈[x2i ]〉 − 〈[xi]〉2 = g2〈[φ(xi)
2]〉+ σ2

mz
2 + 2σmIz + σ2

I ,
(14)

where σmI = 〈miIi〉 = ρ2σmσI .
In order to obtain a closed form for our equations, we derive a self-consistent expression for the average

quantities z and 〈[φ(xi)
2]〉. As in standard mean-field theories, we re-express averages through Gaussian integrals:

〈[φ(xi)
2]〉 =

∫
Dw φ2(

√
∆w), (15)

where we used the short-hand notation Dw = dwe−
w2

2 /
√

2π. By combining Eqs. 5 and 12, and by integrating by
parts over ξi, ηmi and ηIi, we furthermore get (Mastrogiuseppe and Ostojic, 2018):

z = c
{
p(σmρz + σIρ) + pmσm

√
1− ρ2z + pIσI

√
1− ρ2

}
〈[φ′(xi)]〉, (16)

where the average 〈[φ′(xi)]〉 can be evaluated similarly to Eq. 15. For any fixed set of readout weights (p, pm, pI),
Eqs. 14 and 16 can be solved together through standard numerical techniques to return the values of ∆ and z
which characterize the different output fixed points.

To conclude, we observe that the equations above only apply to networks which satisfy the task through
stationary output states. In general, stationary outputs do not require stationary reservoir activity. For example,
solutions in the form of Eq. 9 can be used to solve the task even when activity in the bulk is chaotic, but
fluctuations cancel out at the level of the readout (Mastrogiuseppe and Ostojic, 2018). In that case, the mean-field
description above can easily be extended to take temporal fluctuations into account (Sompolinsky et al., 1988).
Standard training techniques, however, typically fail to converge when the target of the task is not strong enough
to suppress chaotic activity in the bulk (Rivkind and Barak, 2017). For this reason, here and in the following,
we concentrate on fixed point dynamics.

5



3.2 Determining task solutions
For every fixed set of weights (p, pm, pI), first the normalization parameter c needs to be determined. We fix c
by requiring that, in the final network output, the readout value exactly matches the target A. To this end, we
consider the open-loop formulation of Eqs. 14 and 16, obtained by setting z = A, and we solve the system for c
and ∆ol. This gives:

c =
A{

p(σmρA+ σIρ) + pmσm
√

1− ρ2A+ pIσI
√

1− ρ2
}
〈[φ′(xoli )]〉

(17)

where 〈[φ′(xoli )]〉 is computed as Gaussian integral over a distribution of variance ∆ol (see Eq. 15).
Once the normalizing factor has been derived, the full mean-field equations can be solved. Because of the

normalization, the mean-field system of equations always admits a stationary solution which satisfies the task
for N →∞ (i.e. its readout obeys z = A). This solution, however, is not guaranteed to be locally stable from
the point of view of the full feedback dynamics (Fig. 1 b). Apart from the target solution, furthermore, the
mean-field equations might admit other solutions corresponding to stable fixed points. In those cases, depending
on the initial conditions, the dynamics of the final network might converge to spurious output states where the
readout z significantly deviates from the target.

For every solution of the mean-field equations, we predict local stability by evaluating the eigenspectrum
of the linear stability matrix of the corresponding fixed point. For the class of readouts that we consider, the
eigenspectra consist of a dense set of eigenvalues, distributed within a circle in the complex plane, together
with a single real outlier (Fig. 1 b) (Mastrogiuseppe and Ostojic, 2018; Tao, 2013; Rivkind and Barak, 2017).
The radius of the circular set and the position of the outlier eigenvalue can be evaluated within the mean-field
framework (Mastrogiuseppe and Ostojic, 2018); their value is determined by the interplay between the amplitude
of the random bulk and the relative geometrical arrangement of vectors n, m and I. Details of the calculations
are provided in Appendix A.

3.3 Categories of readout solutions
We specifically look at the results obtained for three readout vectors characterized by different geometries.

In the first example we analyze (Fig. 1 c), the readout n overlaps solely with the feedback input m along ηm.
This configuration corresponds to setting p = pI = 0, and can be realized also in absence of the external input
vector. In this case, the network admits three stationary states for every value of the target A. Among them,
only two states are locally stable. Bistability is due to the strong overlap between the feedback vectors m and n,
and emerges through a pitchfork bifurcation induced by the outlier eigenvalue in the stability eigenspectrum of
the feedback-free fixed point (Hopfield, 1982; Mastrogiuseppe and Ostojic, 2018). As a consequence, stationary
states tuned to small target values are characterized by long relaxation timescales. For most of the target values,
the solution corresponding to the target (i.e. z = A) is locally stable. However, the network admits a second
stable fixed point, characterized by a different readout value. This additional stable state is reached when the
network is initialized within the appropriate basin of attraction. The position of the unstable fixed point (dashed
lines in Fig. 1) can be used to estimate the size of the basins of attraction of the two stable fixed points, which
in this case is approximately equal. Within a small parameter region corresponding to very small target values,
the target fixed point is built in correspondence of the intermediate, locally unstable branch of the mean-field
solutions. The mean-field theory indicates that the local instability is due to the outlier eigenvalue of the fixed
point stability matrix laying above the critical line (Fig. 1 b right). The amplitude of the instability region
is controlled by the overlap between the two fixed vectors m and I, and disappears when ρ = 0 (Rivkind and
Barak, 2017).

In the second example we consider (Fig. 1 d), the readout n overlaps solely with the external input weights I
along ηI . We thus set: p = pm = 0. Analogously to a feedback-free network, aligning the readout vector with
the external input generates a unique stationary solution, corresponding to the target of the task (z = A). Such
a solution is always stable, and it is characterized by negative values of the outlier eigenvalue.

As a last example, we consider the general case where the readout displays non-vanishing overlaps with both
vectors m and I (Fig. 1 e). Such a category includes the simplest configuration where the readout n is aligned
with the overlap direction ξ (pm = pI = 0), but more general solutions characterized by non-zero projections
along ηm and ηI are comprised as well. As in the first example we considered (Fig. 1 c), the components of
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a. b.
target

d. e.

Figure 1: Implementing the fixed point task: network model and mean-field analysis in three example geometries.
a. Architecture of the feedback network (Eq. 4). b. Sample from the dynamics of two finite-size networks,
N = 1000. In the left example, the output state which corresponds to the target fixed point is locally stable, and
the readout signal z(t) converges to the correct value. In the right example, instead, the target corresponds to a
locally unstable state, and the readout converges to an incorrect value. Gray traces indicate the time course of
the activation variable x for five randomly selected units. The readout trajectory is instead displayed in blue.
The top-right insets display the mean-field prediction for the stability eigenspectrum of the target fixed point
(see Appendix A). Local instabilities are due to the outlier eigenvalue crossing the instability boundary (dashed).
The parameters which have been used in the left and the right examples are indicated by colored arrows in e.
c-d-e. Mean-field characterization of the network fixed points for three different readout geometries (see text).
Continuous (resp. dashed) lines correspond to locally stable (resp. unstable) mean-field solutions. Shaded areas
indicate the values of the target A for which the association is locally unstable. Top row: value of the readout
signal. Bottom row: position of the outlier eigenvalue in the stability eigenspectra. Gray lines indicate the value
of the radius of the eigenvalues bulk. The instability boundary is indicated on the ordinate axis by the black
arrows. The results of simulations are displayed as dots (N = 3000, average over 8 network realizations). We
integrate numerically the dynamics of finite-size networks where the readout vector n is normalized through
Eq. 17. In order to reach different solutions, we initialize the network dynamics in two different initial conditions,
centered around n and −n. Note that the position of the outlier eigenvalue cannot be measured when the
outlier is absorbed in the circular set of the eigenspectrum. In order to ease the comparison between theory and
simulations, we thus chose a small g value. Parameters: g = 0.3, σm = 1.2, σI = 0.5. ρ = 0.5. In e, we take
p = pm = 1, pI = 0.3. Here and in the following figures: error bars, when visible, correspond to the standard
error.
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the readout which overlap with the feedback input m tend to generate three different fixed points. Because of
the components along the external input I, however, these solutions are no longer characterized by a strong
symmetry around zero. As a result, the unstable intermediate fixed point is always characterized by finite
output values. This unstable state corresponds to the task solution within a finite parameter region at small
and negative target values. This instability area is delimited by a critical target value A∗ where the readout
amplitude c, together with the stable fixed points, diverges:

A∗ = − pσIρ+ pIσI
√

1− ρ2

pσmρ+ pmσm
√

1− ρ2
. (18)

Note that this geometry produces a unique and stable input-output association within a parameter window
corresponding to small and positive target values. For large (positive or negative) target values, instead, the
projection along m dominates and a second stable fixed point exists.

