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Abstract 

Purpose: A new paradigm is beginning to emerge in radiology with the advent of increased 

computational capabilities and algorithms. The future of radiological reading rooms is 

heading towards a unique collaboration between computer scientists and radiologists. The 

goal of computational radiology is to probe the underlying tissue using advanced 

algorithms and imaging parameters and produce a personalized diagnosis that can be 

correlated to pathology. This thesis presents a complete computational radiology 

framework (I-GRAD) for personalized clinical diagnosis, prognosis and treatment 

planning using an integration of graph theory, radiomics, and deep learning. 

Methods: There are three major components of the I-GRAD framework–image 

segmentation, feature extraction, and clinical decision support.  

Image Segmentation: I developed the multiparametric deep learning (MPDL) tissue 

signature model for segmentation of normal and abnormal tissue from multiparametric 

(mp) radiological images. The segmentation MPDL network was constructed from stacked 

sparse autoencoders (SSAE) with five hidden layers. The MPDL network parameters were 

optimized using k-fold cross-validation. In addition, the MPDL segmentation network was 

tested on an independent dataset. 

Feature Extraction: I developed the radiomic feature mapping (RFM) and contribution 

scattergram (CSg) methods for characterization of spatial and inter-parametric 

relationships in multiparametric imaging datasets. The radiomic feature maps were created 

by filtering radiological images with first and second order statistical texture filters 

followed by the development of standardized features for radiological correlation to 

biology and clinical decision support. The contribution scattergram was constructed to 
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visualize and understand the inter-parametric relationships of the breast MRI as a complex 

network. This multiparametric imaging complex network was modeled using manifold 

learning and evaluated using graph theoretic analysis. 

Feature Integration: The different clinical and radiological features extracted from 

multiparametric radiological images and clinical records were integrated using a hybrid 

multiview manifold learning technique termed the Informatics Radiomics Integration 

System (IRIS).  IRIS uses hierarchical clustering in combination with manifold learning to 

visualize the high-dimensional patient space on a two-dimensional heatmap.  The heatmap 

highlights the similarity and dissimilarity between different patients and variables.  

Results: All the algorithms and techniques presented in this dissertation were developed 

and validated using breast cancer as a model for diagnosis and prognosis using 

multiparametric breast magnetic resonance imaging (MRI). The deep learning MPDL 

method demonstrated excellent dice similarity of 0.87±0.05 and 0.84±0.07 for 

segmentation of lesions on malignant and benign breast patients, respectively. 

Furthermore, each of the methods, MPDL, RFM, and CSg demonstrated excellent results 

for breast cancer diagnosis with area under the receiver (AUC) operating characteristic 

(ROC) curve of 0.85, 0.91, and 0.87, respectively. Furthermore, IRIS classified patients 

with low risk of breast cancer recurrence from patients with medium and high risk with an 

AUC of 0.93 compared to OncotypeDX, a 21 gene assay for breast cancer recurrence.  

Conclusion: By integrating advanced computer science methods into the radiological 

setting, the I-GRAD framework presented in this thesis can be used to model radiological 

imaging data in combination with clinical and histopathological data and produce new tools 

for personalized diagnosis, prognosis or treatment planning by physicians. 
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(a) statistical kernel (e.g. median filter) (b) Edge kernel (e.g. 
Laplacian of Gaussian filter) (c) Special kernel (e.g. Fractal 
dimension filter). Modified from [18-20]  

5.6  Multiresolution methods applied to a diffusion-weighted image 
(𝑏 = 500): a) the original size 256x256; b) compressed image 
(64x64) at different levels. c) For compression 2D biorthogonal 
spline wavelets were used. 𝑑      𝑗

(ℎ) , 𝑑      𝑗
(𝑣)  and 𝑑     𝑗

(𝑑)  respectively are 
detail components corresponding to vertical, horizontal, and 
diagonal. 𝑎𝑗, is the approximation (coarse) component at 
decomposition level.  Modified from [21]. 
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6.1  Concept of the radiomic feature mapping framework.  A.  The 
multiparametric radiological dataset (𝑁 = 23) is transformed into a 
high-dimensional radiomic feature space (𝐷 = 690) consisting of 
radiomic feature maps generated using Laplacian of Gaussian, 
texture statistical kernels (𝑛 = 30). B. The RFM space is first 
transformed to the patient network using the IsoSVM and then 
high-dimensional radiomic feature map space from each patient is 
classified as benign or malignant. 

6.2  Typical multiparametric breast image of a malignant patient.  A. 
Dynamic contract enhanced, B. T2-weighted, C. T1-weighted, D. 
Pharmacokinetic-DCE overlay of Ktrans and EVF, where red 
indicates high Ktrans and blue demonstrates low Ktrans  E. ADC maps, 
and F. whole breast entropy feature map.  

6.3  Typical multiparametric breast image of a benign patient.  A. 
Dynamic contract enhanced, B. T2-weighted, C. T1-weighted, D. 
Pharmacokinetic-DCE overlay of Ktrans and EVF, where red 
indicates high Ktrans and blue demonstrates low Ktrans  E. ADC maps, 
and F. whole breast entropy feature map.  

6.4  The DCE-MRI entropy evolution curves corresponding to the mean 
value of the entropy feature map and the range feature map. The 
range feature corresponds to the difference between the maximum 
and minimum intensity values of all the voxels within the sliding 
window. The error bars correspond to standard error. (Top) 
Normalized entropy and (bottom) range feature evolution curves.  
(A) Lesion graphs of benign (blue) and malignant (red). (B) 
Contralateral glandular tissue from benign (blue) and malignant 
patients (red). The shape of the radiomic feature evolution curves 
was significantly different between the benign and malignant lesions 
(𝑝 < 0.05). However, there was no significant difference between 
the contralateral glandular tissue from benign and malignant 
patients. Indicative of consistent radiomic features in normal tissue.  

6.5  Illustration of the multiview feature embedding and classification 
framework. The six MRI datasets are first transformed into radiomic 
feature map (RFM) space using radiomic feature mapping. The 
RFMs for DCE-MRI are transformed into textural evolution curves, 
which are subsequently reduced to one-dimensional embedding 
using the Isomap algorithm. The vector of one-dimensional 
embedding corresponding to each RFM forms the 30-dimensional 
DCE-MRI radiomic signature. The RFMs for DCE High spatial 
resolution MRI and DWI are transformed into their respective 
radiomic signatures based on the textural evolution metric. The 
remaining datasets of ADC map, T1WI, and T2WI are directly 
transformed into radiomic signatures by calculating the mean of the 
RFMs. Finally, subsets of features (𝑓1, 𝑓2, … , 𝑓6) from each RFM 
signature form a unified RFM signature used to train the IsoSVM 
classification model. 

6.6  The receiver operating characteristic curves corresponding to the 
IsoSVM classification (black), radial basis function (RBF) kernel 
SVM (blue), linear kernel SVM (red), quadratic kernel SVM 
(dashed green), and the cubic kernel SVM kernel (dotted black) 
evaluated using leave one out cross validation. The area under the 
ROC were obtained at 0.91, 0.82, 0.78, 0.65, and 0.71 for IsoSVM, 
RBF, linear, quadratic, and cubic kernel SVMs, respectively. 
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6.7 The total operating characteristic (TOC) curve for the IsoSVM 
classifier. The TOC curve allows us to compute the true positives 
(TP), false positives (FP), true negatives (TN), and false negatives 
(FN) at every point on the curve. The TP, FP, TN, and FN for the 
optimal IsoSVM hyperplane were 91, 7, 22 and 4 respectively. 

7.1 Illustration of the four different types of multiparametric imaging 
radiomic features based on first and second order statistical analysis. 
The tissue signature probability matrix (TSPM) and tissue signature 
co-occurrence matrix (TSCM) features are based on the spatial 
relationship between tissue signatures while the tissue signature 
complex interaction network (TSCIN) and tissue signature 
relationship matrix (TSRM) features evaluate the inter-parameter 
complex interactions. A typical tissue signature is demonstrated 
using a yellow arrow that runs through all the images in the 
multiparametric imaging dataset and tumor in the images is 
indicated using an orange arrow. 

7.2. A. USC reference texture ground truth images. 1. Reference image 
made out of a composite of several different shapes and textures and 
(right) single radiomic image.  2.  The composite Reference image 
and (right) single radiomic image B. Multiparametric USC 
composite images. C. mpRadiomics image of USC images.  D and 
E. Enlarged radiomic images from reference images 1 and 2.  F. 
Enlarged mpRadiomic image from the combination of the images.  
The multiparametric radiomic features were able to capture the 
differences in both shape and intensity distribution of both single 
parameter radiomic images with excellent detail of the underlying 
structure. 

