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Need for Simulation-Driven Designg

Contemporary engineering is more and more dependent on computer 
simulationsimulation

Increasing complexity of structures and systems and higher demand 
for accuracy make engineering design challenging due to:for accuracy make engineering design challenging due to:

Lack of “design applicable” theoretical models
High computational cost of accurate simulationg p

Simulation-driven design becomes a must for growing number of 
engineering fieldsg g

Flow separation on the 
back of the conning 

V 
[m/s]

g
tower.

‣ Solving nonlinear optimization problems where computation of the objective function 
involves time consuming computer simulations may be quite challenging

‣ Fundamendal bottleneck: 
most of conventional optimization algorithms, whether deterministic (e.g., gradient-based) or 
stochastic (e.g., meta-heuristics), typically require large number of objective function 
evaluations

‣ This typically translates into prohibitively high computational cost

‣ Development of methods that would reduce the number of expensive simulations necessary 
to yield a satisfactory solution becomes critical

‣ Optimization of complex coupled hydrodynamical marine ecosystem models is a 
representative example

‣ Evaluation times of hours up to several days for a single model evaluation are not 
uncommon

Some facts ...
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Direct Optimization

‣ Nonlinear optimization problems of the form

(subject to some constraints)

‣ Complex high-fidelity (fine) model y is 
computationally expensive

‣ Straightforward attempt: „Direct“ Optimization

‣ (1) is a tedious process or even beyond the 
capabilities of modern computer power

‣ Assuming 30 minutes for a single model 
evaluation a direct optimization will most-likely 
require several days up to weeks

2.2. Optimization Problem

In this subsection we formulate the optimization problem for the discrete model. Omitting the boldface

notation, the same formulation holds for the continuous model, but naturally would require further analysis,

which is beyond the scope of this paper.

The key task in parameter optimization is to minimize a least-squares type cost function measuring the

misfit between the discrete model output y = y(u), i.e., the solution of (2), and given observational data

yd [11, 12]. We assume that yd ∈ Y , otherwise an appropriate observation/restriction operator has to be

introduced. In most cases, the cost function is constrained by parameter bounds. Thus the parameter

optimization problem can be written as

min
u∈Uad

J(y(u) ) (3)

where

J(y ) :=
1

2
||y − yd ||2Y , Uad := {u ∈ Rn

: bl ≤ u ≤ bu} , bl,bu ∈ Rn , bl < bu.

The inequalities in the definition of the set Uad of admissible parameters are meant component-wise. The

functional J may additionally include a regularization term for the parameters, which was not necessary in

our case.

Additional constraints on the state variable y might be necessary, e.g., to ensure non-negativity of the

temperature or of the concentrations of biogeochemical quantities. In our example model however, by using

appropriate parameter bounds bl and bu, non-negativity of the state variables can be ensured. This was

already observed and used in [14].

3. Surrogate-Based Optimization

For many nonlinear optimization problems, a high computational cost of evaluating the objective function

and its sensitivity, and, in some cases, the lack of sensitivity information, is a major bottleneck. The need for

decreasing the computational cost of the optimization process is especially important while handling complex

three-dimensional models.

Surrogate-based optimization [1–4] addresses these issues by replacing the original high-fidelity model y

by its surrogate model s. The surrogate should be computationally cheap and analytical tractable. It can be

obtained by approximating the sampled high-fidelity model data using a suitable technique, e.g., polynomial

regression [1], kriging [17] or support-vector regression [18].

Another possibility, explored in this paper, is to construct the surrogate through correction of a coarse

or low-fidelity model, a less accurate but computationally cheap representation of y. The surrogate model

is updated at each iteration of the optimization algorithm, typically using available high-fidelity model data.

In particular, the surrogate model sk at iteration k can be constructed by only using the high-fidelity model

output y(uk) at the current optimization variable vector uk and the corresponding low-fidelity model output.

5

3

„Direct“ Optimization  

Source: 
L. Leifsson, S. Koziel, Reykjavik University, Iceland
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Surrogate-Based Optimization
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Another possibility, explored in this paper, is to construct the surrogate through correction of the coarse

or low-fidelity model, a less accurate but computationally cheap representation of y. The surrogate model

is updated at each iteration of the optimization algorithm, typically using available high-fidelity model data.

In particular, the surrogate model sk at iteration k can be constructed by only using the high-fidelity model

output y(uk) at the current optimization variable vector uk and the corresponding low-fidelity model output.

The low-fidelity model correction aims at reducing misalignment between the low- and high-fidelity models.

The specific correction technique exploited in this work is described in detail in Section 6.

The next iterate, uk+1, is obtained by optimizing the surrogate sk, i.e.,

uk+1 = argmin
u∈Uad

J ( sk(u) ). (4)

Then the updated surrogate sk+1 is determined by re-aligning the low-fidelity model at uk+1 and optimized

again as in (4). The process of aligning the coarse model to obtain the surrogate and subsequent optimization

of this surrogate is repeated until a user-defined termination condition is satisfied, which can use certain

convergence criteria, assumed level of cost function value or on a specific number of iterations (particularly

if the computational budget of the optimization process is limited). A discussion of termination condition

used in this work can be found in Section 8.

A well performing surrogate-based algorithm is capable of yielding a satisfactory solution at a low com-

putational cost, typically corresponding to only a few evaluations of the high-fidelity model. The key pre-

requisites to ensure this are a cheap and yet reasonably accurate coarse model as well as a properly selected

and low-cost alignment procedure (i.e., using a limited number of high-fidelity model evaluations, preferably

just one).

If the surrogate sk satisfies so-called 0-order and 1st-order consistency conditions [19, 20] with the high-

fidelity model at uk, i.e.,

sk(uk) = y(uk) , s�k(uk) = y�(uk), (5)

the surrogate-based scheme (4) is probably convergent to at least a local optimum of (3), provided that both

the low- and high-fidelity models are sufficiently smooth, and the surrogate optimization step is enhanced by

the the trust-region (TR) safeguard [19, 20], i.e.,

uk+1 = argmin
u∈Uad,||u−uk||≤δk

J ( sk(u) ),

with δk being the trust-region radius updated according to the TR rules.

Note that the 1st-order consistency requires high-fidelity sensitivity data, which is not utilized here. In

this work, the surrogate is defined to satisfy the 0-order consistency only which is sufficient to ensure good

performance as demonstrated in Subsection 6.3 and Section 8.