To conclude, we characterized the output states generated by readout solutions in the class defined by Eq. 9.
We found that, for different solutions belonging to that class, the task is satisfied through output states which
are characterized by different local and global stability properties. Stability can be predicted via the mean-field
theory by examining the projections of the readout n on the input vectors m and I. In particular, an optimal
solution – characterized by both local and global stability – can be obtained by aligning the readout n along the
non-shared direction of the external input I. This solution requires a non-vanishing input pattern and generates
a feedback network that is dynamically analogous to the feedback-free implementation. Components along
the feedback input m, on the other hand, tend to generate additional stable solutions which can attract the
dynamics to different readout values. Combining both readout components along m and I, finally, generates
non-symmetric bistable solutions which result in broad regions of local and global instability.

4 Least-Squares training

In Section 3, we derived a theoretical framework which allows us to directly map the geometry of the readout
vector into the final output states of the feedback network. This description applies to networks which obey
three closely related assumptions (Eq. 9): (i) the readout is a linear combination of the input axes ξ, ηm, ηI ; (ii)
no correlations exist between the readout and the random bulk; (iii) the scaling of the solution with the network
size N is weak (i.e. ni is of order 1/N).

Importantly, these assumptions might not hold in finite-size networks obtained through standard training
techniques. Trained networks might indeed converge to more complex, non-linear solutions, where strong
correlations with the random connectivity significantly influence the output dynamics. In Sections 4 and 5, we
investigate how far our approximate theory can be used to describe trained networks. To this end, we construct
for every training solution a crude approximation in the form of Eq. 9, for which the mean-field equations can be
solved and the global dynamics of the resulting network can be predicted. Since in the mean-field description
correlations with the random bulk are neglected, comparing mean-field predictions with training performance
allows us to quantify how much training relies on a fine-tuning of the readout to the random connectivity χ. In
cases where the theory predicts that no stable solutions exist, furthermore, our analysis allows to investigate
whether finite-size trained networks converge to more effective solutions that the simplified theoretical description
cannot capture.

We consider in two specific cases, corresponding to two classical training protocols. The first training procedure
we consider is the simple batch update through least-squares (LS) inversion (Jaeger, 2001; Lukosevicius, 2012;
Rivkind and Barak, 2017). To begin with, a finite-size architecture defined by a random bulk χ and two vectors
m and I is generated. The activity of the whole population in the open-loop configuration is then simulated,
yielding:

xoli = miA+ Ii + δoli . (19)

The task imposes a unique constraint on the readout, namely: φ(xol)Tn = A. This equation represents a
underdetermined linear system for the N entries of vector n. The minimum norm LS solution can be computed
through the pseudo-inverse of φ(xol)T (Bretscher, 2009):

n =
A

N〈φ2(xoli )〉
φ(xol) (20)
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and thus scales with the network size as 1/N .
Through the open-loop activation vector xol, the LS readout inherits three N -dimensional components along

vectors m, I and δol (Eq. 19). The non-linear activation function φ(x), which is applied to xol (Eq. 20), mixes
and reshapes these three directions, by generating a continuum of additional components along orthogonal axes.
The component of xol aligned with the recurrent input δol, furthermore, introduces finite, O(1) correlations
between the readout and the finite-size instantiation of the random bulk used for training. Note that a fraction
of those correlations is used by the LS algorithm to exactly match the readout z to the target A within network
instantiations of any size. Mean-field solutions (Eq. 9), instead, are independent of the random bulk and imply
small readout errors (of the order of 1/

√
N) which disappear only in the thermodynamic limit.

4.1 Mean-field approximation
We construct an approximate description of n (Eq. 20) which conserves the relative strength of its components
along the input vectors m and I (Eq. 9), thus totally neglecting the components originating from the recurrent
input δol and the non-linearity. To this end, we extract the linear projections of the readout vector along the
orthogonal axes ξ, ηm and ηI , resulting in a set of weights (p, pm, pI) which effectively replaces the LS solution
with an approximate readout in the form of Eq. 9. For such an approximate readout, the network output states
can be exactly predicted.

As we show in the next paragraphs, corrections to the mean-field description due to both neglected terms δol
and φ(x) can, in this case, be exactly computed (Rivkind and Barak, 2017). A minimal approximation is however
of interest per-se, as it directly generalizes to more complex readout vectors for which analytical expressions do
not exist, so that the exact form of correlations and the shape of non-linear components is not known a priori
(see Section 5).

The projection of n on ξ can be computed as:

p =
A

N〈φ2(xoli )〉
〈ξi φ(xoli )〉

=
A

N〈φ2(xoli )〉
〈ξi φ

(
σm(ρξi +

√
1− ρ2ηmi)A+ σI(ρξi +

√
1− ρ2ηIi) + δoli

)
〉.

(21)

We re-express the population average as a Gaussian integral and we integrate by parts over ξi, yielding:

p =
A

N〈φ2(xoli )〉
ρ(σmA+ σI)〈φ′(xoli )〉. (22)

Similar calculations return the values of pm and pI . The final set of weights is given by:

p = γρ(σmA+ σI)

pm = γσm
√

1− ρ2A

pI = γσI
√

1− ρ2,

(23)

where we defined the common multiplicative factor γ = A〈φ′(xoli )〉/N〈φ2(xoli )〉.
As in Fig. 1 e, the LS solution thus includes non-vanishing components along the three axes ξ, ηm and ηI .

In contrast to Fig. 1, however, the values of (p, pm, pI) that have been derived from the LS solution display
an explicit dependence on the target value A. For fixed vectors m and I, the geometrical arrangement of the
readout vector thus changes according to the target of the task.

Starting from Eq. 23, we evaluate the normalization factor (Eq. 17) and we solve the system of mean-field
equations (Eqs. 14, 16). In Fig. 2, the solutions and their stability properties are illustrated.

We find that the shape of the mean-field solutions critically depends on the geometrical arrangement of the
non-trained part of the network architecture. Specifically, the network output is strongly influenced by the value
of the overlap between the input vectors m and I, quantified by the parameter ρ.

When the input vectors m and I are orthogonal or share a weak overlap, the theory admits a continuous
stable solution – on which the target output is built – together with two symmetric stable branches at large
target values (Fig. 2 a). In this case, the theory predicts that training always generates locally stable dynamics
(Rivkind and Barak, 2017), but spurious fixed point attractors are generated at large A. As the overlap ρ is
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Figure 2: The least-squares solution: approximate mean-field description. a-b-c. Mean-field characterization for
three different configurations of the non-trained input vectors m and I. In a, we take ρ = 0.6; in b, ρ = 0.97; in
c, ρ = 1. Continuous and dashed lines indicate the solutions of the simplified mean-field description, where the
readout is approximated by a vector in the form of Eq. 9. Details are as in Fig. 1. The light green line indicates
the exact value of the outlier eigenvalue which measures the local stability of the target solution (Rivkind and
Barak, 2017); details are provided in Appendix B. Dots display the results of simulations from finite-size networks
(N = 3000, averages over 8 network realizations). We integrate numerically the dynamics of finite-size networks
where the readout vector n is given by the LS solution (Eq. 20). In order to reach different solutions, we initialize
the network dynamics in two different initial conditions, centered around n and −n. Parameters as in Fig. 1.

increased, the branch of the solution corresponding to the target merges with one of the two additional fixed
points, generating a region of local instability at small and negative target values (Fig. 2 b). In the limit where
the input vectors m and I are fully aligned (ρ = 1, Fig. 2 c), finally, mean-field solutions are similar to the
results in Fig. 1 e. The network is characterized by a region of local instability which is delimited by a critical
target value A∗ where the dynamics diverge. The normalization factor c is in this case given by:

c =
A

ρ {σI + σmA}2 〈[φ′(xoli )]〉
, (24)

which diverges at A∗ = −σI/σm.
In Fig. 2, mean-field predictions are compared with the outcome of simulations performed in finite-size

networks which have been trained through LS inversion. Despite the approximate nature of the theory, a good
agreement between the two is found. As predicted by the theory, output states of trained networks are strongly
affected by the value of the input overlap ρ. In particular, the theoretical approximation correctly predicts the
existence of an area of local instability for large ρ values. Within this parameter region, training generates an
output z(t) which immediately diverges from the desired target. For every value of ρ, furthermore, the theory
captures the existence of a second, spurious fixed point at large target values.