7.3 The radiomic feature maps (RFM) obtained from single and 
multiparametric radiomic analysis in a malignant patient.  The 
straight yellow arrow highlights the lesion. The curved arrow 
demonstrates a benign cyst. A.  Multiparametric MRI parameters B. 
Single radiomic gray level co-occurrence matrix (GLCM) entropy 
features maps of each MRI parameter.  C. The MPRAD RFMs 
tissue signature co-occurrence matrix (TSCM) and tissue signature 
complex interaction network (TSCIN) radiomic features. Note, the 
improved tissue delineation between the different tissue types using 
MPRAD.  

7.4 The radiomic feature maps (RFM) obtained from single and 
multiparametric radiomic analysis in a benign patient.  The yellow 
arrow highlights the lesion. A.  Multiparametric MRI parameters B. 
Single radiomic gray level co-occurrence matrix (GLCM) entropy 
features maps of each MRI parameter.  C. The MPRAD RFMs tissue 
signature co-occurrence matrix (TSCM) and tissue signature 
complex interaction network (TSCIN) radiomic features.  

7.5 Comparison between the predictive accuracy of the single parameter 
based radiomics features and multiparametric radiomic features 
using receiver operating characteristic (ROC) curve analysis. The 
multiparametric radiomic feature ROC curves (displayed in red) 
produced area under the ROC curve (AUC) values that were 
9%-28% greater than the AUCs obtained for single parameter 
radiomics (ROC curves displayed in blue). The ROC curve obtained 
from applying IsoSVM (Chapter 6) for classification of benign 
from malignant patients is displayed in black. The area under the 
ROC curve (AUC) for IsoSVM was obtained at 0.87. 
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7.6 The total operating characteristic (TOC) curve for the IsoSVM 
classifier applied to MPRAD features. The true positives (TP), false 
positives (FP), true negatives (TN), and false negatives (FN) for the 
optimal IsoSVM hyperplane were 80, 17, 33, and 8 respectively. 

7.7 Illustration of radiomic feature maps (RFM) obtained from single 
and multiparametric radiomic analysis of an acute stroke patient 
with mpMRI Diffusion weighted imaging and ADC mapping. Top 
Row.  ADC map with the yellow arrow showing the densely 
ischemic tissue. The RFMs in the illustrate different gray level 
co-occurrence matrix (GLCM) single radiomic features maps for the 
ADC map. The delineation of the infarcted tissue is hard to discern. 
Bottom Row. MPRAD of the DWI data set with yellow arrows 
showing the infarcted tissue.  The MPRAD demonstrates excellent 
delineation of the infarcted tissue. The enlarged area shows the 
heterogeneity of the lesion. 

7.8 Illustration of radiomic feature maps (RFM) obtained from single 
and multiparametric radiomic analysis of an acute stroke patient 
with mpMRI perfusion weighted imaging. Top Row. Time to Peak 
(TTP) map from the perfusion MRI with the yellow arrow showing 
potential “tissue at risk”. The first order (FOS) RFMs illustrate the 
different gray level single radiomic and co-occurrence matrix 
(GLCM) maps from the TTP.  Bottom Row.   MPRAD images from 
perfusion MRI illustrates the power mpRadiomics and the striking 
difference in the “tissue at risk” delineation in both the tissue 
signature matrix (TSCIN) and tissue signature relationship matrix 
(TSRM) radiomic features. The black dotted arrows show the 
infarcted tissue in the caudate putamen and internal capsule. 

8.1.  An example multiparametric MRI dataset, 𝑋 in a 𝐷-dimensional 
space. Here 𝐷 corresponds to the number of pixels in each MRI 
image. (b) The manifold learning algorithm learns the manifold 
representation of the 𝐷-dimensional multiparametric MRI dataset 
and represents the learned manifold as a graph called the 
contribution scattergram. The intrinsic dimensionality of the 
manifold is two in this example.   

8.2. Example plot representing the residual variance analysis procedure 
for estimating the intrinsic dimensionality of the multiparametric 
MRI manifold 𝑋. It can be seen that elbow for the plot occurs at 𝑑 =
2. 

8.3.  Plot of statistical significance vs. 𝑘 for different graph centrality 
measures. The statistical significance value was set at one if the 
Wilcoxon rank sum test between benign and malignant sets 
produced a 𝑝 value ≤ 0.05 and zero otherwise. (a) The plot for 
average betweenness centrality for the CS consisting of all the MR 
parameters. The notch corresponds to 𝑝 =  0.18 (b) The plot for 
average degree centrality for the CS consisting of all the MR 
parameters (c) The plot for average betweenness centrality for the 
DCE-MRI CS (d) The plot for average degree centrality for the 
DCE-MRI CS. The notch here corresponds to 𝑝 =  0.06. 

8.4.  Visualization of the average contribution scattergrams obtained for 
(a) Normal (b) Benign and (c) Malignant patients. There are 
significant structural differences in the three contribution 
scattergrams. For example, the degree distribution across different 
MRI parameters is significantly different between normal, benign 
and malignant patients (p<0.05). Moreover, the sub graphs for DWI 
and DCE-MRI are also significantly different (p<0.05) as elaborated 
in the chapter.  
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 xxii   
 

8.5  The results from different centrality measures and the clustering 
coefficient have been illustrated here. The DCE images 6 and 7 were 
identified as the most central images. Furthermore, there were 
significant differences in the centrality values of the wash-in and 
wash-out images between benign patients and malignant patients. 
(a) The plot of betweenness centrality values for all the high 
temporal resolution DCE images. (b) The plot of degree centrality 
values for all the high temporal resolution DCE images. (c) The plot 
of closeness centrality values for all the high temporal resolution 
DCE images. (d) The plot of clustering coefficients for all the high 
temporal resolution DCE images. The DCE images formed two 
clusters on either side of DCE images 6 and 7 depicting the wash-in 
and wash-out clusters. 

8.6.  Plot of closeness centrality values for all the DWI images and ADC 
map. The closeness centrality values were significantly higher    
(𝑝 < 0.05) for benign patients than for malignant patients across all 
the images. 

8.7.  The receiver operating characteristic curves corresponding to the 
hybrid IsoSVM kernel classification (black), radial basis function 
(RBF) kernel SVM (blue), linear kernel SVM (red), quadratic kernel 
SVM (dashed green), and the cubic kernel SVM kernel (dotted 
black) evaluated using leave one out cross validation. The area 
under the ROC were obtained at 0.87, 0.81, 0.80, 0.76, and 0.70 for 
IsoSVM, RBF, linear, quadratic, and cubic kernel SVMs, 
respectively.   

8.8 The total operating characteristic (TOC) curve for the IsoSVM 
classifier. The true positives (TP), false negatives (FN), true 
negatives (TN), and false positives (FP) for the optimal IsoSVM 
hyperplane were 85, 11, 32, and 7, respectively. 

9.1  Illustration of the IRIS clinical decision support system. The 
high-dimensional patient space consisting of different patients and 
their corresponding informatics parameter subspaces (left) are 
transformed into an integrated informatics decision support system, 
IRIS (right). The IRIS is represented using a heatmap where the 
color-scale (blue–red) indicates risk as identified by each 
embedding (low, intermediate and high-risk clusters). 

9.2  Demonstration of multiparametric MRI imaging of each risk group 
defined by the Oncotype DX.  Left) typical imaging of the low-risk 
group. Middle) typical imaging of the medium-risk group, and 
Right) typical imaging of the high-risk group.  Note, the PK-DCE 
all demonstrate malignant phenotype, however, by integrating all 
the data using IRIS, I was able to separate each group.  

9.3  Bar graphs of quantitative multiparametric MRI parameters from the 
IRIS model demonstrating significant differences between low, 
medium and high-risk patient groups. 

9.4  Visualization of the average contribution scattergrams obtained for 
(a) Low-Risk and (b) Medium and High-Risk Patients. There are 
significant structural differences in the two contribution 
scattergrams (𝑝 < 0.05) as elaborated in this chapter. 

9.5  Closeness centrality values for all the DWI images and the ADC 
map. The closeness centrality values were found to be significantly 
higher (𝑝 < 0.05) for medium and high-risk patients as compared 
to low-risk patients. 
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9.6  Degree centrality values across the complete DCE temporal 
evolution. The degree centrality of the images in the wash-out phase 
was significantly different between low-risk and medium/high-risk 
patients. 