6

(2)

‣ Idea: 
Exploit a „surrogate“, a computationally cheap but 
yet reasonably accurate representation of the fine 
model

‣ It is typically updated using the fine model data 
accumulated during the process

‣ The scheme (2) is normally iterated in order to 
refine the search and to locate a (local) fine 
model optimum of (1) as precisely as possible

‣ ... until some stopping criteria are satisfied 
(e.g. ||uk+1 - uk|| < ε)

Surrogate-Based Optimization (SBO)

Source: 
L. Leifsson, S. Koziel, Reykjavik University, Iceland
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Functional Surrogatesg

Features:
Constructed without any particular knowledge of the systemConstructed without any particular knowledge of the system
Based on algebraic expressions
Exist only in the context of sampled data obtained from the system
Generic => applicable to a wide class of problems
Cheap to evaluate
Typically require considerable amount of data from the systemTypically, require considerable amount of data from the system

Popular techniques:
L d l i lLow-order polynomials
Radial basis functions
KrigingKriging
Support vector regression
Artificial neural networks
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Functional vs. Physics-Based Surrogates
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Function-Approximation Surrogates

‣ Suitable approximations of sampled fine model data 
(e.g., polynomial regression, kriging or support-vector regression)

‣ Constructed without particular knowledge of the system

‣ Do not inherit any physical characteristics

‣ Cheap model evaluation

‣ But, typically requires substantial amount of fine model data samples to set up a 
model which ensures a good accuracy level

‣ Their use to ad-hoc optimization may be questionable

‣ Methodology is rather generic               applicable to a wide class of problems

(*) Picture Source: S. Koziel, Reykjavik University, Iceland
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Physics-Based Surrogates

‣ Constructed from a physics-based low-fidelity (or coarse) model

‣ Coarse discretization (clearly, numerical stability issues have to be taken into account)
‣ Relaxed convergence criterion (e.g., in a fix-point iteration exploited for a steady-state 

simulation)
‣ Simplified physics

‣ Coarse model enjoys the same underlying physics, it is typically able to predict the general 
behavior of the fine model

‣ However, their accuracy is typically not sufficient to directly exploit them in the optimization 
loop in lieu of the fine model

‣ Suitable correction techniques to yield a reliable surrogate are required (Space Mapping, 
Response Correction, SPRP)

Functional vs. Physics-Based Surrogates

6

(*) Picture Source: S. Koziel, Reykjavik University, Iceland

E.g., some pseudo-timestepping scheme
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Physics-Based Surrogates

‣ Fundamental advantage: 
SBO schemes working with physics-based surrogates normally require small number of fine 
model evaluations to yield a sufficient accuracy (often, only one per iteration)

‣ Thus, the computational burden is shifted towards the cheap coarse model

‣ Key prerequisites:

‣ Quality of the coarse model is critical            inaccurate model may result in poor 
algorithm performance

‣ Cheap and yet reasonably accurate coarse model as well as a properly selected and low-
cost alignment procedure 

‣ Agreement of function and derivative information (not necessarily exact)
‣ Globalization: Some standard trust-region/ line-search approaches

‣ Underlying coarse model, correction approach is problem specific
          Their reuse across different problems is rare

Functional vs. Physics-Based Surrogates

7
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‣ One of the most recognized SBO techniques exploiting physics-based coarse models

‣ A mapping relating the fine and coarse model parameters is proposed to calibrate a 
physics-based coarse model

‣ This mapping using so-called parameter extraction (PE) is a nonlinear opt. problem itself

(Generic SM surrogate model, i.e., coarse model yc with auxiliary mapping pk)

Space Mapping (SM)

8

Space Mapping: Coarse Model Correction Methods p pp g
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Surrogate model:
( ) ( ) ( )( ) ( )! ! !! ! "

Parameter extraction:

( ) ( ) ( )( ) ( )! ! !
" #! # ! " # $

( ) ( ) ( ) ( )
0( , )

( , ) arg min || ( ) ( ) ||
!! ! $ $

% #$" $
" $ ! # ! " # $

Domain distortion (input SM)

Space Mapping: Coarse Model Correction Methods p pp g
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(*) Picture Source: S. Koziel, Reykjavik University, Iceland
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‣ One simple example of RC is output SM discussed before

‣ Yet another simple approach is a Multiplicative Response Correction (MRC) approach

‣ By definition, the surrogate satisfies agreement in function values 

‣ Since physics-based, its derivatives are expected to be at least similar to those of the fine 
model

‣ If required, exact agreement in first-order information is „forced“ by an (optional) term E as

‣ Clearly, trade-offs between the solution accuracy and the extra computational overhead 
related to sensitivity calculation have to be investigated

Response Correction (RC) Techniques
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(a) Uppermost depth layer. (b) 5th depth layer.

Figure 5: Surface plots of the correction factors in ak, for one illustrative tracer (here, N), for selected depth layers, at some
representative point in time and parameter vector uk. Here, and for the further analysis we focus on the coarse model with nc,l = 25.

multiplicative response correction is a convenient way of ad-
justing the response level without distorting the tracer shapes
while moving from one parameter vector to another. This tech-
nique has already been investigated and successfully applied
to a one-dimensional marine ecosystem model in Prieß et al.
(2011c), where a motivation for it was similar.

6.2. Surrogate model formulation
The surrogate at iteration k of the optimization process, sk

(cf. Section 4), is generated through a multiplicative correction
of the coarse model response (see also Prieß et al. (2011c)). The
correction vector, denoted as ak, is simply given as the point-
wise division of the fine by the coarse model response at the
point uk, i.e.,

ak :=
y f (uk)
yc(uk)

, k = 1, 2, . . . . (12)

Having computed the correction factors, summarized in the cor-
rection vector ak, the surrogate model is defined as

sk(u) := ak yc(u), (13)

where the multiplication in (13) is again meant point-wise.
Note that the surrogate model is constructed using just one eval-
uation of the fine model.

Occasionally, when using the surrogate as given in (12), it
might occur a situation where the coarse model response is
close to zero (and maybe even negative and/or a few magni-
tudes smaller than the fine one, which leads to large, possibly
negative, entries in the corresponding correction vector ak). Re-
sulting “spikes” appearing in the surrogate’s response can be
viewed, in a way, as numerical noise that slows down the al-
gorithm convergence and makes the fine model optimum more
difficult to locate. This has already been observed in Prieß et al.
(2011b), where a different marine ecosystem model was con-
sidered.

In order to estimate a typical magnitude of the correction
factors for the given coarse and fine model, we calculate the
correction ak at some randomly chosen parameter vector uk.
Figure 5 shows 2D surface plots of the correction factors in ak
at this parameter vector uk, for one representative tracer (here,
N), selected depth layers and for some point in time. It can be
observed that this particular correction vector – at least for the

given parameter vector uk – does not contain any large (nega-
tive) entries.

Nevertheless, we apply some simple modifications (as have
been proposed in Prieß et al. (2011b)) that allow us to eliminate
any possible influence of the problems described above. These
modifications do not require any extra computational overhead,
and include: (i) upper bounds aub for the correction factors in
ak,(ii) setting the fine and coarse model response values to zero
(and the correction factor to one) if their values lie below a cer-
tain threshold δ, which is supposed to be of the order of the
discretization error of the model. For the considered problem,
we use δ = 5 · 10−3.