The mean-field prediction for the outlier stability eigenvalue can be further compared with an exact analytical
expression derived by following the analysis in Rivkind and Barak (2017). This expression, provided in Appendix
B, includes the components of the readout n which are neglected in the simplified mean-field description:
correlations with the bulk χ and non-linear geometry. We find that, apart from minor quantitative discrepancies,
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Figure 3: The least-squares solution: mean-field description with non-linear corrections (ρ = 1). a. We compare
the solutions which are obtained from the linear (blue) and the non-linear (orange) set of mean-field equations.
Note that the two set of solutions almost completely overlap. b. We plot a magnified view of the solutions within
the shaded yellow areas of a. We compare both mean-field solutions with the results of simulations performed in
LS-trained networks (dots). Parameters and simulations settings are as in Fig. 2.

the exact outlier prediction is well matched by the approximate one. Note that this exact analytical expression
only provides a measure of local stability, as it can be evaluated only in correspondence to the target solution.

To conclude, we found that dynamics in LS trained networks can be explained by a highly simplified,
approximate theoretical description which conserves the projection of the readout vector on the hyperplane
spanned by the feedback and external input vectors. The approximate mean-field theory specifically predicts
that LS readouts often generate bistable fixed points, while unstable solutions can be encountered for large
values of the overlap ρ. Note that, as long as the input vectors m and I are not completely parallel (i.e. ρ < 1),
the mean-field framework indicates that an optimal readout solution can be designed by aligning the readout
n with the non-shared component of I (Fig. 1 d). We conclude that, even for the simple task we consider, LS
training does not lead to an optimal solution that prevents dynamical instabilities.

Apart from an overall quantitative agreement, mismatches between simulations and mean-field solutions can
be observed. Their size depends on the value of the target and on the network parameters. A brief description of
the role and impact of the different sources of mismatch is presented in the next two paragraphs.

4.2 Non-linear corrections
Together with its components along the input axes ξ, ηm and ηI , the full LS readout (Eq. 20) includes a
continuum of orthogonal directions which can potentially affect the network dynamics and output values. We
first focus on the orthogonal components which are generated when the non-linear function φ(x) is applied to
xol (Eq. 20).

We build a more precise mean-field approximation which conserves the non-linearity of the LS solution
(Fig. 3). Details of the analysis are provided in Appendix D. By solving the novel set of mean-field equations,
we altogether find that non-linear solutions lie very close to the ones we obtained for linearly approximated
readouts (Fig. 3 left). The simple linear approximation, therefore, appears to capture well the readout geometry
that is relevant for the final network dynamics. At a finer scale, we find that non-linear solutions in some cases
explain with higher precision the output states observed in trained networks. In particular, we observe that
the agreement significantly improves in the parameter regions corresponding to large and positive target values,
where the dynamics are strongly non-linear and admit bistable fixed points (Fig. 3 right).

4.3 The effect of correlations
Our approximate mean-field description neglects a second set of orthogonal readout directions, generated by the
recurrent input δol (Eq. 19). When this vector is replaced with Gaussian noise, correlations between the LS
readout and the random part of the connectivity are effectively washed out.

In order to boost the effect of correlations, we increase the strength of random connections g up to the critical
point where dynamics become chaotic (Fig. 4 a-b; note that the rank-one structure and the external input

11



a. b.

target

c.

Figure 4: The least-squares solution: effect of correlations. a-b. Comparison between the linear mean-field
predictions and the trained networks output states for two increasing values of g, corresponding to pink (g = 0.6)
and magenta (g = 1.1) traces. We consider network architectures characterized by two different values of the
input vectors overlap: in a, we take ρ = 0.6, in b, ρ = 1. Note that, especially in a, the results for the two values
of g strongly overlap. A significative mismatch between theory and simulations is observed in b, for g = 1.1,
within the instability area at small and negative target values. c. For ρ = 1, we fix the value of the target A
within the instability window (grey arrows in b) and we measure the mismatch between mean-field predictions
and trained networks as the random strength g is increased. The mismatch is measured at the level of the
readout z in correspondence of the spurious fixed point characterized by positive readout values. Parameters
and simulations settings are as in Fig. 2.

pattern shift the critical coupling from g = 1 to slightly larger values (Rajan et al., 2010; Schuecker et al., 2018)).
For every value of g, we observe that the approximate mean-field description correctly captures performance in
LS-trained networks when the two input vectors m and I are not completely aligned (ρ < 1, Fig. 4 a). On the
other hand, we find that the theory fails to fully describe degenerate architectures with parallel input vectors
(ρ = 1, Fig. 4 b): a significant qualitative mismatch is observed within the instability region corresponding to
small and negative target values. In such a region, non-linear corrections have very little effect (Fig. 3), and the
mismatch is mostly due to correlations between the readout vector and the random bulk. The mismatch indeed
increases with the random strength g, as the recurrent input deriving from the random connectivity becomes
large with respect to the feedback input (Fig. 4 c).

A detailed analysis of degenerate feedback architectures (ρ = 1) is provided in Fig. 5. In the top row, we select
an intermediate value of g. In this case, dynamics in trained networks diverge at the border of the instability
window as predicted by the mean-field theory (Fig. 5 a). In the bottom row, we consider a larger value of g,
laying right below the instability to chaos. In this case, the trained network output appears to obey a different
qualitative pattern: the largest stable solution, which is predicted to diverge at A∗, converges instead at the
border of the instability window.

Our approximate mean-field description predicts furthermore a large instability window, wider than the
instability region which is predicted by the exact analytical expression (Rivkind and Barak, 2017) (light shaded
regions in Fig. 5 a and b). The target fixed point remains thus locally stable within a parameter region where the
approximate theory predicts instability. Within the same window, however, the target solution is characterized
by a stability eigenvalue laying very close to the instability boundary and a very narrow basin of attraction
(Fig. 5 b and c). Trained networks, indeed, converge to the target fixed point only when the initial conditions of
the dynamics are very carefully tuned to the open-loop activation vector xol. Since the dynamics systematically
diverge from the target solution when the initial conditions are perturbed along random directions, Fig. 5 c
indicates that the basin of attraction of such a fixed point is particularly narrow with respect to any axis of the
phase space.

To conclude, we found that correlations impact the agreement between mean-field theory and trained
networks within a restricted region of parameters, corresponding to almost parallel input vectors. In that region,
a quantitative and qualitative match cannot be obtained when the ratio g/A, which measures the relative
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Figure 5: The least-squares solution: effect of correlations; detailed analysis of the case ρ = 1 (Fig. 4). The
results for the two different values of g are displayed separately in the top (g = 0.6) and in the bottom (g = 1.1)
panels. a. Magnified view of Fig. 4 b. Arrows on the abscissa axis indicate the target values used in c. b. Exact
prediction for the outlier eigenvalue of the stability matrix of the target fixed point (in green, see Appendix B).
The outlier eigenvalue lies above the instability boundary within a parameter region corresponding to exact
instability area, indicated in light gray. The instability area predicted by the approximate mean-field theory is
instead indicated in dark gray. Gray lines indicate the value of the radius of the eigenvalues bulk. c. Probing the
basin of attraction of the target solution for two different values of A, indicated by arrows in a. We simulate the
post-training network dynamics starting from initial conditions given by Gaussian vectors of variable amplitude
added on top of the open-loop activity xol. The absolute error is then measured at the level of the readout z,
and is averaged over 40 trained networks. Parameters are as in Fig. 2.

strength of the recurrent over the feedback dynamics, is large. The approximate mean-field description, however,
successfully captures the presence of an instability area, where the target fixed point is unstable or confined into
a very narrow basin of attraction.