9.7  Illustration of the top DCE radiomic features for distinguishing 
between low-risk, medium-risk, and high-risk patient groups. Here 
SRE refers to short run emphasis, SRLGE refers to short run low 
gray level emphasis, and SRHGE refers to short run high gray level 
emphasis. 

9.8  Illustration of the top ADC radiomic features for distinguishing 
between low-risk, medium-risk, and high-risk patient groups  

9.9  The IRIS clinical decision support system for breast cancer 
prognosis. The IRIS heatmap here comprises of five feature 
subspaces – radiomics, contribution scattergram, PK-DCE metrics, 
ADC metrics, and Ki-67. The IRIS is represented using a heatmap 
where the color-scale (blue – red) indicates risk as identified by each 
embedding (low, intermediate, and high-risk clusters).  

9.10  The area under the curve (AUC) of the five-dimensional multiview 
feature embedding. The sensitivity was 89.47% and specificity was 
84.31% with an AUC of 0.93. 

9.11  The total operating characteristic (TOC) curve of the 
five-dimensional multiview feature embedding. The true positives 
(TP), false positives (FP), true negatives (TN), and false negatives 
(FN) for the optimal IsoSVM hyperplane were 17, 2, 43, and 8 
respectively. 
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Chapter 1. Introduction 

Given the rapid changes in computational algorithms and the data rich environment in 

clinical medicine, the key question is “How to extract, evaluate and visualize the 

high-dimensional clinical data in a meaningful way with quantitative metrics for tumor 

characterization?” in particular, in radiology, which is rich in digital imaging methods.  

Moreover, the radiological reading room is undergoing a paradigm shift to a symbiosis of 

computer science and radiology. This thesis presents an outline for computer science to 

enrich radiology and other parts of the clinical environment using advanced computational 

algorithms.  

1.1 Computational Radiology 

Radiological imaging methods are used to non-invasively probe tissue of interest in 

different regions of the body to detect and characterize potential deadly pathology, such as 

malignant cancer.  These radiological methods produce large volumes of complex digital 

imaging data corresponding to an area or region of interest making “reading and 

interpreting” the image data challenging. However, recent advances in the field of computer 

vision and machine learning have led to a new paradigm shift to computational radiology in 

the field of medicine, where, the future radiological reading rooms will have a unique 

collaboration between computer scientists  and radiologists (human experts) [22]. In the near 

future, advanced computational methods will be assisting radiologists in various aspects of 

radiological decision making, such as identification and segmentation of different tissue 

types, tumor characterization, and diagnosis. For example, large data sets, such as breast 

and brain can be quickly triaged into different groups by using advance computer science 

methods, where the potential “worst” cases are looked at first. This could lead to increased 
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efficacy and confidence of the radiologist making the right diagnosis. These methods can 

be further developed to integrate advanced radiological parameters with multivariate 

information from different sources such as the electronic heath record, pathology, and 

clinical history to assist treating clinicians in arriving at the most accurate diagnosis. This 

integration of multivariate information would give the clinician an improved understanding 

of the complex nature of a disease and develop improved personalized predictive 

biomarkers or group similar patients for personalized treatment planning and disease 

prognosis. 

Radiological imaging techniques are powerful noninvasive tools used for the 

detection, differentiation, and diagnosis of different tissue characteristics in patients. These 

imaging methods include X-Ray, Computed Tomography (CT), Magnetic Resonance 

Imaging (MRI), Nuclear Medicine (NM) Positron Emission Tomography (PET), and 

Ultrasound (US). Each of these modalities creates a different tissue contrast based on the 

mechanism of acquisition and the inherent properties of the tissue, enabling the method to 

determine whether the tissue is normal or abnormal. For example, multiparametric MRI 

(mpMRI) of breast tissue using advanced quantitative parameters of dynamic contrast 

enhanced (DCE) MRI and diffusion weighted imaging (DWI) provide non-invasive 

information about the underlying tissue biology. The DCE-MRI provides information 

about vascularity and permeability of the tissue, which is characterized by rapid uptake of 

contrast agent, followed by fast washout. On the other hand, the movement of intra- and 

inter-cellular water in normal and tumor environments of breast tissue are characterized by 

DWI and the apparent diffusion coefficient (ADC) of water map. The ADC map provides 

a quantitative biophysical parameter that measures the cellularity of tissue.  
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My goal is to extract all the information present in the radiological images and 

develop radiological biomarkers for characterization of a patient’s diagnosis, prognosis, or 

treatment response. A biomarker is defined as “A characteristic that is objectively 

measured and evaluated as an indicator of normal biological processes, pathogenic 

processes, or pharmacologic responses to a therapeutic intervention” [23]. 

Correspondingly, radiological biomarkers are derived from images to form a feature or a 

set of features modeled to characterize a biological property of the underlying tissue of 

interest. The complete set of imaging features that extracted from multiparametric 

radiological images can be broadly categorized into two categories: spatial features (texture 

and shape) and inter-parametric relationship features. The spatial appearance of the tissue 

of interest is evaluated using radiomics while the inter-parametric relationships are 

evaluated using a contribution scattergram. Both these methods are discussed in detail in 

Part II of the thesis. Briefly, radiomics characterizes and visualizes the information about 

the gray-scale patterns, inter-pixel relationships, and shape-based properties of the region 

of interest (ROI) which may be correlated to tissue biology [24-30]. I am the first to relate 

radiomic characteristics of both normal and lesion tissue to the underlying tissue biology.   

A contribution scattergram models the inter-parametric relationships between 

different imaging parameters as a complex network model. Different radiological imaging 

parameters are represented as nodes on the contribution scattergram and their relationships, 

as contribution scattergram edges. I am the first to model the multiparametric imaging data 

as a complex network and evaluate its underlying organizational structure which could 

potentially provide a unique network signature for every patient or a group of patients with 

similar pathology.  
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Integrating and visualizing radiological biomarkers obtained from each of these 

different imaging methods would be beneficial in defining imaging phenotypes for 

personalized clinical decision support. The integration of seemingly disparate data and 

modeling the complex interactions between different features within the data can be 

accomplished using advanced multiview learning algorithms [31]. Furthermore, 

integrating radiological biomarkers with histopathology, genomics, and clinical history 

will create a complete picture of a patient’s diagnosis and prognosis. 

1.2 Computational Radiology Framework 

This thesis presents a novel integration of computer science within radiology using 

advanced graph theoretic, radiomic, and deep learning (I-GRAD) techniques to develop a 

personalized radiological diagnosis, prognosis, and treatment assessment framework. 

Figure 1.1 illustrates an outline of the I-GRAD framework. As shown in Figure 1.1, there 

are three major components of the I-GRAD framework. The first step involves segmenting 

the tissue of interest in the acquired multiparametric radiological imaging data.  Accurate 

identification and segmentation of the tissue of interest presents the first challenge as all 

the subsequent steps depend on the accuracy of the segmentation algorithm. 
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Figure 1.1 Illustration of the I-GRAD Framework for personalized radiological diagnosis and 

prognosis. There are four major components of the I-GRAD framework. (a) The first component 

is image segmentation which is developed using multiparametric deep learning (MPDL). (b) The 

second step involves extraction of intrinsic information present in radiological images using 

radiomics (shape and texture), manifold learning, and graph theory (complex interactions between 

imaging parameters). (c) In the third step, a patient space corresponding to each feature is 

constructed for visualization and analysis of similar and dissimilar patients. (d) The final step 

involves transforming each patient space into a heatmap visualization tool for patient diagnosis and 

analysis of the contribution from each feature space.   
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The second step involves extraction of all the relevant information from the region 

of interest (ROI) segmented in the previous step. The complete set of features that can be 

extracted from radiological imaging using advanced computational methods can be 

categorized into two categories: 

1. Morphological properties (texture and shape) of the tissue of interest.  

2. Complex interactions between the different imaging parameters acquired in the 

study. 

Integration of these two features into a single model comprises the final step of this 

framework. These features are extracted from different sources and hence require a 

multiview learning algorithm that creates a personalized radiological signature correlated 

to pathology for the application defined by the user, for example, distinguishing malignant 

from benign tumors.  

The objectives of this dissertation are as follows: 

1.  Develop algorithms for segmentation and classification of different tissue types 

using radiological imaging methods. 

2. Extract biological and structural information from the segmented tissue from 

the radiological images. 