The aforementioned modifications can be formally written as
follows:

(i) yc(uk) =
�

0; if yc ≤ δ
yc; else

,

(ii) y f (uk) =
�

0; if y f ≤ δ
y f ; else

,

(iii) ak =

�
0; if ak ≥ aub

ak; else
,

(14)

where the operations are again meant point-wise. These sim-
ple means can further improve the accuracy of the surrogate as
well as the performance of the optimization algorithm, which
has been investigated in Prieß et al. (2011b) for a similar re-
sponse correction approach and another exemplary model. In
the following we choose aub = 5 which, from numerical exper-
iments, turned out to be a reasonable choice.

6.3. Consistency conditions

It should be noted that the surrogate model (12) satisfies, by
definition, the 0-order consistency condition in (8) in the point
of alignment uk, i.e.,

sk(uk) = y f (uk) .

Our surrogate model does not use fine model sensitivity data.
Hence, the 1st-order consistency condition in (8) cannot be sat-
isfied exactly. Nevertheless, the surrogate exhibits quite good

9

(a) Uppermost depth layer. (b) 5th depth layer.

Figure 5: Surface plots of the correction factors in ak, for one illustrative tracer (here, N), for selected depth layers, at some
representative point in time and parameter vector uk. Here, and for the further analysis we focus on the coarse model with nc,l = 25.

multiplicative response correction is a convenient way of ad-
justing the response level without distorting the tracer shapes
while moving from one parameter vector to another. This tech-
nique has already been investigated and successfully applied
to a one-dimensional marine ecosystem model in Prieß et al.
(2011c), where a motivation for it was similar.

6.2. Surrogate model formulation
The surrogate at iteration k of the optimization process, sk

(cf. Section 4), is generated through a multiplicative correction
of the coarse model response (see also Prieß et al. (2011c)). The
correction vector, denoted as ak, is simply given as the point-
wise division of the fine by the coarse model response at the
point uk, i.e.,

ak :=
y f (uk)
yc(uk)

, k = 1, 2, . . . . (12)
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sk(u) = ak yc(u) + Ek (u− uk)

sk(uk) = yf (uk), s�
k(uk) ≈ y�

f (uk).
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‣ Nitrogen-budget ecosystem model simulating the dynamical evolutions of four tracers, 
dissolved inorganic nitrogen, phytoplankton, zooplankton, detritus
(Oschlies and Garcon, 1999; Schartau and Oschlies, 2003)

‣ One-dimensional, widely used model

‣ Ocean circulation data:
Used for assembling the system matrices for the differential operators within the simulation

‣ Numerical solution of the underlying advective-diffusive reaction equations: 
Transient run with the time-dependent forcing data (Pseudo-timestepping scheme)

1D NPZD Model

10

the surrogate-based scheme (5) is provable convergent to at
least a local optimum of (4) under mild conditions regarding
the coarse and fine model smoothness, and provided that the
surrogate optimization scheme is enhanced by the trust-region
(TR) safeguard, i.e.,

uk+1 = argmin
u∈Uad ,

�u−uk � ≤ δk

J ( sk(u) ), (7)

with δk being the trust-region radius updated according to the
TR rules. We refer the reader to e.g. [17, 18] for more details.

In (6), y� and s�k denote the derivatives of the model response
w.r.t. the parameter vector u and at the point uk, i.e., generally
defined as

y�(uk) :=
d y
d u

�����u=uk

. (8)

The surrogate in this paper uses both fine model sensitivity
information as well as trust-region convergence safeguards to
increase the robustness of the optimization procedure and the
accuracy of the solution.

4. Example: A Marine Ecosystem Model

The model developed by Oschlies and Garcon [22] [Re-
ally developed in this paper?] is a coupled system of four
tracers with dissolved inorganic nitrogen (N), phytoplankton
(P), zooplankton (Z), and detritus (D), thus also called NPZD
model, in the following summarized in the tracer or state vector
y = (yi)i=1,...,nt with nt = 4.

The NPZD model simulates the tracer concentrations in one
water column at a given horizontal position. This is moti-
vated by the fact that there have been special time series studies
at fixed locations [23]. Clearly, the computational effort in a
one-dimensional simulation is significantly smaller than in the
three-dimensional case. However, since biochemistry mainly
happens locally in space and since the complexity of the bio-
geochemical processes included in this specific model is high,
this model serves as a good test example for the applicability of
SBO approaches.

The model basically fits into our general framework (2). In
the specific NPZD model considered here, no advection term
“div(vyi)” as in (2) is used, since a reduction to vertical advec-
tion would make no sense. Starting from a general continuous
formulation, the model is governed by the equations

∂yi

∂t
= ∂z (κ ∂zyi) + qi(y,u), i = 1, . . . , 4, (9)

where z denotes the vertical coordinate and where the coupling

terms qi(y,u) are explicitly given as

q1(y, u) = Φz
m y3 + γm y4 − J(y1, y2, t, z) y2,

q2(y, u) = J(y1, y2, t, z)y2 −G(y2, �, g) y3 − Φp
m y2,

q3(y, u) = βG(y2, �, g) y3 − Φz
m y3 − Φ∗z (y3)2,

q4(y, u) = (1 − β) G(y2, �, g) y3 + Φ
p
m y2 + Φ

∗
z (y3)2

− γm y4 − ws ∂zy4.

(10)

The system involves an explicit sinking velocity ws for the tracer
detritus, and a non-differentiability, namely in the growth rate
of phytoplankton, which is modeled after the minimum princi-
ple of von Liebig [24] as

J(y1, y2, t, z) = min
�
µ̄(y2, t, z),Vp · u(y1, t, z)

�
, (11)

where the analytical solution for the light-limited growth rate,
denoted as µ̄(y2, t, z), is given according to Evans and Parslow
[25], integrated down to the given depth z [22, 26]. Here, addi-
tional parameters α, kw and κ are involved (cf. Table 1).

The factor for nutrient limited growth of phytoplankton u and
the maximal phytoplankton growth rate Vp are given as

u(y1, t, z) =
y1

kN + y1
, Vp = µm · (Cre f )cΘ(t,z), (12)

where the parameters kN ,Cre f and c are briefly described in Ta-
ble 1 and where Vp further depends on the water temperatureΘ,
which has to be provided by an ocean circulation model. Due
to the minimum in the growth rate of phytoplankton in (11), the
model becomes non-differentiable. Another nonlinear term in
the equations is the zooplankton grazing function G given as

G(y2, �, g) =
g � (y2)2

g + � (y2)2 , (13)

which describes the transfer from phytoplankton to zooplank-
ton and detritus with the parameters � and g again briefly de-
scribed in Table 1. There are totally twelve model parameters
subject to the optimization, which are all summarized in Table
1. For the purpose of this paper to demonstrate the applicability
of the proposed SBO approach, we don’t want to provide more
details on the model and the involved parameters. We refer the
reader to [22, 23, 26] for a more thorough description [ok to
cite Johannes here?] .

[Thomas: Do you think the model description is too de-
tailed?]