5 Recursive Least-Squares training

Our analysis of least-squares solutions revealed the presence of a finite parameter region where the target fixed
point is constructed on a locally unstable state. Dynamical feedback instabilities have been observed in a variety
of studies where, as in the LS case we examined so far, the readout vector n is fixed through a unique and batch
weights update (Jaeger, 2001; Lukosevicius, 2012; Reinhart and Steil, 2011).

A convenient strategy to overcome local instabilities consists of training feedback networks with an online
algorithm so that the effect of synaptic changes is immediately propagated and tested on the network dynamics.
FORCE (first-order reduced and controlled error) learning (Sussillo and Abbott, 2009) is a popular example
which relies on an online and recursive formulation of the least-squares algorithm (RLS) (Liu et al., 2010; Jaeger,
2002). This algorithm includes a regularization term, whose strength is controlled by a parameter r, which
penalizes large amplitude readouts. Details of the training procedure are reported in Appendix E.

In this section, we train feedback networks with FORCE and apply our theoretical framework to derive
an approximate but effective description of the reached solutions. Similarly to the previous section, we can
investigate how the algorithm implements the task by replacing the trained readout vector with an approximation
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Figure 6: Recursive least-squares solutions (ρ = 1): analysis of the readout vector. We consider a set of N
unitary and orthogonal vectors {vk}k=1,..,N which includes the input direction ξ, and we decompose the trained
readout n on such an orthonormal basis. We construct an histogram by collecting the strengths of the projections
of n along the different basis vectors. Different histogram colors indicate three different training trials, where the
norm of the initial guess for n has been varied. The initial guess is generated as a Gaussian random vector of
std Ns. The value of s thus controls the amplitude of the initial guess with respect to the network size. The
inset reports a magnified view of the histogram for small ordinate values. The grey arrow indicates the average
strength of the component of n along the input axis ξ. The amplitude of the projections along the remaining
basis vectors, instead, is strongly modulated by the initial amplitude s. Parameters: g = 0.3, σm = σI = 1.2,
ρ = 1, A = 1.6.

in the form of Eq. 9. Specifically, we are interested in understanding whether – and eventually, how – RLS
solutions overcome the local instabilities that are encountered by the batch version of the LS algorithm.

5.1 Parallel geometry
We start our analysis from a specific case, corresponding to a particularly simple network architecture: the two
input vectors m and I are taken to be parallel (ρ = 1). In this case, the mean-field theory for uncorrelated
solutions (Eq. 9) predicts that a unique solution exists, for which the readout vector n is parallel to the overlap
axis ξ, while orthogonal readout directions do not affect the output z. As in Figs. 1 e and 2 c, such a readout
unavoidably generates regions of local and global instability. Here we ask whether RLS solutions implement
the task through a similar strategy, or whether alternative and more effective solutions are found outside of the
restricted class of readouts which are described by the mean-field theory (Eq. 9).

To start with, we run the RLS algorithm up to convergence and we then analyze numerically the geometry of
the reached solution n (Fig. 6). We find that, regardless of the network size, the value of the parameters and the
initial conditions, the readout vector is systematically characterized by a large component aligned with the input
direction ξ (grey arrow in the inset of Fig. 6). The readout vector, however, includes also strong components
oriented in orthogonal directions: such additional components are induced by non-linearities, correlations with
the random bulk and initial conditions of training. In particular, since training convergence is often very fast,
a large fraction of orthogonal components is directly inherited from the geometry of the initial guess for the
readout n, which is typically generated at random (Fig. 6). As a consequence, the amplitude of orthogonal
components is strongly affected by the norm of the random vector which is used as initial guess for n. In
Fig. 6, the initial readout is generated as a Gaussian vector of standard deviation Ns, so that the amplitude of
orthogonal components is controlled by parameter s, which measures the amplitude of the initial guess with
respect to the bulk size.

As a second step, we train feedback networks to different target values, and we attempt to predict performance
through the help of the mean-field framework (Fig. 7). As in the previous section, our approximate theoretical
description conserves the component of n which is parallel to ξ, and discards any orthogonal direction. In Eq. 9,
we thus set p = 1, pm = pI = 0.

As in Figs. 1 e and 2 c, the mean-field theory predicts an area of local instability at small and negative
target values (gray shaded regions in Fig. 7). In order to evaluate the local stability of the fixed point generated
by FORCE, we compute the post-training dynamics by using the activation vector from the last training step
(xend) as an initial condition, and we finally measure the error at the level of the readout z. Remarkably, we find
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Figure 7: Recursive least-squares solutions (ρ = 1): comparison between mean-field predictions and trained
networks. The region of local instability predicted by the theory is displayed in gray. The regions where the
mean-field theory predicts the existence of a second stable fixed point are instead indicated in d, e and f by
horizontal red stripes. In a, b and c, we quantify the local stability of the training solution. To this end, the
post-training activity is simulated for 50 normalized time units, where the initial condition is set by the activation
variable during the last training step xend. The error is finally measured as |z − A|. In d, e and f, we test
whether the network admits two bistable states. We simulate dynamics starting from xend and −xend as initial
conditions (n and −n give similar results), and we compare the final value of the readout z in the two cases.
The trained dynamics are considered to be bistable if these two values have opposite sign. Dots show results
averaged over 50 network realizations of size N = 600. Here and in the following, continuous lines do not indicate
analytical results, but are drawn to guide the eye. a, d. Training results for different values of the regularization
parameter r (details provided in Appendix E ). b, e. Training results for different values of the random strength
g. c, f. Training results for different values of the scaling s of the initial guess for the readout n. Parameters as
in Fig. 6.

that the RLS algorithm often fails to converge to a locally stable solution when the target A is taken within the
instability window predicted by the mean-field theory (Fig. 7 a, b and c). The failure of the algorithm is thus
correctly explained by our crude theoretical approximation, which replaces the complex readout emerging from
training with a unique component along ξ.

Although some variability exists, this result is robust with respect to a broad choice of network and training
parameters. In particular, the average post-training error decays but remains positive for both small and large
values of the random strength g (Fig. 7 b). Interestingly, training evolves differently in the two cases (Fig. 8).
For small values of g, the algorithm never converges (Fig. 8 a). The readout error remains large during training,
while the amplitude of the weights modification imposed by the algorithm smoothly decays. When the value
of g is large and close to the instability to chaos, instead, continuous weight modifications make the readout z
stably converge to the target within the majority of the trials (Fig. 8 b bottom), resulting in a small average
error (Fig. 7 b). These strongly correlated training solutions, which allow feedback networks to overcome the
dynamical instability at small and negative target values, cannot be captured within our approximate theoretical
framework. We conclude that large g values, corresponding to strong random connectivities, help the algorithm
to find fine-tuned solutions whenever weak and uncorrelated readout vectors (Eq. 9) cannot generate stable fixed
points. In certain trials, however, the algorithm fails to converge (Fig. 8 b top), or generates fine-tuned solutions
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Figure 8: Recursive least-squares solutions (ρ = 1): evolution of training for a target value within the instability
window (A = −1.1). The top rows display the time course of the readout variable z, while the bottom rows show
the amplitude of the synaptic modifications in n imposed by the algorithm. The training window corresponds to
the shaded region, and the target A is indicated by the dashed black line. In a: g = 0.3, in b: g = 1.1. In b, we
show a non-converging (top) and a converging (bottom) trial. Parameters as in Fig. 6.

which diverge from the target after learning. As a consequence, the average post-training error never completely
vanishes (Fig. 7 b).

As in Figs. 1 e and 2 c, the mean-field approximation further predicts the existence of an additional stable
fixed point for large – positive and negative – target values (red shaded regions in Fig. 7 d, e and f). Such
a fixed point is characterized by a readout value of opposite sign, and is responsible for large readout errors
whenever the dynamics is initialized within its basin of attraction. In order to assess bistability, we integrate
the post-training dynamics starting from initial conditions centered around xend and −xend. Again, a good
agreement with the mean-field prediction is found: trained networks converge to a second stable fixed point when
the target value is taken within the parameter regions where the approximate mean-field network is bistable.