3. Integrate clinical data with all the extracted information into a clinical decision 

support model using multiview learning for transforming the radiology reading 

room.  
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1.3 List of Contributions 

1.3.1 Image Segmentation  

My first and second contributions address the problem of segmentation of different tissues 

from multiparametric radiological imaging datasets. For my first contribution, I developed 

the multiparametric deep learning (MPDL) tissue signature model for segmentation of 

different tissue types from multiparametric radiological imaging datasets. I further 

evaluated the potential of MPDL as a generalizable organ invariant tissue segmentation 

architecture for my second contribution. 

Multiparametric deep learning tissue signature model 

Supervised segmentation algorithms require pre-defined labels for all the tissue types found 

in the organ of interest which poses significant challenges. Pre-labeling the data with all 

possible tissue types is not practical and very time consuming, which could lead to under-

sampling of the correct objects or tissue types in a dataset. However, if we use all the data 

(labeled and unlabeled), we can develop a classifier that has “seen” all the tissue types.   

The MPDL model is based on stacked sparse autoencoders (SSAE). Sparse 

autoencoders are unsupervised neural networks that learn an intrinsic representation of the 

input by attempting to reconstruct it. Furthermore, the activation of each node in the hidden 

layer of the autoencoder is specialized to activate in response to only a subset of input data 

by the introduction of sparsity constraint. The unsupervised nature of SAE allows us to 

train them on the complete set of labeled and unlabeled data. In MPDL, a set of five SAEs 

were stacked together with each subsequent SAE trained on the output of the previous SAE 

and a final softmax classifier to classify the data into different tissue types. The MPDL 

architecture was then fine-tuned on the labeled data to generate segmentation masks. I 
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trained and tested the MPDL for segmentation and classification of multiparametric breast 

Magnetic Resonance Imaging (mpMRI). Furthermore, the MPDL tissue signature model 

was validated on an independent dataset [32-34] that had different imaging parameters 

(DCE, T1, T2, DWI for training, and only DCE for testing) and imaging plane orientations 

(Axial plane for training and Sagittal plane for testing) than the training dataset, thereby 

demonstrating the robustness of MPDL and eliminating the need to retrain the model every 

time a new dataset is introduced to the model. A journal paper manuscript describing 

MPDL has been tentatively accepted, pending revision to Scientific Reports. The 

manuscript can be found on arXiv preprint server [35]. This work is described in 

Chapter 2. 

Organ Invariant Tissue Segmentation 

The MPDL model resolves the problem of segmentation of different tissues from a 

multiparametric radiological imaging dataset, however, it is very narrow in that it is limited 

to segmentation of tissue from a specific organ. On the other hand, if we look at deep 

learning models developed for computer vision applications, they are more general. For 

example, object recognition algorithms based on deep learning are not limited to 

recognition of sub-groups of objects (e.g. vehicles, food, and furniture), but are generalized 

to detect all kinds of objects, irrespective of their type, scale, or origin [36].  

The goal of this contribution was two-fold. First, I wanted to understand how these 

deep networks encode the intrinsic representations within their network architecture. As an 

example, when radiologists develop an intrinsic tissue signature representation of “fat” in their 

brain, they store the tissue signature as “bright on T1 and dark on T2”. Similarly, an intrinsic 

representation of fluid would be “dark on T1 and bright on T2”. The question here is “Does 
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the MPDL also form intrinsic representations similar to radiologists?” If not, can we train it 

to learn similar tissue signature representations?  

Chapter 3 discusses different techniques for visualization and evaluation of intrinsic 

representations formed by deep neural networks. My second goal was to utilize these intrinsic 

representations and their consistency across different organs to evaluate the feasibility of a 

generalized segmentation architecture. I evaluated the efficacy of MPDL model by testing a 

breast-trained network for segmentation of brain mpMRI and vice versa. The results from 

this preliminary work were presented at the International Society for Magnetic Resonance in 

Medicine conference in Paris, 2018 and detailed in Chapter 4.  

My third and fourth contributions of this thesis address the problem of feature 

extraction from segmented radiological images and quantification of these features. 

1.3.2 Feature Extraction 

Feature extraction from multiparametric radiological images can be broadly categorized 

into two categories: inter-voxel analysis and inter-parametric analysis. I developed the 

methods of radiomic feature mapping and contribution scattergram for inter-voxel and 

inter-parametric analysis, respectively as detailed in the following sub-sections.  

Radiomic Feature Mapping  

Radiomics refers to extraction of quantitative textural and shape-based features from 

radiological images [37]. Traditionally, radiomic features provide information about the 

gray-scale patterns, inter-pixel relationships, shape, and spectral properties within regions 

of interest on radiological images [24-30]. Most of the studies in radiomics are focused on 

extraction of a single quantitative texture value corresponding to all the voxels within the 

tumor [37]. As a result, these methods of texture analysis have an inherent dependence on 
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the size of the tissue being evaluated. For example, the range of values that the first order 

entropy feature can take varies between 0 and log2𝑁, where 𝑁 is the number of voxels in 

the tissue. Furthermore, the current radiomic features are not standardized nor can they be 

visualized. Finally, there has been no correlation between textural heterogeneity and tissue 

biology of the tumor and the surrounding normal tissue. My third contribution entails the 

development and implementation of the radiomic feature mapping (RFM) framework to 

overcome the limitations of current methods in radiomics analysis. RFM transforms 

radiological images into complete texture images for visualization and interpretation of 

tumor heterogeneity. The RFMs provide voxel-wise radiomic features which are not 

dependent on size of the tissue being evaluated. Furthermore, I developed standardized 

temporal evolution curves from DCE-MRI RFMs for evaluation of vascular heterogeneity 

and standardized diffusion evolution curves from DWI RFMs for evaluation of cellular 

heterogeneity. Finally, I analyzed the diagnostic capabilities of RFM features for prediction 

of breast tumors as benign or malignant using a novel multiview feature embedding and 

classification model. The radiomic feature mapping framework is described in Chapter 6. 

A journal paper manuscript describing RFMs has been published in NPJ Breast Cancer, 

2017 [38]. 

 The radiomic feature mapping framework, however, produces thirty radiomic 

feature maps for each radiological image. For a multiparametric dataset with twenty to 

thirty radiological images, the radiomic feature mapping framework produces 600-900 

RFMs rendering the analysis and visualization of RFMs impractical. In addition, texture 

analysis of a single image is not indicative of the “true texture” of the underlying tissue. 

Instead, single RFMs only provide textural information from a single point of view. In 
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multiparametric radiological imaging datasets, tissue signatures (TS) encode the 

characteristics of a tissue instead of a grayscale value. Therefore, texture analysis of a 

high-dimensional multiparametric dataset based on tissue signatures would provide 

multiview textural information, indicative of the true underlying texture of the tissue of 

interest.  To that end, I developed a multiparametric imaging radiomics (MPRAD) 

framework for extracting radiomics features from multiparametric and multimodal 

imaging data. I tested the MPRAD framework on multiparametric brain and breast MRI 

datasets for comparison to single parameter radiomics. The MPRAD framework is 

described in Chapter 7 [39]. 

Contribution Scattergram 

Multiparametric data acquisition techniques produce a diversity of different parameters 

with each parameter quantifying a certain aspect of structural and functional property of 

the underlying data type. Different parameters acquired interact with each other based on 

complex high-level relationships. These relationships between parameters could provide 

important insight into the data being acquired.  

The current methods for extraction of multiparametric relationships from MRI are 

pharmacokinetic analysis from DCE-MRI and apparent diffusion coefficient (ADC) 

mapping from DWI. These methods are based on mathematical models of the underlying 

tissue biology. These methods, however, do not attempt to uncover the complete 

underlying network structure of the different relationships. In addition, these methods are 

involved with analysis of a single imaging parameter and do not extract the inter-parameter 

relationships among them. For example, none of the available models are capable of 

encoding inter-parameter relationships such as “Fat is bright on T1 and dark on T2”. 
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Finally, currently available models are constructed using voxel-wise analysis and are not 

capable of evaluating the tissue of interest as a whole.  

To overcome these limitations of the current methods, I developed a technique 

termed the contribution scattergram (CSg) for modeling inter-parametric relationships. The 

CSg represents high-dimensional data (e.g. multiparametric MRI) as a complex network 

model. The complex network models the vertices on the CSg to represent different 

radiological images and the edges to represent the relationship between each of these 

radiological images. The idea behind contribution scattergram is to visualize and evaluate 

the organizational structure of the multiparametric MRI image space corresponding to 

different patients and pathologies, bringing a completely new perspective to radiological 

diagnosis and prognosis.  

