30 research outputs found

    Integrated Graph Theoretic, Radiomics, and Deep Learning Framework for Personalized Clinical Diagnosis, Prognosis, and Treatment Response Assessment of Body Tumors

    Get PDF
    Purpose: A new paradigm is beginning to emerge in radiology with the advent of increased computational capabilities and algorithms. The future of radiological reading rooms is heading towards a unique collaboration between computer scientists and radiologists. The goal of computational radiology is to probe the underlying tissue using advanced algorithms and imaging parameters and produce a personalized diagnosis that can be correlated to pathology. This thesis presents a complete computational radiology framework (I GRAD) for personalized clinical diagnosis, prognosis and treatment planning using an integration of graph theory, radiomics, and deep learning. Methods: There are three major components of the I GRAD framework–image segmentation, feature extraction, and clinical decision support. Image Segmentation: I developed the multiparametric deep learning (MPDL) tissue signature model for segmentation of normal and abnormal tissue from multiparametric (mp) radiological images. The segmentation MPDL network was constructed from stacked sparse autoencoders (SSAE) with five hidden layers. The MPDL network parameters were optimized using k-fold cross-validation. In addition, the MPDL segmentation network was tested on an independent dataset. Feature Extraction: I developed the radiomic feature mapping (RFM) and contribution scattergram (CSg) methods for characterization of spatial and inter-parametric relationships in multiparametric imaging datasets. The radiomic feature maps were created by filtering radiological images with first and second order statistical texture filters followed by the development of standardized features for radiological correlation to biology and clinical decision support. The contribution scattergram was constructed to visualize and understand the inter-parametric relationships of the breast MRI as a complex network. This multiparametric imaging complex network was modeled using manifold learning and evaluated using graph theoretic analysis. Feature Integration: The different clinical and radiological features extracted from multiparametric radiological images and clinical records were integrated using a hybrid multiview manifold learning technique termed the Informatics Radiomics Integration System (IRIS). IRIS uses hierarchical clustering in combination with manifold learning to visualize the high-dimensional patient space on a two-dimensional heatmap. The heatmap highlights the similarity and dissimilarity between different patients and variables. Results: All the algorithms and techniques presented in this dissertation were developed and validated using breast cancer as a model for diagnosis and prognosis using multiparametric breast magnetic resonance imaging (MRI). The deep learning MPDL method demonstrated excellent dice similarity of 0.87±0.05 and 0.84±0.07 for segmentation of lesions on malignant and benign breast patients, respectively. Furthermore, each of the methods, MPDL, RFM, and CSg demonstrated excellent results for breast cancer diagnosis with area under the receiver (AUC) operating characteristic (ROC) curve of 0.85, 0.91, and 0.87, respectively. Furthermore, IRIS classified patients with low risk of breast cancer recurrence from patients with medium and high risk with an AUC of 0.93 compared to OncotypeDX, a 21 gene assay for breast cancer recurrence. Conclusion: By integrating advanced computer science methods into the radiological setting, the I-GRAD framework presented in this thesis can be used to model radiological imaging data in combination with clinical and histopathological data and produce new tools for personalized diagnosis, prognosis or treatment planning by physicians

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    CT Scanning

    Get PDF
    Since its introduction in 1972, X-ray computed tomography (CT) has evolved into an essential diagnostic imaging tool for a continually increasing variety of clinical applications. The goal of this book was not simply to summarize currently available CT imaging techniques but also to provide clinical perspectives, advances in hybrid technologies, new applications other than medicine and an outlook on future developments. Major experts in this growing field contributed to this book, which is geared to radiologists, orthopedic surgeons, engineers, and clinical and basic researchers. We believe that CT scanning is an effective and essential tools in treatment planning, basic understanding of physiology, and and tackling the ever-increasing challenge of diagnosis in our society

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    Mammography

    Get PDF
    In this volume, the topics are constructed from a variety of contents: the bases of mammography systems, optimization of screening mammography with reference to evidence-based research, new technologies of image acquisition and its surrounding systems, and case reports with reference to up-to-date multimodality images of breast cancer. Mammography has been lagged in the transition to digital imaging systems because of the necessity of high resolution for diagnosis. However, in the past ten years, technical improvement has resolved the difficulties and boosted new diagnostic systems. We hope that the reader will learn the essentials of mammography and will be forward-looking for the new technologies. We want to express our sincere gratitude and appreciation?to all the co-authors who have contributed their work to this volume
    corecore