4.1. Carbon Primary Production

In addition to the tarcers N, P,Z and D, the so-called carbon
fixation or carbon primary production measured as carbon up-
take (denotes as CUP in the following) is additionally taken
into account in the optimization process for this model [23, 26]
(see also below, Section 4.4). For a given depth z and time t, it
can be briefly formulated as

J(y1, y2, t, z) · y2(t, z) · R
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54 DATA-ASSIMILATION INTO 1D-ECOSYSTEM MODELS
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Figure 3.7: Structure of the ecosystem model. The compartments (state
variables) are dissolved inorganic nitrogen (N), phytoplankton biomass (P),
herbivoreous zooplankton (Z) and detritus (D). The arrows indicate the di-
rection of mass flux while the attached brackets list the parameters that con-
trol the corresponding mass flux rate. The parameter symbols are explained
in Table (3.1).

Biological processes

The ecosystem is split up into four state variables: Dissolved inorganic nitrogen (N),
phytoplankton (P), herbivorous zooplankton (Z) and detritus (D). The interactions of
the four compartments in the NPZD-model are sketched in Figure (3.7). The arrows
in Figure (3.7) indicate the nitrogen fluxes, with symbols indicating those parameters
that are associated with the rates for each particular flux. All model parameters are
listed in Table (3.1). The daily light-limited growth rates are determined according to
Evans and Parslow (1985) while zooplankton grazing is calculated with a Holling Type
III function. The full model equations are listed in the Appendix (A.2). With respect
to the previously used NPZ-model, see Chapter 2, the basic structure has been ex-
tended. Such a model modification can be justified since phytoplankton export and
remineralization turned out to be processes which are needed to be better resolved,
as it was discussed in Chapter 2. The ecosystem model in this study resembles that
of Oschlies and Garçon (1999) and Oschlies et al. (2000) (hereafter referred to as OG-
model).

The parameterisations of phytoplankton losses have been reconsidered. Formu-
lations for the phytoplankton mortality rates are adopted from Doney et al. (1996),
see also Oschlies (2001). Hence, a quadratic mortality ( ) is introduced that should
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Figure 2: High- and low-fidelity model output y, ŷ, respectively, for the state dissolved inorganic nitrogen at depth

z ≈ −2.68m for different values of the coarsening factor β and the same randomly chosen parameter vector u. For

simplicity we skip super- and subscripts in the legends of all figures.

resulting matrix Bdiff
j depends on j and is non-symmetric [21, Section 5]. It is tridiagonal, and the system is

solved directly by splitting it up into the four blocks. Writing this last step formally as a matrix inversion,

formulation (7) corresponds to (2).

In the original discrete model (6) the time step τ is chosen as one hour, and this version is from now on

what in surrogate-based optimization is called the high-fidelity or coarse model.

5. The Low-Fidelity Model

Surrogates can be either based upon an approximation of the sampled high-fidelity model data (functional

surrogates) or on a physical low-fidelity model. Functional surrogates are constructed without any particular

knowledge of the system and will not be addressed further in this paper. In contrast, surrogates based upon

a physical low-fidelity model (also known as physically based surrogates [22]) inherit more characteristics of

the fine model under consideration. Possible ways to create such a physical low-fidelity model are by using

a coarser discretization (while employing the same simulation tool as for the high-fidelity model), simplified

physics or different ways of describing the same physical phenomenon or even by using analytical formulas

if available. In this paper, we use a low-fidelity model which has a coarser time discretization which we will

explain below.

5.1. Coarser Time Discretization

The low-fidelity model is obtained by using a coarser time discretization with

τ̂ = βτ

with a coarsening factor β ∈ N \ {0, 1}, while keeping the spatial discretization fixed. The state variable

for this coarser discretized model will be denoted by ŷ, the corresponding number of discrete time steps by

M̂ = M/β. Note that the parameters u for this coarse model are the same as for the fine model. Figure 2

shows the fine and coarse model output y, ŷ for the state dissolved inorganic nitrogen, for different values of

β and at the same randomly chosen parameter vector u.
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Figure 3: Same as in Figure 2 but now using smoothing (cf. (9)) for both the coarse and the fine model. Smoothing
helps removing the numerical noise in the model outputs so that the optimization process is able to identify and track
relevant changes of the traces of interest.

6.2. Response Correction

In this work, the surrogate model output is generated, at iteration k of the optimization process, by multi-

plicative correction of the low-fidelity model output (cf. Section 3). The correction factor, denoted as Akji,

is defined by pointwise division of the smoothed fine by the smoothed coarse model output at the point uk,

i.e.,

skji(u) := Akji
˜̂yji(u),

Akji :=
ỹβ

ji(uk)
˜̂yji(uk)






k = 1, 2, . . . ,

j = 1, . . . , M̂ , i = 1, . . . , I,
(11)

where ỹβ is given by (9). We call Ak := (Akji)j,i ∈ RM̂×I the correction matrix in step k. We use it to write

the correction step in iteration k on the whole discrete state vector as

sk(u) := Ak ◦ ˜̂y(u), sk ∈ RM̂I

where the operation “◦” is defined by (11).

Note that the surrogate model is constructed using just one evaluation of the high-fidelity model. This

simple correction scheme is justified by the fact that the overall ”shape” of the low-fidelity model output

resembles that of the high-fidelity one. In particular, the high-value outputs for both models are corresponding

to each other on the time scale, which is the consequence of the low-fidelity model being physically-based.

Also, the relative changes of the outputs while changing the model parameters are similar for both coarse

and fine models so that the multiplicative correction seems to be a natural choice.

It should be emphasized that our surrogate model does not use high-fidelity model sensitivity data. Still,

as demonstrated in Section 8, it is able to yield remarkably good results, not only with respect to the quality

of the final solution, but, most importantly, in terms of the low computational cost of the optimization

process.
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Figure 1:  High- and low-fidelity model output y, ŷ, respectively, for the state dissolved inorganic nitrogen at depth z 
≈ −2.68 m for different values of the coarsening factor β and the same randomly chosen parameter vector u.

Figure 2:  Same as in Figure 2 but now using smoothing for both the coarse and the fine model. Resulting 
smoothed response contains the main characteristics of the fine one. 
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1D NPZD Model - Generalization Capability

Figure 3:   Surrogate’s, fine and coarse model output (some time intervall) for the state detritus at depth z ≈ 
−2.68 m and at two iterates u and in a neighbourhood ū. 
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ỹ c(u)

sk(u)

ỹ
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Figure 4:  Convergence history - fine, coarse and surrogate optimization - for illustrative optimization runs.
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Figure 1: Convergence of the fix point iteration towards a solution y(u) of (4), for some illustrative parameter vector u. Shown is
the Euclidean norm of the residual (cf. Section 2.4). Inset: detailed section. In this paper, we consider a reduced number of fix point
iterations (or, equivalently, number of model years nl) to create a low-fidelity (or coarse) model. Initially considered coarse models
are indicated by vertical dashed black lines whereas the solution after nl = 3000 model years (vertical red line) is considered as the
reference fine model solution.

if the computational budget of the optimization process is lim-
ited).