The contribution scattergram is constructed by transforming the high-dimensional 

multiparametric space into a meaningful representation of its intrinsic dimensionality using 

manifold learning [40-43]. The resulting intrinsic dimensionality displays the complex 

interactions between the different parameters, which are analyzed using advanced graph 

theoretic techniques.  I extended the CSg using sub-graphs from DCE-MRI and DWI for 

the analysis of vascularity and cellularity of different tissue types. Chapter 8 lays down 

the mathematical foundation and the algorithm for the contribution scattergram. This 

chapter further demonstrates the potential of contribution scattergram in computer aided 

decision support for precision medicine with the example application of breast cancer 

diagnosis using mpMRI. A journal manuscript describing this work is currently ready for 

submission [44]. 
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1.3.3 Multiview Feature Integration 

For my final contribution, I developed the informatics radiomics integration system (IRIS) 

for integration of all the features extracted from different sources (e.g. radiomics, 

contribution scattergram, and quantitative imaging parameters) into a clinical decision 

support system.  

The high dimensionality of the dataset formed by clinical and radiological features 

presents significant challenges for statistical data analysis. First, as these features are 

acquired from different sources, concatenating them into a single vector for analysis would 

lead to potential overfitting. Furthermore, associating biological meaning to a concatenated 

vector of features would be very difficult. Second, for application to clinical setting, the 

feature integration model needs to be transparent and interpretable, as opposed to a black 

box model which just produces a final outcome probability. Third, the feature integration 

model should be capable of visualization and analysis of relationships between different 

feature spaces and their contribution to the final outcome. Finally, the feature integration 

model should be capable of operating in unsupervised mode when no ground truth 

information has been provided.  

IRIS is a multiview manifold learning algorithm to visualize and learn relationships 

between different patients in each of the subspaces formed by parameters obtained from 

different sources [44]. Furthermore, IRIS also analyzes the association between different 

parameters for improved diagnosis or for treatment response. IRIS was tested on 

multiparametric breast MRI to predict recurrence in breast cancer and correlate with 

OncotypeDX gene array test. Chapter 9 details the IRIS methodology and the application 

to breast cancer prognosis. A journal manuscript describing this work is ready for 
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submission [44]. Finally, Chapter 10 provides a summary of the results and directions for 

future work.   

1.4 List of Publications and Patents 
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Part I: Image Segmentation 

Automatic segmentation of medical images has been a topic of significant interest in the field 

of computer science for a number of years.  A large number of algorithms ranging from 

supervised to unsupervised have been developed for medical image segmentation over the 

years [50-52]. There are distinct differences between supervised and unsupervised approaches 

to image segmentation. Supervised segmentation algorithms require pre-defined labels for the 

potential tissue classes present in the radiological imaging dataset. This is not practical as 

there can be tissue classes that are not present in the training dataset, but present in the test 

dataset (e.g. breast implants). On the other hand, unsupervised segmentation algorithms do 

not require a pre-defined set of class labels. However, they may produce spurious clusters. 

Supervised segmentation algorithms map all the voxels to a set of pre-defined class labels 

which makes them suitable for an automated clinical decision support system where the 

segmentation step is followed by feature extraction and modeling steps. On the other hand, 

unsupervised segmentation requires an addition step of mapping obtained clusters to actual 

class labels before doing any feature extraction and modeling. In Part I, the problem of image 

segmentation using supervised learning is addressed. Chapters 2-4 describe the general 

problem of image segmentation in multiparametric MRI and my contributions to the field of 

multiparametric radiological image segmentation. 
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Chapter 2. Multiparametric Deep Learning Tissue 

Signature Model 

2.1 Introduction 

Magnetic Resonance Imaging (MRI) has a unique ability to form multiple images influenced 

by different types of intrinsic tissue contrast (i.e., proton density, T1, and T2) based on MR 

parameters (TE, TR, and flip angles). As a result, multiparametric MRI (mpMRI) can be 

obtained, typically consisting of anatomical images of T1- and T2-weighted images in 

addition to quantitative images such as dynamic contrast enhanced (DCE) MRI and diffusion 

weighted imaging (DWI). Therefore, it is unlikely that a single MRI parameter can completely 

characterize the complexity of the tissue of interest.  Radiologists’ use these different “tissue 

contrasts” to develop tissue signatures to quickly recognize normal from abnormal tissue after 

years of training. Consequently, if all the imaging parameters can be integrated using 

advanced computational algorithms to construct “tissue signatures” of different tissue types, 

more accurate characterization is possible [53-61]. Therefore, the idea is to use tissue signatures to 

train our image segmentation algorithm to better assist radiologist in the future reading rooms.  

Supervised segmentation requires pre-defined labels for all the tissue classes present 

in the dataset of interest, which requires direct interaction with radiologists to draw 

segmentation masks or labels on the different tissues present in the radiological dataset of 

each patient.  This task of creating complete labeled datasets is very time consuming and 

expensive and not likely to happen. As a result, the task of pre-labeling radiological datasets 

has sometimes been modified to that of labeling a few voxels per tissue of interest per patient. 

However, this leads to potential under-sampling of different tissues within the dataset and 
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could produce inaccurate segmentation results. The goal of this work was to overcome these 

issues of labeling and potential under-sampling of different tissues using the newly devised 

algorithms.  

Conventional supervised machine learning algorithms attempt to model the 

relationship between the input training data and output labels. As a result, they are not capable 

of handling unlabeled data. Unlabeled data can be handled by adding an unsupervised 

component (e.g. representation learning) as a pre-processing step to the segmentation 

model [62]. The objective of the segmentation component of my thesis was developing an 

unsupervised component to learn an intrinsic representation of all the tissue signatures 

(labeled and unlabeled) present in the training dataset. To that end, I implemented stacked 

sparse autoencoders (SSAE) for dimensionality reduction. The reason behind the choice of 

SSAE instead of other non-linear dimensionality reduction algorithms such as Isomap, 

diffusion map, locally linear embedding [40-43] was the interpretability of the 

lower-dimensional representation for SSAE as further detailed in Chapter 3. Furthermore, 

SSAE produces specialized intrinsic representations that activate in response to a subset of 

input tissue signatures, making it more appropriate for this application.  

I developed the multiparametric deep learning (MPDL) tissue signature model based 

on SSAE for segmentation of multiparametric radiological images. Sparse autoencoders 

(SAE) are unsupervised neural networks that learn an intrinsic representation of the input 

by attempting to reconstruct it [63]. Furthermore, the activation of each node in the hidden 

layer of the autoencoder is specialized to activate in response to only a subset of input data 

by the introduction of a sparsity constraint (see Section 2.3.2). The unsupervised nature of 

an SAE allows us to train them on the complete set of labeled and unlabeled data. In MPDL, 
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a set of five SAEs were stacked together with each subsequent SAE trained on the output 

of the previous SAE and a final classifier to classify the data into different tissue types. 

The complete MPDL architecture was then fine-tuned on the labeled data to generate 

segmentation masks. 

In this chapter, I establish the use of the MPDL tissue signature model for 

radiological biomarkers of breast tissue. Section 2.2 provides a background on machine 

and deep learning techniques followed by the stacked sparse autoencoders based MPDL 

segmentation algorithm in Section 2.3. Section 2.4 details the clinical data, 

multiparametric imaging protocol, image registration, tissue signatures, and the training 

parameters developed for the algorithms developed in this chapter. The results from the 

application of MPDL to breast cancer tissue segmentation and diagnosis are detailed in 

Section 2.5. This chapter concludes with the potential of MPDL tissue signature model 

in the “precision” medicine applications for different pathologies. 

Publication from this work and author contributions 

Publication 

V. S. Parekh, K. J. Macura, S. Harvey, I. Kamel, R. EI-Khouli, D. A. Bluemke, M. A. 

Jacobs., "Multiparametric Deep Learning Tissue Signatures for a Radiological Biomarker 

of Breast Cancer: Preliminary Results," arXiv preprint arXiv:1802.08200, 2018 (Positive 

Reviews in Scientific Reports – have resubmitted).  

Author contributions 

I wrote the complete chapter. Dr. Jacobs reviewed it and helped with the editing. 

I developed the multiparametric deep learning (MPDL) tissue signature model and did 

the entire implementation of all the four algorithms discussed in this chapter.  
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The clinical data was acquired by Dr. Macura, Dr. Harvey, Dr. Kamel, 

Dr.-EI-Khouli, Dr. Bluemke, and Dr. Jacobs. This included patient recruitment, scanning, 

and radiological reporting (Sections 2.4.1 and 2.4.2). 