The systematic agreement between theory and simulations (Fig. 7) altogether indicates that the readout
component along ξ plays a major role in shaping the dynamical landscape of trained networks. Orthogonal
readout directions, which are artificially included in the readout vector during training, can have strong amplitude
(Fig. 6) but contribute little to the network output states.

As a final step, we look at the eigenvalues of the effective connectivity matrix χ+ mnT (Eq. 4). The theory
predicts that, for a solution in the form of Eq. 9, one real outlier appears in the eigenspectrum. In a large
network, its value corresponds to the overlap between the fedback vectors mTn (Tao, 2013; Mastrogiuseppe
and Ostojic, 2018). We find that when the initial guess for the readout n is small, the amplitude of those
additional components is weak (Fig. 6), and the eigenspectrum is close to the theoretical prediction (Fig. 9 a,
top). Spefically, the eigenspectrum includes a single real outlier whose position is well approximated by the
scalar product mTn. The outlier eigenvalue gets closer to the predicted value as the training parameter r, which
penalizes large readout weights, is increased (Fig. 9 b and c). When the initial guess is characterized by strong
scaling, instead, the shape of the eigenspectrum becomes very variable from one trial to the other. Typically, the
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Figure 9: Recursive least-squares solutions (ρ = 1): analysis of the synaptic connectivity eigenspectra. a. Sample
eigenspectra of χ+mnT . Top (resp. bottom) example: the initial guess for n is weak- (resp. strong-) amplitude:
s = −∞ (resp. s = −0.5). The dark blue dot indicates the position of the eigenvalue of the rank-one matrix mnT .
The dark blue star indicates the position of the theoretical mean-field prediction. For a readout in the form of
Eq. 9, the two values coincide. b. Simple estimate for the position of the outlier eigenvalue, measured as the
largest real part across all the eigenvalues of the trained connectivity matrix. c. Simple estimate for the radius
of the circular set of eigenvalues, measured as the largest imaginary part across all the eigenvalues of the trained
connectivity matrix. The theoretical predictions are indicated by the black dashed lines. Dots show results
averaged over 200 network realizations. The shaded areas indicate the typical size of finite-size fluctuations,
measured as the standard deviation of the collected sample. The target is fixed to A = 0.4, parameters as in
Fig. 6.

eigenspectrum includes more than one outlier, the position of which fluctuates strongly independently of the
theoretical prediction (Fig. 9 a, bottom).

Taken together, those results suggest that the connectivity eigenspectrum may bear little information about
the overall dynamics of the trained network. The eigenspectrum of the effective connectivity matrix χ+ mnT ,
indeed, appears to be very sensitive to the readout components which are spuriously introduced by the training
algorithm but contribute little to the final output states. Our mean-field description, which specifically ignores
such components, successfully captures the fundamental traits of local and global dynamics in trained networks
but fails to predict the shape of the complex eigenspectra displayed by the synaptic connectivity matrices.

5.2 Arbitrary geometry
We complete our analysis by considering the RLS solutions which emerge from training in feedback architectures
characterized by arbitrary initial geometries (ρ < 1).

In Section 4, we found that the least-squares solution generates a region of local instability when the overlap
between the two input vectors m and I is larger than a finite limit value (Fig. 2). On the other hand, our
theoretical framework suggests that – as long as the two input vectors are not completely aligned (ρ < 1) – a
stable mean-field solution always exists. The optimal readout n includes a strong component along ηI , i.e. the
direction of the external input I which is not shared with the feedback input vector m (Fig. 1 d).

In Fig. 10 a, we select a value of the target for which the LS solution is unstable within a finite parameter
region at large ρ values. We then test the stability of the fixed point generated by FORCE training by continuously
varying the value of the overlap parameter ρ. In agreement with the mean-field theory, we find that the RLS
algorithm systematically converges to a locally stable solution whenever the value of the overlap between the
two input vectors is significantly smaller than one. Specifically, the algorithm converges inside and outside the
shaded region where the least-square solution is unstable.

In order to understand how the instability is overcome, we fix the value of the overlap ρ within the instability
window, and we systematically compare the geometry of the LS and the RLS solutions (Fig. 10 b, c and d top).
As in Section 4, we extract the dominant readout geometries by projecting the readout vectors onto the three
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Figure 10: Recursive least-squares solutions (arbitrary ρ): comparison between mean-field predictions and trained
networks. a. Local stability of the target fixed point in feedback networks trained through the RLS algorithm.
Details are as in Fig. 7 a. We change the initial geometry of the network architecture by increasing values of the
overlap ρ. The target value is fixed to A = −1.1. The yellow shaded area indicates the parameter region where
the LS solution is unstable. b. Geometry of the LS solution, characterized in terms of the analytical projections
of the readout n onto the three axes ξ, ηm and ηI (Eq. 23). The top and the bottom rows display results
for two different values of ρ, indicated in a by the black arrows. c. Geometry of the RLS solution, computed
numerically by projecting the readout n onto the three axes ξ, ηm and ηI . d. Fraction of bistable trained
networks, compared with the mean-field prediction extracted from the readout weights in c. Details are as in
Fig. 7 d. Results are displayed for three different values of the regularization parameter r. Dots show results
averaged over 15 network realizations. Parameters as in Fig. 6.
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orthogonal axes ξ, ηm and ηI (Eq. 9), resulting into sets of weights (p, pm, pI) from which dynamics can be
predicted.

We find that the LS solution contains strong components along ξ and ηm, together with a weak and positive
component along the non-shared input direction ηI (Fig. 10 b top). Importantly, because of Eq. 23, the value
of pI is constant with respect to the target value A. This solution generates a window of local instability at
small target values (Fig. 2 b) because of the interaction between the strong components along ηm and ξ, which
tend to produce symmetric and bistable solutions, and the small component along ηI , which weakly suppresses
bistability and disrupts such a symmetry. In particular, the instability area appears at negative target when the
value of pI is positive.

The RLS algorithm, on the other hand, converges to a readout vector which includes a strong component
along ηI (Fig. 10 c top). The value of pI , furthermore, is not constant but varies with the value of the target A.
In particular, the sign of pI coincides with the sign of the target. The instability region thus gets pushed to
positive target values when A is negative, and vice versa. The approximate mean-field description we derive from
the RLS weights (Fig. 10 c top) confirms that such a region never emerges. Consistently, training always results
in a locally stable fixed point. The mean-field description further predicts the existence of a second, locally
stable solution at large and positive target values (Fig. 10 d top). In agreement, we find that a large fraction of
trained networks displays bistability when the target A is taken within such a window.

As a last step, we examine a network architecture characterized by a smaller value of the overlap ρ, taken
outside of the LS instability window (Fig. 10 b, c and d bottom). We observe that, for smaller values of ρ,
the bistability region predicted by the mean-field theory at large target values disappears (Fig. 10 d bottom).
Bistability is suppressed because, in correspondence of the same target values, the readout component along the
non-shared input direction ηI is characterized by large relative weight (Fig. 10 c bottom). Consistently with the
theory, the fraction of trained networks displaying bistability at large A values significantly decreases (Fig. 10 d
bottom).

To conclude, we tested the RLS algorithm on feedback networks characterized by arbitrary geometry, where
our simplified theoretical framework predicts the existence of globally stable solutions. We found that the
algorithm is systematically able to find readout solutions which generate the stable dynamics that is suitable to
solve the task. Stability is achieved thanks to the flexibility of the online algorithm, which reshapes the geometry
of the readout vector until a final optimal configuration is found. In contrast with the LS solution, such an
optimal readout includes a strong and structured component along the non-shared input direction ηI , which
suppresses bistability and prevents local instabilities.

6 Conclusions
Predicting activity in trained recurrent networks is a challenging theoretical problem, due to the disordered
synaptic structure and the large number of units (Doya, 1992; Barak, 2017). Through the recurrent dynamics,
global bifurcations can appear as a result of minimal modifications to the synaptic weights and lead to dramatic
changes in the network dynamical landscape. Among all the possible architectures, feedback networks represent
a class of particularly simple recurrent networks. In these networks, training is restricted to a set of N synaptic
weights out of N2, and the task-specific part of the recurrent dynamics is specified by the readout signal alone.