Key prerequisites to ensure that the SBO algorithm performs
well, both in terms of low computational complexity and the
quality of the final solution, are a cheap and yet reasonably ac-
curate coarse model as well as a properly selected and low-cost
alignment procedure (i.e., using a limited number of fine model
evaluations, preferably just one).

Provided that the surrogate sk satisfies so-called 0- and 1st-
order consistency conditions with the original fine model y f (uk)
at the iterate uk, i.e, agreement between function values and the
1st-order derivatives at the current iteration point as

sk(uk) = y f (uk), s�k(uk) = y�f (uk), (8)

the surrogate-based scheme (7) is provable convergent to at
least a local optimum of (6), under mild conditions regarding
the coarse and fine model smoothness, and provided that the
surrogate optimization scheme is enhanced by the trust-region
(TR) safeguard, i.e.,

uk+1 = argmin
u∈Uad ,

�u−uk � ≤ δk

J ( sk(u) ), (9)

with δk being the trust-region radius updated according to the
TR rules. We refer the reader to e.g. Conn et al. (2000); Koziel
et al. (2010) for more details.

Ensuring the 1st-order consistency requires including
fine/coarse model sensitivity which clearly increases cost for
the coarse model alignment. Thus, for a given problem, the
trade-offs between the solution accuracy and the extra compu-
tational overhead related to sensitivity calculation would have
to be assessed.

By definition, the surrogate proposed in this paper satisfies
0-order consistency only. Formally, this is not sufficient to en-
sure the convergence of the surrogate-based scheme to a (local)
minimum of the fine model optimization problem. However,
as pointed out before, since the surrogate is physics-based, it

inherits substantial knowledge about the fine marine ecosys-
tem model under consideration and thus, its derivatives are ex-
pected to be at least similar to those of the fine model. Fur-
thermore, because of being constructed from a physics-based
coarse model, the surrogate exhibits quite good generalization
capability, which means thats it provides a reliable approxima-
tion of the fine model when moving from one parameter vec-
tor to another. Numerical results presented in Section 9 further
confirm this, demonstrating that the 0-order consistent surro-
gate is able to yield remarkably good results at the cost of a few
evaluations of the fine model only.

5. Low-fidelity models

There are various ways to create a physics-based coarse
model. Some straightforward methods include neglecting
second order terms in the model equations, using simplified
physics or different ways of describing the same physical phe-
nomenon or even by using analytical formulas if available in-
stead of performing simulation.

Climate models, and also the three-dimensional coupled ma-
rine ecosystem model that we consider here as a representa-
tive sub-class, are typically given as time-dependent partial
differential or differential algebraic equations (PDE/PDEAs),
compare Gill (1982); Majda (2003); McGuffie and Henderson-
Sellers (2005). A straightforward way to introduce a coarse
model for these types of models thus is to reduce the spatial or
temporal resolution. When the model response is a steady sta-
tionary or periodic state and a fixed point iteration is applied as
it is the case for the considered model in this paper (cf. Section
2.4), another way of constructing a coarse model is possible by
reducing the number of iterations in this fix point iteration (or,
equivalently, by employing a relaxed stopping criterion). The
implementation of this approach is very straightforward and
convenient, and it is the method of choice for this paper.
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‣ Dynamical evolutions among nitrogen and dissolved organic phosphorus
(Kriest et al. 2010; Dutkiewicz et al. (2005); Parekh et al. (2005); Yamanaka and Tajika, 1997)

‣ Coupled to a general ocean circulation model in an off-line mode, exploting the Transport 
Matrix Method (TMM)

‣ The TTM is applied to simulate a steady annual cycle (with an initial spin-up)

‣ Here, we use a classical fixed point iteration

‣ „Sufficient“ accuracy after 3000 iterations (converged „reference“ fine model)

3D N-DOP Model

Table 1: Element in parameter vector, variable name, description and units for the N-DOP model parameters.

ui Name Description Unit
u1 λ remineralization rate of DOP 1/d
u2 α maximum community production rate 1/d
u3 σ fraction of DOP, σ̄ = (1 − σ) −
u4 KN half saturation constant of N m molP/m3

u5 KI half saturation constant of light W/m2

u6 KH2O attenuation of water 1/m
u7 b sinking velocity exponent −

cess of evaluating transport matrices, especially in combination
with operator splitting schemes can be found in Khatiwala et al.
(2005). For our results we used twelve implicit and twelve ex-
plicit transport matrices, which represent monthly averaged dif-
fusion and advection. The matrices are interpolated linearly to
the corresponding discrete time step during simulation.

We now introduce a time discretization for (2) and denote by
y j the appropriately arranged vector of the values (yi(xk, t j))i,k
of all n tracers on all spatial grid points xk ∈ Ω at the time step j.
In the same way, we denote the vector of the discretized source-
minus-sink terms qi at all spatial grid points xk, evaluated at
fixed time t j, by q j(y j,u). Using the TMM and for simplicity a
fixed time step τ, the time integration scheme for (2) now reads

yj+1 = Aimp, j (Aexp, j yj + τq j(yj,u))
=: ϕ j(y j,u), j = 0, . . . , nτ − 1 . (3)

Here nτ is the total number of time steps and Aimp, j,Aexp, j are
the implicit and explicit transport matrices at time step j. The
matrices are block-diagonal and usually sparse, depending on
the used numerical scheme of the ocean model. Starting from a
vector y0 of initial values for the tracers, each step in the time
integration scheme to solve the tracer transport equations (1)
just consists of the evaluation of the source-minus-sink term
and two matrix-vector multiplications.

2.4. Computation of a steady annual cycle

In our exemplary application, we use precomputed ideal or
synthetic data denoted by yd that have been generated by run-
ning the model into a (up to a certain numerical threshold)
steady annual cycle. A model run in the optimization process
thus means to compute a periodic solution of the discretized
system (3) with a given fixed period of one year. Setting the
end point T of the considered time interval to one year, we are
looking for a fixed point of the mapping

ynτ = Φ(y0,u),

where Φ := ϕnτ−1 ◦ · · · ◦ ϕ0 with the ϕ j defined in (3), i.e., for a
trajectory (y j) j=0,...,nτ with

ynτ = Φ(y0,u) = y0 . (4)

In this setting one application of the mapping Φ corresponds
to the computation of one year model time. Thus we will also

refer to a period as a model year in the following. In the sequel
we set the number of steps per year to nτ = 45. Assuming 360
days a year this time step corresponds to 192 hours. Both, the
time step and the step count is kept fixed for our analysis and
hence is not explicitly specified again.

The whole fixed point iteration now consists of a repeated
application of the mapping Φ, i.e., we set

yl+1 = Φ(yl,u), l = 0, . . . , nl − 1, (5)

where nl is the total number of iterations (model years) neces-
sary to compute a steady annual cycle and yl denotes the vector
of discretized tracer after l years, i.e., yl := yl·nτ . The iteration
starts with a constant distribution y0 of all tracers.

