371,641 research outputs found

    In vivo functional and myeloarchitectonic mapping of human primary auditory areas

    Get PDF
    In contrast to vision, where retinotopic mapping alone can define areal borders, primary auditory areas such as A1 are best delineated by combining in vivo tonotopic mapping with postmortem cyto- or myeloarchitectonics from the same individual. We combined high-resolution (800 μm) quantitative T(1) mapping with phase-encoded tonotopic methods to map primary auditory areas (A1 and R) within the "auditory core" of human volunteers. We first quantitatively characterize the highly myelinated auditory core in terms of shape, area, cortical depth profile, and position, with our data showing considerable correspondence to postmortem myeloarchitectonic studies, both in cross-participant averages and in individuals. The core region contains two "mirror-image" tonotopic maps oriented along the same axis as observed in macaque and owl monkey. We suggest that these two maps within the core are the human analogs of primate auditory areas A1 and R. The core occupies a much smaller portion of tonotopically organized cortex on the superior temporal plane and gyrus than is generally supposed. The multimodal approach to defining the auditory core will facilitate investigations of structure-function relationships, comparative neuroanatomical studies, and promises new biomarkers for diagnosis and clinical studies

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE

    Coupling and robustness of intra-cortical vascular territories

    Get PDF
    Vascular domains have been described as being coupled to neuronal functional units enabling dynamic blood supply to the cerebral cyto-architecture. Recent experiments have shown that penetrating arterioles of the grey matter are the building blocks for such units. Nevertheless, vascular territories are still poorly known, as the collection and analysis of large three-dimensional micro-vascular networks are difficult. By using an exhaustive reconstruction of the micro-vascular network in an 18 mm 3 volume of marmoset cerebral cortex, we numerically computed the blood flow in each blood vessel. We thus defined arterial and venular territories and examined their overlap. A large part of the intracortical vascular network was found to be supplied by several arteries and drained by several venules. We quantified this multiple potential to compensate for deficiencies by introducing a new robustness parameter. Robustness proved to be positively correlated with cortical depth and a systematic investigation of coupling maps indicated local patterns of overlap between neighbouring arteries and neighbouring venules. However, arterio-venular coupling did not have a spatial pattern of overlap but showed locally preferential functional coupling, especially of one artery with two venules, supporting the notion of vascular units. We concluded that intra-cortical perfusion in the primate was characterised by both very narrow functional beds and a large capacity for compensatory redistribution, far beyond the nearest neighbour collaterals

    Erosion of a granular bed driven by laminar fluid flow

    Full text link
    Motivated by examples of erosive incision of channels in sand, we investigate the motion of individual grains in a granular bed driven by a laminar fluid to give us new insights into the relationship between hydrodynamic stress and surface granular flow. A closed cell of rectangular cross-section is partially filled with glass beads and a constant fluid flux QQ flows through the cell. The refractive indices of the fluid and the glass beads are matched and the cell is illuminated with a laser sheet, allowing us to image individual beads. The bed erodes to a rest height hrh_r which depends on QQ. The Shields threshold criterion assumes that the non-dimensional ratio θ\theta of the viscous stress on the bed to the hydrostatic pressure difference across a grain is sufficient to predict the granular flux. Furthermore, the Shields criterion states that the granular flux is non-zero only for θ>θc\theta >\theta_c. We find that the Shields criterion describes the observed relationship hrQ1/2h_r \propto Q^{1/2} when the bed height is offset by approximately half a grain diameter. Introducing this offset in the estimation of θ\theta yields a collapse of the measured Einstein number qq^* to a power-law function of θθc\theta - \theta_c with exponent 1.75±0.251.75 \pm 0.25. The dynamics of the bed height relaxation are well described by the power law relationship between the granular flux and the bed stress.Comment: 12 pages, 5 figure

    Low frequency shelf current fluctuations in the Gulf of Alaska

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 1977A general oceanographic study of a shelf region in the Gulf of Alaska has revealed low-frequency, current fluctuations. A current meter mooring was located approximately 20 km offshore, in a water depth of 100 m. The time dependent flow is found to be baroclinic and semi-periodic. The effects of local bottom topography, nearshore dilution by river discharge, orographic coastal features, and an island barrier are important to the shelf circulation in this region. The movement of a boundary associated with the Copper River appears to be an important process in controlling the water motion at the mooring site
    corecore