In this work, we examined how feedback networks can be trained to perform a single, stationary input-output
association. Such a task is simple enough to be implemented in a purely feedforward setup, where no recurrent
feedback exists and the reservoir dynamics is driven solely by the external input pattern. In such a case,
which corresponds to setting σm = 0 in Eq. 5, the mean-field theory suggests that a task implementation can
be constructed by aligning the readout vector n with the external input I. This simple feedforward solution
implements the task through a single stable fixed point, and thus possesses optimal stability properties.

Throughout the paper, we investigated how more complex solutions, which involve a rank-one recurrent
feedback, can be constructed. To this end, we derived a approximate mean-field framework which captures the
geometry of the N -dimensional readout vector n with respect to the input vectors m and I. In this theoretical
setup, the random bulk connections are treated as quenched noise, so that correlations between the readout
vector and the specific instatiation of the random matrix χ are neglected. Note that the amplitude of the
bulk connections g affect the solutions of our mean-field equations only through minor quantitative differences.
As a consequence, the space of solutions that our theory describes corresponds to network models where the
global connectivity matrix is in practice rank-one (Mastrogiuseppe and Ostojic, 2018). We used the mean-field
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theory to show that implementing such a simple fixed-point task in a feedback network can generate output
states characterized by non-trivial stability properties. Specifically, we showed that the task can be solved if the
readout n picks and amplifies the feedback component of the input, which is parallel to the vector m (Fig. 1
c). Similarly to Hopfield (1982), this implementation strongly relies on the non-linearity of the dynamics and
produces additional spurious attractors. Alternatively, the task can be solved by aligning the readout vector
with the external input I (Fig. 1 d). Such a configuration induces a hidden feedforward structure in the feedback
network, which generates a single and stable output fixed point. In Appendix C, we showed that this class of
solutions performs optimally also in feedback networks characterized by a threshold-linear activation function.

The mean-field framework was further used to approximate the more complex, disordered solutions that
are obtained via training with standard algorithmic techniques. Specifically, we used the theory to predict
the local and the global stability of the target fixed point, and thus to understand how network parameters
and target values impact training performance. Despite implying very strong assumptions, we found that the
mean-field approximation correctly describes trained networks in a surprisingly broad range of parameters. The
approximation only fails to predict the value of the spurious output states in LS training when the architecture
is strongly degenerate (ρ ∼ 1) and the value of the random strength g is large. This non-trivial result indicates
that the dynamical mechanisms underlying the input-output association in LS and RLS trained networks mimics
the way the same computation emerge in a simple rank-one network (Mastrogiuseppe and Ostojic, 2018).

As a result of our theoretical analysis, we found that a common training algorithm, which relies on the
least-square inversion of the constraint φ(x)Tn = A, returns under certain conditions suboptimal readout
solutions. This happens because such a constraint, exactly like our system of mean-field equations (Eq. 14),
possibly admits multiple solutions but is blind with respect to the underlying dynamics which control stability.
Furthermore, we found that both LS and RLS approaches systematically fail to converge to a locally stable
solution when the geometry of the initial network architecture is degenerate, and the two input vectors m and I
are parallel. Such a failure is explained by the approximate mean-field theory, which suggests that the unique
task solution in the form of Eq. 9 is characterized by locally unstable dynamics. The mean-field framework,
moreover, suggests that introducing extra directions in the network geometry through the non-shared axes ηm

and ηI expands the space of possible readout solutions. In Fig. 10, we showed that an online training algorithm
like FORCE can take advantage of such a broader set of solutions by selecting the appropriate readout vector
which generates stable output states. Degenerate architectures consisting of strongly overlapping input vectors
are not common in practical applications, where vectors m and I are typically generated at random. Note,
however, that strong overlaps can be accidentally introduced in the network architecture when the two vectors m
and I are uniform or generated through random distributions of large mean. In such cases, the overlap direction
coincides with the unitary vector u.

Our analysis indicates a possible important role for the parameter g, which scales the amplitude of the random
bulk of connectivity. We found that increasing the value of g does not significantly influence the structure of the
feedback instabilities, which are mostly controlled by the geometry of the input vectors. Furthermore, large g
values have essentially no effect on training performance when the target fixed point can be implemented through
uncorrelated, mean-field solutions. On the other hand, large random bulks significantly help the RLS algorithm
to converge to strong, correlated solutions when uncorrelated solutions cannot satisfy the task. Correlated
solutions are likely to play a major role in feedback networks trained to more complex tasks beyond the single
input-output association. Understanding the mechanism through which large g values actively supports training
is thus an open but crucial question. As a hint, classical studies indicate that convergence of the RLS algorithm
is guaranteed under the condition of persistent excitation (Bittanti et al., 1990; Kubin, 1988). This condition
requires that activity in the bulk, which serves as a set of basis functions, samples during training a large portion
of the N -dimensional space spanned by the network population. From this perspective, large random bulks
contribute to improve excitation in two different directions: they slow down the decay of network activity, thus
enlarging the training sample, and they increase the amplitude of the activity components that are orthogonal to
the input vectors, thus increasing the sampling variance.

Our simplified mean-field description is complementary to the approach proposed in Rivkind and Barak
(2017), where a similar fixed point task was studied. The mean-field analysis developed in Rivkind and Barak
(2017) is exact, and takes into account both the non-linear components of the readout vector and its correlations
with the random bulk. Such an approach requires an analytical expression for trained readouts, and returns the
local stability of the target fixed point. On the other hand, our analysis is approximate, but extends more easily
to any readout vector obtained through algorithmic training. Our approach, furthermore, captures dynamics on
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a global scale, and allows us to predict the existence of spurious, bistable fixed points.
The mean-field framework we adopt is flexible enough to be directly extended to network architectures where

the input weights are independently generated from non-Gaussian probability distributions or the activation
function φ(x) has a different shape (see Appendix C ). Significant additional work will be required, instead, to
extend our results to networks of spiking units, for which different training algorithms have been proposed
(Eliasmith and Anderson, 2004; Boerlin et al., 2013; Thalmeier et al., 2016; Kim and Chow, 2018).

The mean-field approach we considered here is directly adapted from Mastrogiuseppe and Ostojic (2018).
Although the two studies build on the same theoretical tools, they are motivated by deeply different perspectives.
In Mastrogiuseppe and Ostojic (2018), the low-rank part of the network connectivity is designed by hand: the
overall understanding of the dynamics which emerges from the mean-field framework is exploited to construct
low-rank connectivity structures which stably and efficiently implement a variety of behavioral tasks. Crucially,
the tasks are in that case defined as qualitative input-output associations rules which fix the overall network
behaviour but not the exact value of the readout z. In this work, in contrast, the mean-field framework serves as
a tool for understanding how an extremely simple task is implemented through training in standard network
architectures. As in supervised learning applications, the task is specified by a fixed quantitative constraint
on the readout value z. Consequently, the resulting target fixed point is not guaranteed to be a stable state
for the network dynamics. In Mastrogiuseppe and Ostojic (2018), moreover, both connectivity vectors m and
n are considered to be plastic. In the network models that are derived, the two vectors serve two different
computational roles: vector n selectively amplifies the external input patterns, while vector m defines the output
direction to be picked by the readout. In the present framework, instead, the network architecture is constrained
as in machine learning applications (Jaeger, 2001; Lukosevicius, 2012; Sussillo and Barak, 2013): the input
weights m are generated at random and considered to be fixed, while the readout direction is given by the
trained vector n.

The mean-field analysis adopted in both studies is exact when two specific assumptions are satisfied: the
readout vector n obeys a weak (1/N) scaling with the network size, and its entries are statistically uniform
and uncorrelated with the random part of the connectivity χ. If these hypotheses hold, the resulting feedback
network can only display simple or bistable stationary dynamics (Mastrogiuseppe and Ostojic, 2018), which
was suitable in our case for implementing a simple fixed-point task. For a feedback architecture trained to
solve a more articulate task, on the other hand, the entries of n need to be structured and/or fine-tuned to the
random bulk. In that case, a mean-field description with the same characteristics would fail to correctly describe
the network dynamics. However, one can hypothesize that – as long as the task is reasonably simple – the
overall connectivity can still be approximated by the sum of a random noise term and a weak and uncorrelated
connectivity matrix, where the rank of the latter is larger than one but still much smaller than the network
size N . If such a low-dimensional decomposition can be extracted from the trained synaptic matrix, then a
similar mean-field approach can be directly applied. Specifically, one can hope to predict dynamics by looking
at the relative geometrical arrangement of a restricted number of high-dimensional vectors, which define the
external inputs together with the low-rank part of the connectivity. Ongoing work indicates that this approach
can be used to successfully extract the relevant dynamical mechanisms from recurrent networks trained on more
complex tasks, where the spectrum of possible network implementations is not known a priori.
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Appendix A
In this section, we provide details of the stability analysis for the stationary mean-field solutions, which correspond
to the fixed points of the original dynamics (Eq. 3). For every fixed point x, stability is evaluated by computing
the linear stability matrix and predicting the position of its eigenvalues.