2.2 Background 

Deep learning techniques have gained popularity in recent years with the development of 

advanced optimization techniques and an increase in computational efficiency. Deep learning 

has begun to play an integral part in many different aspects of modern society and has 

produced excellent results in a variety of fields such as object detection and recognition, text 

generation, music composition, and autonomous driving to name a few [64]. Computer 

assisted clinical and radiological decision support have a huge potential for impact from these 

technologies, with some excellent initial results. A detailed review on the application of deep 

learning to radiological applications can be found in [52].  

 The major difference between deep learning and conventional machine 

learning algorithms lies in the fact that deep learning algorithms do not require an intermediate 

feature extraction or engineering step in order to learn the relationship between the input 𝑥 

(e.g. gray level intensity values on radiological images) and the corresponding labels 𝑦 (the 

tissue type corresponding to these intensity values).  Figure 2.1 illustrates the differences 

between conventional machine learning and deep learning. Conceptually, machine learning 

algorithms model the relationship between the input 𝑥 and labels 𝑦 using a probability 

distribution, 𝑝 over 𝑥 and 𝑦. Machine learning algorithms can be broadly classified into 

generative and discriminative methods depending on the form of 𝑝 [65]. 
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Figure 2.1 Schematic diagram of the differences between conventional machine learning 

and deep learning methods. 

Generative models learn the joint probability distribution 𝑝(𝑥, 𝑦) in order to estimate 

the posterior probability 𝑝(𝑦|𝑥). Some examples of generative deep learning algorithms 

include generative adversarial network, variational autoencoder and deep belief networks. In 

contrast, discriminative models estimate the posterior probability 𝑝(𝑦|𝑥) directly without 

calculating the intermediate joint probability distribution. In other words, discriminative 

models learn a direct mapping between 𝑥 and 𝑦. Convolutional neural networks, stacked 

autoencoders and feed forward neural networks comprise the typical examples of 

discriminative deep learning algorithms [64]. The decision regarding which type of machine 

learning model to apply for an application depends on the specific problem we are trying to 

solve. If the problem requires us to only predict the labels y from x, then discriminative models 

are a better choice as they are not concerned with modeling of 𝑝(𝑥, 𝑦) and hence may model 

parameters more effectively to model 𝑝(𝑦|𝑥), thereby producing a classifier with higher 

accuracy. However, discriminative models may not be used if the input, 𝑥 consists of a large 
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number of missing values or data points and would require data imputation. In addition, 

generative models allow the generation of new synthetic data and model different 

relationships within the input data. For example, if the goal is to classify a lesion as benign or 

malignant, discriminative deep learning would be a better choice, however, if our goal is to 

develop a synthetic CT image from multiparametric MRI, a better choice of algorithm would 

be one of the generative deep learning algorithms.  

  For my thesis, I am interested in segmentation of different tissue types from 

multiparametric MRI which makes discriminative deep learning a better choice of algorithm. 

Furthermore, I am also interested in automatically discovering intrinsic patterns from lesion 

segmentation that can be useful in classifying benign from malignant lesions. The  data in this 

thesis consists of a large number of unlabeled voxels as compared to labeled voxels, thereby 

making stacked sparse autoencoders the best choice for my application [66]. 

2.3 Multiparametric Deep Learning Segmentation Algorithm 

2.3.1 Multiparametric Deep Learning Tissue Signature 

A voxel tissue signature vector is defined as the vector of gray level intensity values 

corresponding to that voxel position in each image in the entire data sequence (e.g. breast 

MRI, 𝑛 = 23 images).  Mathematically, the MPDL tissue signature is defined as follows:  

 TnDCEDWITTSignatureTissueMPDL ,,, 21=  

The multiparametric deep learning network was trained on the breast tissue signatures 

defined using EI identified on all the original breast MRI images as demonstrated in 

Figure 2.2. The MPDL network builds a composite feature representation of the breast tissue 

signatures of the underlying breast tissue as described in the following subsections. 
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Figure 2.2. Demonstration of the multiparametric deep learning tissue signatures on axial 

mpMRI of the breast.  Representative tissue signatures from the normal and abnormal 

tissue are obtained on each of the input MRI to create the vector signature 𝑀𝑃𝐷𝐿𝑖𝑗.  

2.3.2 Autoencoder 

Autoencoders are unsupervised neural networks that are trained to create a compact or a 

low-dimensional representation of its input via a hidden layer. For example, if 𝑋 =

{𝑥(1), 𝑥(2), … , 𝑥(𝑁)} ∈ 𝑅𝐷 represents an input dataset consisting of 𝑁 D-dimensional tissue 

signatures, the goal of an autoencoder would be to create a neural network with 𝑑 nodes in 
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the hidden layer such that 𝑌 = {𝑦(1), 𝑦(2), … , 𝑦(𝑁)} ∈ 𝑅𝑑 characterizes the 

low-dimensional representation of 𝑋.  

The network architecture for autoencoders is demonstrated in Figure 2.3 using an 

example multiparametric MRI dataset. An autoencoder has two parts: an encoder and a 

decoder.  

The encoder maps the vector 𝑋 to the vector ℎ(1) representing the hidden layer as 

follows: 

ℎ(1) = 𝑓 (𝑊𝑋 + 𝑏) 

where 𝑓 is the transfer function for the encoder, 𝑊 ∈ 𝑅𝑑×𝐷 is the matrix of weights and 𝑏 

is the bias vector. The function 𝑓 can be the identity function in case of linear mapping or 

the sigmoid in case of nonlinear mapping. 

Similarly, the decoder maps ℎ(1) back to 𝑋 using the following equation: 

�̂� = 𝑔(𝑊′ℎ(1) + 𝑏′) 

The values of 𝑊′ and 𝑏′ are equal to the transpose of 𝑊 and 𝑏 in case the weights 

are tied between encoder and decoder.  
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Figure 2.3 Illustration of an autoencoder used to learn a low (ten) dimensional 

representation of the high-dimensional (𝐷 = 23) multiparametric MRI data.  

2.3.2 Sparse autoencoder 

Sparse encoding represents a special type of encoding in which each node in the hidden 

layer activates in response to only a subset of the total number of training examples. For 

example, after training a sparse autoencoder on a multiparametric MRI dataset, node 1 may 

have “specialized” in activating only in response to a fatty tissue signature while node 2 

may have “specialized” in activating only in response to a glandular tissue signature. 

Sparse autoencoders are actualized by adding a sparsity regularizer to the cost function. A 

sparsity regularizer is defined as follows: 

  Let 𝜌�̂� denote the average activation of a neuron 𝑗 given by the following equation 

𝜌�̂� =
1

𝑁
∑ℎ𝑗

(1)(𝑥𝑖)

𝑁

𝑖=1
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where 𝑁 is the total number of training samples. 

If 𝜌 denotes the desired average activation or the sparsity proportion of the neuron 

𝑗 across all the training samples, our goal is to impose the constraint 𝜌�̂� = 𝜌. Consequently, 

the sparsity regularization term added to the cost function is given as  

𝑅𝑆 = β∑(𝜌 log �̂�𝑗 + (1 − 𝜌) log
1 − 𝜌

1 − �̂�𝑗 
)

𝑑

𝑗=1

 

 where 𝛽 is the sparsity regularization penalty. 

2.3.3 Stacked Sparse autoencoder 

The sparse autoencoder discussed in the previous subsection can be stacked to form a deep 

learning architecture. Stacking the autoencoders provides the deep network with a set of 

pre-trained weights. The pre-trained weights are especially useful when the application is 

limited by the number of available pre-labeled training examples.  

The first sparse autoencoder in the stack trains each 𝐷-dimensional input 𝑥(𝑖) into 

its primary feature representation ℎ(1). The features or the hidden unit activations, ℎ(1) 

from the first sparse autoencoder are now used as input to the second sparse autoencoder, 

which is trained to form a composite representation ℎ(2). The composite features ℎ(2) act 

as raw input to the softmax classifier, training it to classify the initial tissue signature, 𝑥(𝑖) 

as its respective tissue type. A softmax classifier is a generalization of binary logistic 

regression for classification of input data into multiple classes. The output of the softmax 

layer is given by 𝑦 =  (𝑊𝑋 + 𝑏). The output 𝑦 can be interpreted as a vector of 

unnormalized log probabilities for each class, with our loss function given by cross-entropy 

as follows: 
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𝐽 =
1

𝑁
∑∑𝑡𝑖𝑗 ln 𝑦𝑖𝑗 + (1 − 𝑡𝑖𝑗) ln(1 − 𝑦𝑖𝑗)

4

𝑗=1

𝑁

𝑖=1

 

where 𝑡𝑖𝑗 is the target class and 𝑦𝑖𝑗 is the output of the deep network at the softmax 

classification layer. The algorithm for multiparametric deep learning segmentation is 

represented as a pseudocode in Algorithm 2.1. Figure 2.4 shows the deep architecture 

formed by stacked sparse autoencoders used for segmentation of multiparametric MRI into 

different tissue types. 