It is implemented as part of the simulation package of
Metos3D (Marine Ecosystem Toolkit for Simulation and Op-
timization in 3-D), see Piwonski and Slawig (2011). From sev-
eral computations it can be observed that after nl = 3000 it-
erations (model years), a numerical steady solution (up to an
accuracy of more than 10−2 in Euclidean norm, compare Fig-
ure 1) is obtained. Thus we refer to this as a converged steady
annual cycle and take it as the reference high-fidelity (or fine)
model output/response.

As shown in Figure 1, the residual in the solution of (4) can
be further decreased by using a higher number nl of model years
used in the fixed point iteration (5). However, the number nl =
3000 of steps (already used for example in Kriest et al. (2010))
provides a satisfactory accuracy.

We add the subscript f to distinguish the fine model state
and corresponding number of model years, i.e., y f , n f ,l, from
the corresponding coarse model ones.

3. The optimization problem

In order to identify the parameters in the biogeochemical
model, we solve the following nonlinear optimization problem
with given data yd:

min
u∈Uad

J(y(u)), (6)

where

J(y) :=
1
2
� y − yd �2Y , Uad := {u ∈ Rm : bl ≤ u ≤ bu},

bl,bu ∈ Rm, bl < bu,
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just consists of the evaluation of the source-minus-sink term
and two matrix-vector multiplications.

2.4. Computation of a steady annual cycle

In our exemplary application, we use precomputed ideal or
synthetic data denoted by yd that have been generated by run-
ning the model into a (up to a certain numerical threshold)
steady annual cycle. A model run in the optimization process
thus means to compute a periodic solution of the discretized
system (3) with a given fixed period of one year. Setting the
end point T of the considered time interval to one year, we are
looking for a fixed point of the mapping

ynτ = Φ(y0,u),

where Φ := ϕnτ−1 ◦ · · · ◦ ϕ0 with the ϕ j defined in (3), i.e., for a
trajectory (y j) j=0,...,nτ with

ynτ = Φ(y0,u) = y0 . (4)

In this setting one application of the mapping Φ corresponds
to the computation of one year model time. Thus we will also

refer to a period as a model year in the following. In the sequel
we set the number of steps per year to nτ = 45. Assuming 360
days a year this time step corresponds to 192 hours. Both, the
time step and the step count is kept fixed for our analysis and
hence is not explicitly specified again.

The whole fixed point iteration now consists of a repeated
application of the mapping Φ, i.e., we set

yl+1 = Φ(yl,u), l = 0, . . . , nl − 1, (5)

where nl is the total number of iterations (model years) neces-
sary to compute a steady annual cycle and yl denotes the vector
of discretized tracer after l years, i.e., yl := yl·nτ . The iteration
starts with a constant distribution y0 of all tracers.

It is implemented as part of the simulation package of
Metos3D (Marine Ecosystem Toolkit for Simulation and Op-
timization in 3-D), see Piwonski and Slawig (2011). From sev-
eral computations it can be observed that after nl = 3000 it-
erations (model years), a numerical steady solution (up to an
accuracy of more than 10−2 in Euclidean norm, compare Fig-
ure 1) is obtained. Thus we refer to this as a converged steady
annual cycle and take it as the reference high-fidelity (or fine)
model output/response.

As shown in Figure 1, the residual in the solution of (4) can
be further decreased by using a higher number nl of model years
used in the fixed point iteration (5). However, the number nl =
3000 of steps (already used for example in Kriest et al. (2010))
provides a satisfactory accuracy.

We add the subscript f to distinguish the fine model state
and corresponding number of model years, i.e., y f , n f ,l, from
the corresponding coarse model ones.

3. The optimization problem

In order to identify the parameters in the biogeochemical
model, we solve the following nonlinear optimization problem
with given data yd:

min
u∈Uad

J(y(u)), (6)

where

J(y) :=
1
2
� y − yd �2Y , Uad := {u ∈ Rm : bl ≤ u ≤ bu},

bl,bu ∈ Rm, bl < bu,

4



Figure 2: Difference in fine and coarse model responses, y f − yc, for illustratiion, here for the tracer N, for the uppermost depth
layer and at some point in time. The coarse models are obtained by a reduced number of fix point iterations (or equivalently number
of model years nl) which are employed to solve for a steady annual cycle in (4). The reference fine model solution y f is obtained
with n f ,l = 3000 model years. Selected depth layer and time are representative for the overall model behavior.

5.1. Specific choice of a low-fidelity model
We follow the approach of a relaxed fix point convergence for

the three-dimensional N-DOP model to obtain a coarse model
employing a reduced number of fixed point iterations, or, equiv-
alently, number of model years nl, to solve for an approximation
of the steady annual cycle (cf. Section 2.4). As noted before, the
time step τ employed in the underlying time integration scheme
(3) is fixed and the same as for the reference fine model. For the
sake of further analysis, the coarse model state and number of
iterations employed will be denoted by yc and nc,l, respectively
to be distinguishable from those used for the fine model.

The evaluation time for the coarse models is, compared to
the one for the fine model, reduced by the factor αeval which is
simply given as

αeval = (n f ,l/nc,l) . (10)

Whereas the evaluation time for the fine model is several min-
utes on a 48-processor cluster, the time required for one coarse
model evaluation could be significantly reduced to a few sec-
onds if nc,l is sufficiently small.

For initial experiments, we consider distinct coarse models
with various values of nc,l, more epsifically

nc,l = {2000, 1600, 800, 400, 200, 100, 50, 25} . (11)

Figure 1 shows the convergence of the fix point iteration to-
wards a solution y(u) of (4) as well as the obtained residual in
the fix point iteration for the fine model and for the coarse mod-
els employing the distinct number of model years given above.

To further assess the quality of approximation of these different
coarse models we compare their responses with the one of the
reference fine model. For this purpose, Figure 2 shows differ-
ences in the fine and coarse model responses for one illustrative
tracer (here, N) and some point in time and at the uppermost
depth layer.

Note that Figure 2, for illustration, shows one selected tracer
for one chosen point in time in the whole time interval (here,
one year) and at one chosen depth layer only. The total num-
ber of depth layers is 15 and the entire discrete time scale is 45
so that it is impossible to present a full model response here.
We emphasize that shown responses are “representative” which
means that the qualitative behavior of the responses under con-
sideration is similar for the second tracer, other points in time
and depth layers. This also holds for all subsequent plots shown
in this paper and – for the sake of brevity – will not be men-
tioned explicitly again.

It can be observed that the differences between the fine and
coarse model response become quite noticeable for the coarse
models with nc,l ≤ 200. This is confirmed in Figure 3 which
shows the entire trajectories at selected spatial locations for the
corresponding model responses.

It can be seen that more or less all coarse model responses
share the relevant characteristics of the fine model one such as
local minima and maxima. Clearly, with decreasing number of
nc,l, the accuracy of the corresponding coarse model response
decreases accordingly. However, even with nc,l = 25, the coarse
model response still accounts for the main features of the fine

7
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Figure 3: Fine and coarse model responses y f , yc, corresponding to Figure 2, here, for a whole trajectory (one year or, equiv-
alently, 45 discrete time steps) and at two spatial locations. For the sake of better visibility, only the coarse model with
nc,l = 3000, 800, 200, 25 model years are shown.