The linear stability matrix reads:

Sij =
(
gχij +

minj
N

)
φ′(xj). (25)

As shown in Fig. 1 b, the eigenspectrum of S consists of two distinct components: a circular compact set of
eigenvalues, directly inherited from the random bulk χ, and an isolated real outlier, mostly controlled by the
rank-one feedback matrix mnT. The radius of the circular set and the position of the outlier are evaluated by
following the analysis in Mastrogiuseppe and Ostojic (2018).

The radius can be computed as in Rajan and Abbott (2006); Harish and Hansel (2015):

r = g
√
〈[φ′2(xi)]〉, (26)

where the average is evaluated as an integral over a Gaussian distribution of variance ∆ (Eq. 15). In this work,
we focus on fixed point dynamics, so we fix network parameters and target values to ensure r < 1.

When the real outlier is not absorbed within the circular set, its position can be evaluated by computing the
linearized dynamics of the average activation µi = [xi] around the stationary mean-field solutions, corresponding
to network fixed points. We illustrate here the main steps of the calculation; a more detailed account can be
found in Mastrogiuseppe and Ostojic (2018).

In Eq. 10, we derived that at the fixed point (that we here indicate by the apex 0) the average activation is
given by: µ0

i = miz
0 + Ii. After a small perturbation, we can write: µi(t) = µ0

i + µ1
i (t), where the dynamics of

µ1(t) is given by:
µ̇1
i (t) = −µ1

i (t) +miz
1(t). (27)

Note that one can formally write: µ1
i = miz̃

1, where z̃1 is the low-pass filtered version of z1: (1 + d/ dt)z̃1 = z1.
Eq. 27 indicates that the decay time scale of the mean activity is inherited by the decay time constant of z1. An
additional equation for the time evolution of z1 thus needs to be derived.

When the network is perturbed, the firing activity φi = φ(xi) can be evaluated at the first order: φ0i →
φ0i + φ1i (t) = φ(x0i ) + φ′(x0i )x1i (t). As a consequence, the first-order in z reads:

z1(t) = 〈n̄i[φ′(x0i )x1i (t)]〉. (28)

where n̄i = Nni and ni is as in Eq. 9. Summing Eq. 28 to its time-derivative, we get:

ż1(t) = −z1(t) + (1 +
d

dt
)〈n̄i[φ′(x0i )x1i (t)]〉. (29)
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As shown in Mastrogiuseppe and Ostojic (2018), one can first compute the average over the random
connectivity, yielding:

[φ′(x0i )x1i ] = mi κ̃
1[φ′i] +

(
∆1

0

2
− {〈µ1

iµ
0
i 〉 − 〈µ1

i 〉〈µ0
i 〉}
)

[φ′′i ]

= mi κ̃
1[φ′i] +

(
∆1

0

2
− σ2

mz̃
1z0 − σmI z̃

1〉}
)

[φ′′i ],

(30)

where the Gaussian integrals [φ′i] and [φ′′i ] are evaluated using the fixed point statistics.
As a second step, the average over units is performed, yielding a result in the form:

〈n̄i[φ′(x0i )x1i (t)]〉 = z̃1a+ ∆1
0 b. (31)

A little algebra returns the value of the coefficients a and b:

a = c(pσmρ+ pmσm
√

1− ρ2)〈[φ′(xi)]〉

b =
c

2

(
pσmρz

0 + pmσm
√

1− ρ2z0 + pσIρ+ pIσI
√

1− ρ2
)
〈[φ′′′(xi)]〉.

(32)

The time evolution of z1 can be finally rewritten as:

ż1(t) = −z1(t) +

{
az1 + b

(
1 +

d

dt

)
∆1

0

}
, (33)

so that the time evolution of the perturbed variance must be considered as well. By using Eq. 3, one can easily
show that, close to the fixed point:

∆̇1
0 = −∆1

0 +

{
µ1 ∂G

∂µ

∣∣∣
0

+ ∆1
0

∂G

∂∆0

∣∣∣
0

+ z1
∂G

∂z

∣∣∣
0

}
(34)

where G(µ, z,∆0) = g2〈[φ2i (t)]〉+ σ2
mz

2 + 2σmIz + σ2
I . Explicitely computing the derivatives gives:

∂G

∂µ

∣∣∣
0

= 2g2〈[φiφ′i]〉

∂G

∂∆0

∣∣∣
0

= g2
{
〈[φ′2i ]〉+ 〈[φiφ′′i ]〉

}
∂G

∂z

∣∣∣
0

= 2σ2
mz

0 + 2σmI .

(35)

As the input vectors and the bulk connectivity have zero mean, furthermore: µ̇1(t) = −µ1(t).
We finally obtained that the perturbation time scale is determined by the population-averaged dynamics:

d

dt

µ1

∆1
0

κ1

 = −

µ1

∆1
0

κ1

+M

µ1

∆1
0

κ1

 (36)

where the evolution matrixM is defined as:

M =

 0 0 0
2g2〈[φ(xi)φ

′(xi)]〉 g2
{
〈[φ′(xi)2]〉+ 〈[φ(xi)φ

′′(xi)]〉
}

2σ2
mz

0 + 2σmI

2bg2〈[φ(xi)φ
′(xi)]〉 bg2

{
〈[φ′(xi)2]〉+ 〈[φ(xi)φ

′′(xi)]〉
}

b(2σ2
mz

0 + 2σmI) + a

 . (37)

When an outlier eigenvalue is present in the stability eigenspectrum, its position can be finally evaluated as the
largest eigenvalue of the reduced stability matrixM.
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Appendix B
The study in Rivkind and Barak (2017) addresses the local stability of the full least-squares solution. The
position of the outlier eigenvalue λ is in that case computed by combining a large network mean-field description
with control theory arguments. Following the same calculations, we compute the value of λ in the current and
more general setup, yielding:

λ =
g2

∆i

{
−〈[φ2(xi)]〉+ 〈(miA+

√
∆iwi)[φ(xi)φ

′(xi)]〉
}

+ 1

= g2
{
〈[φ′2(xi)]〉+ 〈[φ(xi)φ(xi)

′′]〉
}(

1 +
A

∆i

[
σmρ

2(σmA+ σI) + σ2
m(1− ρ2)A

])
,

(38)

where ∆i = g2〈[φ2(xi)]〉 as in Eq. 10. In Fig. 2, this expression is evaluated for the mean-field solution
corresponding to the target (light green traces).

Appendix C
In this section, we extend our results to feedback networks characterized by a threshold-linear activation function.
We set: φ(x) = [x − T ]+, where T is the parameter controlling the activation threshold. Such a piecewise-
linear activation function is extremely popular in machine learning applications based on feedforward networks
(Krizhevsky et al., 2012). Recent literature focusing on recurrent architectures (Kadmon and Sompolinsky,
2015; Mastrogiuseppe and Ostojic, 2017; Rivkind and Barak, 2017), on the other hand, seems to indicate that
threshold-linear functions (more than sigmoids) can impair dynamical stability in simple recurrent models. As
an example, we focus on negative threshold values (T = −0.5), which seem to guarantee better stability for the
fixed-point task we consider (Rivkind and Barak, 2017).

As a first step, as in Fig. 1, we select arbitrary values of (p, pm, pI) (Eq. 9) to construct example network
implementations. We analyze these networks by solving the resulting mean-field equations to predict the output
states and their stability. The mean-field equations illustrated in Section 3 have been derived by assuming
a generic activation function φ(x), so they directly generalize to threshold-linear networks. The Gaussian
integrals in Eqs. 14 and 37 can in this case be evaluated analytically (note that integrals involving the high-order
derivatives φ′′ and φ′′′ systematically vanish). Results are displayed in Fig. 11.