 

Figure 2.4 Multiparametric MRI segmentation deep network architecture trained to 

segment multiparametric breast MRI into regions of different tissue types and background. 

The stacked sparse encoder deep network is constructed of five hidden layers with ten 

nodes each and a softmax classification layer that outputs the probability of different tissue 

types for the input tissue signature. 
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Algorithm 2.1 MPDL segmentation algorithm 
Inputs:  
𝑋: 𝑁 multiparametric MRI datasets 
𝑆𝑆𝐴𝐸𝑎𝑟𝑐ℎ: Network architecture for 𝑆𝑆𝐴𝐸. This initialization only contains the network 
connections.  
Output: trained 𝑆𝑆𝐴𝐸 segmentation network 
Initialization: 𝑇𝑆𝑡𝑟𝑎𝑖𝑛 = 𝜙, 𝑇𝑆𝑙𝑎𝑏𝑒𝑙𝑠 = 𝜙 
1: // Generate tissue signatures for training 
2: for every dataset, 𝑥 in 𝑋  
3:     Run Eigenfilter segmentation [67] to generate tissue signature, 𝑆𝑘 for every tissue 

type, 𝑘  
4:     Add 𝑆𝑘 to 𝑇𝑆𝑡𝑟𝑎𝑖𝑛 
5:     Add 𝑘 to 𝑇𝑆𝑙𝑎𝑏𝑒𝑙𝑠 
6: Initialize 𝑆𝑆𝐴𝐸 with 𝑆𝑆𝐴𝐸𝑎𝑟𝑐ℎ 
7: // Train the 𝑆𝑆𝐴𝐸 layers in an unsupervised fashion over the complete dataset 
8: for every layer in 𝑆𝑆𝐴𝐸 
9:      if layer is the first hidden layer 
10:           train 𝑆𝐴𝐸 on input 𝑋 
11:      else 
12:            train 𝑆𝐴𝐸 on previous layer’s output             
13:      Set layer weights to encoder weights of 𝑆𝐴𝐸 
14:      Set layer output by running 𝑆𝐴𝐸 encoder on the layer’s input 
15: 𝑆𝑆𝐴𝐸 = train 𝑆𝑆𝐴𝐸 on 𝑇𝑆𝑡𝑟𝑎𝑖𝑛 using 𝑇𝑆𝑙𝑎𝑏𝑒𝑙𝑠 as ground truth  
16: return 𝑆𝑆𝐴𝐸 
 

2.4 Materials and Methods 

The clinical data from our institution was acquired by Dr. Macura, Dr. Harvey, Dr. Kamel, 

Dr. EI-Khouli, Dr. Bluemke, and Dr. Jacobs. This included patient recruitment, scanning, 

and radiological reporting (Sections 2.4.1 and 2.4.2). 

2.4.1 Clinical subjects 

All studies were performed in accordance with the institutional guidelines for clinical 

research under a protocol approved by the Johns Hopkins University School of Medicine 

Institutional Review Board (IRB) and all HIPAA agreements were followed for this 

retrospective study.  One hundred and ninety-two women were part of this study. Of the 

one hundred and ninety-two patients, one hundred and forty-two patients (97 malignant, 
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41 benign and four normal (no-lesion)) were scanned at our institution. Malignancy was 

determined by pathology in all cases. The remaining fifty (𝑛 = 50) cases were obtained 

from University of California San Francisco (UCSF) for an independent deidentified test 

data set.  These fifty cases were from a Phase 3 clinical trial for women receiving 

neoadjuvant chemotherapy for locally advanced breast cancer defined by histology [33, 

34]. I used the baseline study before initiation of the therapeutic regimen.  

2.4.2 Multiparametric MRI imaging protocol  

MRI scans were performed on a 3T magnet, using a dedicated phased array breast coil with 

the patient lying prone with the breast in a holder to reduce motion. MRI sequences 

consisting of fat suppressed (FS) T2WI spin echo (𝑇𝑅/𝑇𝐸 = 5700/102 𝑚𝑠) and fast 

spoiled gradient echo (FSPGR) T1WI (𝑇𝑅/𝑇𝐸 =  200/4.4 𝑚𝑠, 

𝐹𝑖𝑒𝑙𝑑 𝑜𝑓 𝑉𝑖𝑒𝑤 (𝐹𝑂𝑉) =  35 ×  35 𝑐𝑚, 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒 (𝑀𝑆) =  256 × 256, 

𝑠𝑙𝑖𝑐𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (𝑆𝑇) =  4 𝑚𝑚, 1 𝑚𝑚 gap); diffusion-weighted (𝑇𝑅/𝑇𝐸 = 5000/90𝑚𝑠, 

𝑏 = 0 − 800, 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒 =  192 × 192, 𝑆𝑇 = 6𝑚𝑚); and finally, pre- and post-

contrast enhanced images FSPGR T1WI (𝑇𝑅/𝑇𝐸 = 20/4 𝑚𝑠, 𝑀𝑆 = 512 × 512,         

𝑆𝑇 = 3 𝑚𝑚) were obtained after intravenous administration of a GdDTPA contrast agent 

(0.2𝑚𝐿/𝑘𝑔(0.1 𝑚𝑚𝑜𝑙/𝑘𝑔)).  The contrast agent was injected over 10 seconds, with MRI 

imaging beginning immediately after completion of the injection and the acquisition of 14 

phases.  The contrast bolus was followed by a 20cc saline flush. The DCE protocol included 

two minutes of high temporal resolution (15 sec per acquisition) imaging to capture the 

wash-in phase of contrast enhancement. A high spatial resolution scan for two minutes then 

followed, with additional high temporal resolution images (15 sec per acquisition) for an 

additional two minutes to characterize the wash-out slope of the kinetic curve for 
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pharmacokinetics(PK) [68].  Total scan time for the entire protocol was less than 45 

minutes. 

The independent validation breast MRI scans were acquired on a different 1.5T 

magnets using a dedicated breast RF coils and obtained from the I-SPY clinical trial. The 

images used for validation were fat suppressed, T1 weighted dynamic contrast enhanced 

series obtained unilaterally in the sagittal orientation with 𝑇𝑅 ≤ 20𝑚𝑠, 𝑇𝐸 = 4.5𝑚𝑠, 

𝑓𝑙𝑖𝑝 𝑎𝑛𝑔𝑙𝑒 ≤ 45°, 𝐹𝑂𝑉 = 16 − 18 𝑐𝑚, 𝑀𝑆 >  256 × 192, 𝑆𝑇 ≤  2.5 𝑚𝑚. 

2.4.3 Multiparametric Image Registration  

The mpMRI were coregistered using a hybrid registration algorithm that combines 3D 

wavelet transformation for 3D reslicing and rescaling of the MRI volumes with nonlinear 

affine transformation to minimize the loss of information in image transformations [61]. The 

pre-contrast image of the DCE dataset was used as the reference image for all the other MRI 

images. 

2.4.4 Multiparametric MRI tissue signature generation  

The Eigenimage filter (EI) segmentation algorithm was used to segment the breast lesions 

from the post contrast DCE image [67]. The EI is a linear filter that maximizes the 

projection of the desired tissue (lesion tissue) while it minimizes the projection of undesired 

tissues (glandular tissue) onto a composite image called an Eigenimage [69]. 

For this study, four sets of tissue signature vectors were defined. The first set of tissue 

signatures for normal tissue,  TnNNNNormal .,, 21 =  was chosen from the glandular tissue, 

second one for fatty tissue,  TnFFFFatty .,, 21 = , a third one for lesion tissue, 

 TnLLLLesion .,, 21 = and a fourth one for background noise.  Each set of MPDL tissue 

signature vectors created automatically using the following multiparametric region growing 
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algorithm. The initialization to the region growing algorithm is provided by the operator by 

identifying a pixel within the tissue of interest. The algorithm attempts to grow the region 

within a 5x5 neighborhood of the initialization provided by the user. A point in the 

neighborhood is added to the region of interest if the percentage difference between the signal 

intensity at that pixel location and the signal intensity of the operator initialization is less than 

5%. The final ROI is created by computing a logical AND operation between the ROIs 

generated from region growing on each of the MR images (Figure 2.2, Page 26). By using 

several images concurrently, the probability of a pixel from another tissue being included in 

the final ROI (due to noise, partial volume, and nonuniformities) is reduced [70]. The 

computer time required for producing the final ROI was less than a second for each tissue 

type. 