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

time steps

N
 [
 m

m
o
l P

 /
 m

3
 ]

 

 

 

 

 

 

 

 

(a) x = 30.9375◦W, y = 30.9375◦N.
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Figure 4: Fine and coarse model responses y f , yc (here, for the sake of brevity, only the one with nc,l = 25 is shown) for the
illustrative tracer N, at the uppermost depth layer, a whole trajectory and at two spatial locations. Shown are the responses at a
reference design uk, and a neighboring point ūk in order assess their qualitative relation and to choose a suitable correction approach.

model one.
The coarse models with nc,l ≤ 200 seems to be sufficiently

accurate while, at the same time, sufficiently cheap. In the fol-
lowing analysis, we will thus concentrate on these models only.

6. Surrogate construction

The surrogate model utilized in this paper falls into the cate-
gory of physics-based models (cf. Section 4) as it is constructed
from the underlying coarse model which is in turn based on the
same model equations as the fine one.

As motivated in Section 4, those surrogates, if the underlying
coarse model is chosen properly, inherit the relevant physical
characteristics of the fine model, so that a reasonable accuracy
can be obtained by applying a suitable correction while using
a limited number of fine model data. For the same reason, the
generalization capability of physics-based models is typically
very good, which is in contrast to function-approximation sur-
rogates. Below, we motivate the choice of one specific coarse
model and corresponding correction approach.

6.1. Choice of a low-fidelity model and correction approach

As described in Section 4, the surrogate is established at each
iteration k of the SBO optimization loop. The surrogate is set
up at the parameter vector uk being the outcome of the previ-
ous iteration, using the coarse model response, the fine model
response at uk, and a suitable correction technique.

In order to select a suitable correction method of the coarse
model responses in focus (i.e., the ones with nc,l ≤ 200 model
years as was motivated in the last section), we investigate the
fine and coarse model responses at a randomly selected refer-
ence point uk and its neighborhood, represented by another ran-
domly selected point ūk. Here, � ūk − uk � ≈ 6, i.e., ūk lies in a
rather close vicinity of uk.

Figure 4 shows the fine and coarse model responses y f and
yc for the same illustrative tracer and spatial locations as in Fig-
ure 3, at the reference and neighboring point uk and ūk. For the
sake of brevity, we only show the coarse model responses with
nc,l = 25. The qualitative behavior for the other coarse models,
i.e., with nc,l = 50, 100, 200 looks similar. Actually, their accu-
racy is even higher (see previous Section for details), i.e., their
responses lie even closer to the one of the fine model.

It can be seen that the overall “shape” of the coarse model
response resembles that of the fine one. Furthermore, the qual-
itative relation of the fine and coarse model response is rather
well preserved (at least locally) for the two selected parameter
vectors. In particular, the high-value outputs for both models
are corresponding to each other on the time scale, which is the
consequence of the coarse model being physics-based. This
even holds for the “coarsest” of the coarse models under con-
sideration here, i.e. the one using nc,l = 25, which indicates that
this very model will be suitable to construct the surrogate.

The relationship between the fine and coarse model response
indicates that the natural way of constructing the surrogate
would be multiplicative response correction. More specifically,
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Figure 5:  Upper: Difference in fine and coarse model responses. Lower: Responses at distinct spatial locations



(a) Responses at neighboring point ūk .

(b) Responses at closer point ũk .

Figure 7: Shown are – from left to right columns – the coarse, fine model and surrogate’s response yc, y f and sk, corresponding

to Figure 6, here, for the uppermost and 5th depth layer and at some point in time. Again, responses at the reference point uk are

omitted.

by evaluating the fine model at some randomly chosen parame-

ter vector, in the following denoted by ud, i.e.,

yd := y f (ud) . (15)

For this “synthetic setup”, since in this case the target or optimal

parameter vector ud is known, we can assess properties such as

the parameter match obtained after employing SBO. This helps

us to validate the applicability of our approach. Of course, in a

usual setup, i.e., when considering real measurement data, the

optimal parameters are unknown.

It is furthermore worth noticing that, for the considered prob-

lem, a direct fine model optimization would require immense

computational effort (most likely several weeks) which, in prac-

tice, is a rather tedious process.

The solution of the surrogate-based optimization is compared

to the target data by inspection of the corresponding fine model

response and cost function values at this solution. The perfor-

mance of the SBO process is assessed through investigating the

accuracy of matching the target data by the final solution found

by the algorithm as well as the computational costs. The lat-

ter is measured in terms of equivalent fine model evaluations

(cf. Section 8.4 for details.)

The surrogate model is optimized using the MATLAB
2

func-

tion fmincon, exploiting the active-set algorithm.

8.1. Cost function
We define the following discrete cost function, measuring the

difference between the discrete model response and the target in

a squared Euclidean norm (cf. (6)) as

J ( z ) := � z − yd �22 =
p�

i=1

�
z j − (yd) j

�2
, (16)

with a general state vector z of dimension p and where z j de-

notes the value (i.e., the concentration) of the state z at one

2
MATLAB is a registered trademark of The MathWorks, Inc.,

http://www.mathworks.com
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Figure 6: Coarse, fine and surrogate‘s response at some neighboring point (upper) and in an even closer vicinity (lower)
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yc(ūk)
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Figure 6: Fine, coarse model and surrogate’s response y f , yc and sk for one illustrative tracer (here, N), at the uppermost depth

layer, a whole trajectory and at two spatial locations. Shown are the responses at one representative “reference point” uk, at some

point ūk in the vicinity of uk (6a, 6b) and at another closer neighboring point ũk (6c, 6d), in order to assess the generalization

capability of the proposed surrogate. The surrogate’s response at the reference point is omitted, since, by definition, the model

alignment is perfect at this point.

generalization capability, which means that the surrogate pro-

vides a reasonable approximation of the fine one in the neigh-

borhood of uk. As noted before, this is a result of the surro-

gate model being physics-based and since its derivatives are ex-

pected to be at least similar to those of the fine model (cf. Sec-

tion 4.3).

The generalization capability will be analyzed in the next

section in more detail. Furthermore, as demonstrated in Sec-

tion 9, our SBO scheme exploiting the surrogate in (13) is able

to yield remarkably good results, not only with respect to the

quality of the final solution, but, most importantly, in terms of

the low computational cost of the optimization process.

7. Initial validation

In order to validate the multiplicative response correction ap-

proach proposed in the last section, we analyze the generaliza-

tion capability of the surrogate. More specifically, we check

whether the surrogate provides a reasonable approximation of

the fine model in a neighborhood of the “reference point” uk,

i.e., the parameter vector where the surrogate is established.

Recall, that the model alignment is perfect at uk by definition.