Similarly to Fig. 1 d, Fig. 11 b indicates that aligning the readout vector n with the private component of
the external input vector ηI returns a unique and stable target fixed point. The position of the outlier eigenvalue
in the stability eigenspectrum, which is controlled by φ′′′ (Eq. 32), vanishes in the present case. We conclude
that the optimal solution derived in the case of a sigmoidal activation function, which consists of a readout
vector aligned with ηI , applies to threshold-linear networks as well.

Figs. 11 a and c, on the other hand, indicate that readout solutions which contain components along the
feedback input vector m are characterized by poor stability properties. When the readout is aligned with
the non-shared component of m (Fig. 11 a), two marginally stable fixed points (characterized by an outlier
eigenvalue laying exactly on the instability line) are generated. This implementation of the task is characterized
by extremely long time scales and large finite-size effects, and thus results in large readout errors. When the
readout contains components along both input vectors m and I (Fig. 11 c), instead, the two fixed points behave
asymmetrically. The positive branch of the mean-field solution, which corresponds to the target fixed point when
A is positive, is formally stable, but is characterized by a very large outlier eigenvalue. The negative branch of
the solution is instead systematically unstable, and generates a very broad instability window at negative target
values (grey area in Fig. 11 c). Both in Figs. 11 a and c, large outlier eigenvalues are given by the average of
the third-order derivative 〈[φ′′′i ]〉 vanishing in Eqs. 37 and 32. This term quantifies the effect of saturation and
has a stabilizing effect in networks characterized by the sigmoidal activation function (Fig. 1). Note that, as
already observed in a previous study (Mastrogiuseppe and Ostojic, 2017), threshold-linear networks appear to be
characterized by larger finite-size effects than sigmoidal ones.

In a second step, similarly to Fig. 2, we investigate how threshold-linear networks implement the fixed point
task when they are trained via LS inversion (Fig. 12). We find that mean-field solutions are again characterized
by large values of the outlier eigenvalue. When the value of the target is negative, specifically, the target solution
is predicted to be unstable both from our approximate and the exact (Rivkind and Barak, 2017) theory. This
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Figure 11: Implementing the fixed point task with a threshold-linear network (φ(x) = [x − T ]+, T = −0.5):
mean-field analysis in three example geometries. a-b-c. Mean-field characterization of the network output states
for three different readout geometries (see Fig. 1). Continuous (resp. dashed) lines correspond to locally stable
(resp. unstable) mean-field solutions. Top row: value of the readout signal. Bottom row: position of the outlier
eigenvalue in the stability eigenspectra. Details as in Fig. 1 c-d-e. The results of simulations are displayed as
dots (N = 6000, average over 20 network realizations). We integrate numerically the dynamics of finite-size
networks where the readout vector n is normalized through Eq. 17. In panels a and c, we observe large finite-size
effects due to the outlier stability eigenvalues laying very close to the instability boundary. Parameters as in
Fig 1.

instability window further appears both in network architectures characterized by small and large values of the
overlap ρ (Fig. 12 a and b).

In Fig. 12, we compare theoretical results with simulations performed in finite-size networks trained via LS
inversion. In contrast to the prediction of the theory we find that, when the value of the overlap ρ is small,
finite-size networks manage to keep the readout error small. The output fixed point, however, displays extremely
long timescales. When the value of ρ is large, on the other hand, the readout value significantly diverges from
the target when A is negative.

To conclude, we briefly investigated how threshold-linear networks solve the fixed point task. We found that
the readout components aligned with the feedback vector m do not robustly generate bistability, but give rise to
instabilities and dramatically slow down dynamics by pushing the value of the outlier eigenvalue close to the
instability boundary. Finally, for such a class of networks, it could be interesting to further analyze readout
solutions characterized by strongly non-linear geometries (see Section 4.2). We keep this direction open for
further studies.

Appendix D
In this section, we consider the least-squares readout n discussed in Section 4, and we develop a mean-field
description which takes the effect of the non-linearity φ(x) into account (Fig. 3). For the sake of simplicity, we
consider the scenario where the input vectors m and I are parallel (ρ = 1), so that the ξ is the only dominant
direction to be taken into account (pm = pI = 0). Such setup is of specific interest, as it corresponds to the
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Figure 12: The least-squares solution in a threshold-linear network (φ(x) = [x− T ]+, T = −0.5): approximate
mean-field description. a-b. Mean-field characterization for three different configurations of the non-trained
input vectors m and I. In a, we take ρ = 0.6; in b, ρ = 1. Continuous and dashed lines indicate the solutions
of the simplified mean-field description, where the readout is approximated by a vector in the form of Eq. 9.
Details are as in Fig. 2. The light green line indicates the exact value of the outlier eigenvalue which measures
the local stability of the target solution (Rivkind and Barak, 2017) (details provided in Appendix B). The right
panel in b top is a magnified view of the area highlighted in pink in the left panel. Dots display the results of
simulations from finite-size networks (N = 6000, averages over 20 network realizations). We integrate numerically
the dynamics of finite-size networks where the readout vector n is given by the LS solution (Eq. 20). In order to
reach different solutions, we initialize the network dynamics in two different initial conditions, centered around n
and −n. Parameters as in Fig. 1.

case where the mean-field approximation deviates more strongly from the results obtained through simulating
dynamics in trained networks. The non-linear mean-field description we derive here indicates which fraction of
such deviations can be explained by including non-linear components in our theoretical description.

The full LS solution is proportional to (Eq. 20):

φ(xoli ) = φ
(
(σmA+ σI)ξi + δoli

)
. (39)

We approximate δol by white noise of self-consistent amplitude, thus yielding an approximate readout in the
form:

ni = c φ

(
(σmA+ σI)ξi +

√
∆ol

i w
ol
i

)
, (40)

where wol
i is a standard Gaussian variable. With this choice, the analytical expression for z reads:

z = c

∫
Dξ
∫
Dwol φ

(
(σmA+ σI)ξ +

√
∆ol

i w
ol

)∫
Dw φ

(
(σmz + σI)ξ +

√
∆iw

)
, (41)

which can be solved together with the usual expression for the second-order statistics (Eq. 14). Crucially, the
residual input

√
∆iw is not constrained to match the residual input in the open-loop condition (

√
∆ol

i w
ol), as

additional output states – together with the target fixed point – can exist.

28



As in Eq. 17, we fix the normalization factor c by matching the network output with the target in the
open-loop configuration. We thus impose z = A, ∆i = ∆ol

i and w = wol, that gives:

c =
A∫

Dξ
[∫
Dwol φ

(
(σmA+ σI)ξ +

√
∆ol

i w
ol
)]2 . (42)

Appendix E
In this section, we illustrate in detail the recursive least-squares (RLS) algorithm (Sussillo and Abbott, 2009)
used in Section 5.

The algorithm runs online; that is, weights modifications are alternated with short time windows where the
network dynamics is simulated. Specifically, we update the readout weights every ∆t = 0.1 τ , where τ is the
integration time constant of a single unit, which is here normalized to one. The time step of integration is instead
taken equal to 0.01 τ . As the task is extremely simple, the total training time is taken equal to 150 τ .

At the beginning of training, the readout vector n is initialized as a Gaussian vector of std Ns (see Figs. 6
and 7). If not differently stated, we fix s = −0.5. At every training step, the components of n are updated by
following Sussillo and Abbott (2009). To begin with, the error e(t) = z(t)−A is computed. Then, the readout
vector n is updated according to:

n(t) = n(t−∆t)− e(t) P(t) φ(x(t)). (43)

The matrix P is a running extimate of the inverse of the rate correlation which includes a regularization term
(Sussillo and Abbott, 2009). At the beginning of training, P is initialized as:

P(0) =
I

r
(44)

where I is the identity matrix and r is a scalar that we refer to as the regularization parameter. If not differently
stated, the value of r is fixed to 0.1. At every training step, P is updated as:

P(t) = P(t−∆t)− P(t−∆t) φ(x(t)) φ(x(t))T P(t−∆t)

1 + φ(x(t))T P(t−∆t) φ(x(t))
. (45)
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