Thus, in the following we omit to show the corresponding re-

sponses in this reference point.

It should be noted that the fact of possible accuracy loss while

moving away from the reference point is not a major concern

with respect to the robustness of the surrogate-based optimiza-

tion process (9). This is because the distance between the refer-

ence point and the updated parameter vector obtained by opti-

mizing the surrogate will normally decrease upon convergence

of the algorithm, either naturally or forcefully due to the reduc-

tion of the trust-region radius (cf. Section 4.3), which improves

the accuracy of the surrogate model sk.

To analyze the properties addressed above we consider the

same parameter vectors uk, and ūk as in the last section (see also

Figure 4) where we analyzed the qualitative relation of the fine

and coarse model responses at different parameter vectors with

� ūk − uk � ≈ 6. Additionally, we consider another point ũk in a

closer vicinity of uk, satisfying � ũk − uk � ≈ 1. Figures 6 shows

the fine, coarse and surrogate’s response at the reference point

uk, its neighborhood ūk (Figure 6a, 6b) and at uk and the closer

neighboring point ũk (Figure 6c, 6d). Shown are the model

responses for the same illustrative tracer and spatial locations

as in Figure 4.

It can be observed that the surrogate provides a reasonable

approximation of the fine model also at the neighboring point

ūk whereas its accuracy is even increased at the closer point ũk.

As an additional evidence, we also present the corresponding

model responses on the whole 2D spatial grid (i.e., with the

vertical dimension z kept fixed), at two illustrative depth layers,

some point in time and for one tracer (here, N) in Figures 7.

Again, responses at the reference point uk are omitted.

The qualitative validation carried out in this section confirms

that the multiplicative response correction approach in con-

junction with the coarse model under consideration (i.e., using

nc,y = 25) is a reasonable choice to construct a reliable surro-

gate. Exploiting the latter in a SBO seems very promising.

8. SBO – optimization setup

The optimization approach in this work has been verified us-

ing model-generated, attainable target data yd which is obtained

10
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Figure 7: Same as in Figure 6, here, for two distinct spatial locations.
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Figure 9: Convergence plots for the single parameter values uk,i for each iteration k of an illustrative SBO run.

(a) γ = 10
−1

.

(b) γ = 10
−2

.

(c) γ = 10
−4

.

Figure 10: Solutions y f (u2), y f (u5) and y f (u10) obtained by an illustrative SBO run after two 10a, five 10b and ten 10c iterations –

corresponding to different thresholds employed in the termination condition in (20). Shown are, from left to right, the fine model

response y f at the initial parameter vector u0, at the solution uk and the target response yd, for one representative tracer (here, N),

some point in time and at the uppermost depth layer.

14

Figure 8: Results of an illustrative optimization run. (a)-(c) correspond to different stopping criteria (here, step size).
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Figure 10: Solutions y f (u2), y f (u5) and y f (u10) obtained by an illustrative SBO run after two 10a, five 10b and ten 10c iterations –

corresponding to different thresholds employed in the termination condition in (20). Shown are, from left to right, the fine model

response y f at the initial parameter vector u0, at the solution uk and the target response yd, for one representative tracer (here, N),

some point in time and at the uppermost depth layer.
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Figure 9: Optimization history of the parameters for the SBO run.



Dipl. Phys. Malte Prieß

Algorithmic Optimal Control - Oceanic CO2 Uptake 21/11/2011 - IFM-GEOMAR, Kiel / 2120

    

    

3D N-DOP Model - Illustrative SBO Run

Table 2: Initial, optimal and final parameters u0, ud and u
∗
s for the exemplary SBO run. Solution u

∗
s of the SBO problem given in

(17) is determined by the stopping criterion (20). The iterates u2, u5 and u10 correspond to thresholds γ = 10
−1, 10

−2, 10
−4

.

iterate u1 u2 . . . u7

u0 0.3 5.0 0.4 0.8 25 0.04 0.78

u2 0.502 3.328 0.633 0.845 24.886 0.036 0.92

u5 0.482 2.562 0.652 0.856 24.99 0.027 0.885

u10 0.485 2.334 0.659 0.745 25.076 0.025 0.864

ud 0.5 2.0 0.67 0.5 30.0 0.02 0.858

bl 0.25 1.5 0.05 0.25 10.0 0.01 0.7

bu 0.75 200.0 0.95 1.5 50.0 0.05 1.5
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Figure 8: Convergence of the cost function value J(y f ) (cf. (16)), the step size norm and of the trust-region radius δk (both versus

number of iterations and equivalent number of fine model evaluations) for an illustrative SBO run. Updated TR radii according to

(18) and (19) and – for the sake of better visibility – semi-log plots are shown.

the number of coarse model evaluations necessary to optimize

the surrogate model divided by this factor αeval, and increased

by one (since only one fine model evaluation is requires for the

correction/alignment of the coarse model response).

9. SBO – results and discussion

The operation and performance of the proposed algorithm

is illustrated through the results of an exemplary test run with

the reference fine model as defined in Section 2.4, the coarse

model using nc,l = 25 and the correction approach as motivated

in Section 6.1).

Figure 8 and 9 show corresponding convergence plots for the

cost function value J(y f ) (cf. (16)), the squared step size norm,

the trust-region radius δk (both versus number of iterations and

equivalent number of fine model evaluations) and for the single

parameter values uk,i.

Figure 10 and 11 present the fine model response at the solu-

tion u
∗
s of the SBO run, with u

∗
s considered as one of the iterates

u2,u5 and u10 corresponding to different values for the thresh-

old γ used in the stopping criterion (cf. Section 8.3). Table 2

shows the corresponding parameter values.

It can be observed that a reasonably accurate solution, y f (u2),

i.e., a solution that is sufficiently close to the target yd, can be

obtained after two iterations of the SBO, which corresponds to

a termination condition employing a threshold of γ = 10
−1

.
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‣ Assuming approximately 30 minutes for a single fine mode evaluation on a 48-processor 
cluster, a direct optimization approach could require about 15 days. 

‣ On the other hand, the whole SBO run requires approximately 4 to 23 hours (depending on 
the required accuracy and hence number of iterations performed).

Figure 10: Optimization history of the cost function values and step size norm for the SBO run.



‣ We presented an efficient optimization methodlogy for computationally heave (nonlinear) 
optimization problems

‣ Presented SBO exploits physics-based low-fidelity (or coarse) models
‣ Coarser mesh discretization (1D NPZD model)
‣ Relaxed convergence criterion (3D N-DOP model using TMM)

‣ Coarse model accuracy is typically not sufficient to directly exploit them in the optimization 
loop in lieu of the fine model

‣ Introduced two popular correction approaches: Space Mapping, Response Correction

‣ MRC:
‣ rather „intuitive“ and straightforward RC approach
‣ yet, very powerful 

‣ SBO with MRC yields a sufficiently accurate solution at a cost of a few fine model 
evaluations

‣ Cost savings are significant, about 84% and more when compared to a direct fine model 
optimization
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