2.4.5 MPDL segmentation network training and evaluation 

The training parameters of the multiparametric MRI segmentation deep network were set 

as follows: 

• Number of hidden layers = 5 

• Number of nodes in each hidden layer = 10 

• L2 regularization penalty = 0.001 

• Sparsity proportion = 0.25 

• Sparsity regularization = 4 

• The transfer function for the autoencoder nodes was selected as the saturating linear 

function given as  

𝑓(𝑥) =     {

0, 𝑖𝑓 𝑥 ≤ 0         
𝑥, 𝑖𝑓 0 < 𝑥 < 1
1, 𝑖𝑓 𝑥 ≥ 1        
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I tested the multiparametric breast MRI deep network for segmentation of breast 

into different tissue types using two-fold cross validation. The balance between number of 

tissue signatures used to train different tissue types was maintained by sampling uniformly 

at random equal number of tissue signatures corresponding to each tissue type from each 

patient. In order to evaluate the trained deep networks, the dice similarity between the deep 

network tumor segmentations and the ground truth obtained using the eigen filter algorithm 

was computed on the hold out dataset during each cross-validation fold [71]. The dice 

similarity (DS) between the deep network tumor segmentation, 𝐴 and ground truth EI 

segmentation, 𝐵 is given by the following equation 

𝐷𝑆 =
2(𝐴 ∩ 𝐵)

𝑛(𝐴) + 𝑛(𝐵)
 

The EI segmentation was obtained by thresholding the EI contrast image. The 

threshold was obtained by evaluating the EI contrast image histogram and using the mean 

and a 95% confidence interval.  If the images have full overlap, then the 𝐷𝑆 =  1.0 and if 

there is no overlap, then the 𝐷𝑆 =  0.   

Validation of the SSAE Deep Network 

I used 50 patients with calculated volumes from the UCSF I-Spy ACRIN study to test the 

MPDL network [32, 33, 72].  To compare with our dataset, I used the baseline DCE contrast 

imaging session from the study. The UCSF data was registered to the DCE pre-contrast 

image.  After application of the MPDL, the segmented MPDL and UCSF volumes were 

compared and analyzed.  
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2.4.6 Comparative methods  

I compared the performance of the SSAE architecture with three other deep learning 

architectures – deep SSAE without fine tuning (SSAEuntuned), deep multilayer perceptron 

(MLP), and deep convolutional neural networks (CNN) [73, 74]. The deep SSAEuntuned and 

deep MLP were implemented with the same architecture as SSAE (five layers with ten 

nodes each). The deep SSAEuntuned was trained without supervised fine tuning and the deep 

MLP was trained in a completely supervised fashion.  

Patch-based 2D-CNN was trained on image patches of size 5 × 5 × 𝑁 

corresponding to each 𝑁-dimensional tissue signature segmented using the Eigenfilter 

algorithm. The 5𝑥5 image patch of a tissue signature corresponds to the immediate 5 × 5 

neighborhood of that voxel position. The 2D-CNN consisted of four layers with 128, 64, 

32, and 16 filters respectively, followed by a fully connected layer and a softmax layer. 

Each layer of the 2D-CNN had the following components: 

• Convolutional layer with trainable filters of size 3 × 3 

• ReLU activation function given by the following equation 

𝑓(𝑥) =     {
0, 𝑖𝑓 𝑥 < 0         
𝑥, 𝑖𝑓 𝑥 ≥ 0         

 

• Max pooling layer with a 2 × 2 window 

2.4.8 Statistical Methods 

The MPDL was tested and validated using UCSF and DCE segmentations. The percent 

difference and overlap in the lesion areas segmented from the data were computed.   

Statistical analysis was performed using linear regression to correlate the total lesion areas.   
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All area values are presented as mean  standard deviation. A Student’s t-test was employed 

to determine statistical significance between the correlation of lesion areas and the percent 

difference between the lesion boundaries.  Bland-Altman tests were run to insure no bias in 

the data. Statistical significance was assigned for 𝑝 <  0.05.   

 

2.5 Results 

2.5.1 Patient Demographics 

The MPDL network was trained on the patient cohort of 142 women with breast lesions 

for evaluation of their efficacy in segmenting out different tissue types and classifying 

benign from malignant lesions. The mean age of the patients was 52 years (range: 24-80 

years). Ninety-seven patients had biopsy proven malignant breast lesions (68%) while 

forty-one patients had benign breast lesions (29%) and four had no lesions identified (3%).  

2.5.2 Quantitative mpMRI 

In the training data set only the DWI and DCE sequences provided quantitative radiological 

metrics. There were significant differences (𝑝 < 0.001) between the ADC map values for 

malignant and benign breast lesions.  ADC values for malignant cases were (mean and 

standard deviation) 1.26 ± 0.13 (𝑚𝑚2 × 10−3/𝑠) and benign lesions were 1.74 ±

0.17 (𝑚𝑚2 × 10−3/𝑠).  Glandular tissue ADC values for malignant and benign lesions 

were similar, 2.16 ± 0.46 and 2.34 ± 0.33 (𝑚𝑚2 × 10−3/𝑠), respectively.  The DCE PK 

values were significantly different (𝑝 < 0.05) between malignant and benign lesions. The 

Ktrans values were 0.55 ± 0.32 (1/𝑚𝑖𝑛) and EVF were 0.30 ± 0.16 for malignant cases 

and 0.25 ± 0.19 (1/𝑚𝑖𝑛)  and 0.22 ± 0.13 for benign cases, respectively. 
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2.5.3 In-house dataset 

Multiparametric Deep Learning Tissue Signature Model 

The MPDL tissue signatures were defined for different tissue types and applied to the 142 

mpMRI breast cases.  Figure 2.5 demonstrates the mpMRI deep network segmentation 

results on five representative malignant patients.  Similarly, Figure 2.6 illustrates the 

mpMRI deep network segmentation results on five benign patients. Glandular and lesion 

tissue was segmented with high accuracy for all the lesions and in all quadrants of the 

breast.   

 

Figure 2.5 Illustrates the use of MPDL network on axial breast mpMRI in five 

representative malignant patients. The color coding is shown to the right of the images.   
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Figure 2.6 Illustrates the use of MPDL network on axial breast mpMRI in five 

representative benign patients. The color coding is shown to the right of the images.   

 

The dice similarity index between the lesion segmentations defined by Eigenfilter 

and MPDL demonstrated excellent overlap with mean and standard 

deviation (SD) 0.87 ±  0.05 for malignant patients and 0.84 ± 0.07 for benign patients 

and shown in Figure 2.7.   
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Figure 2.7 Demonstration of overlap between Eigenimage and MPDL segmentation masks 

of two benign (A and B) and two malignant (C and D) patients overlaid on the dynamic 

contrast enhanced subtraction image. The Eigenfilter segmentation boundary is displayed 

in yellow while the MPDL segmentation boundary is displayed in red. On the overlap 

masks, the blue region corresponds to the overlap between the two methods, yellow 

represents the area segmented by the MPDL alone while red represents the area segmented 

by Eigenfilter alone.   
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Comparison to other deep network architectures 

Figure 2.8 demonstrates the performance of the four deep learning architectures on three 

example patients. As shown in Figure 2.8, the segmentations from the SSAE, MLP, and 

2D-CNN architectures are very similar, however, the MLP and 2D-CNN architectures 

appear to be more prone to false positives. Furthermore, the SSAE architecture without 

fine-tuning missed the major tissue classes (normal and abnormal) in some cases 

reaffirming the need for supervised fine tuning. The dice similarity for the remaining three 

architecture on a randomly selected subset of twenty patients (ten benign and ten 

malignant) were as follows:  

1. MLP: 0.84 ± 0.08  

2. 2D-CNN: 0.85 ± 0.05  

3. SSAE: 0.89 ± 0.04  
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Figure 2.8. Comparison between the breast tissue segmentations obtained from different 

deep learning architectures viz. multi-layer perceptron (MLP), 2D convolutional neural 

network (2D CNN), and stacked sparse autoencoders (SSAE) with and without fine-tuning 

on three example patients. The differences in the lesion segmentations of the three 

networks are indicated by arrows. 

2.5.4 Validation dataset 

The trained MPDL network was tested on an independent cohort of 50 patients [32, 34, 

72]. The validation of the MPDL segmentation on an independent clinical (UCSF) data 

was excellent.  Figure 2.9 illustrates representative cases comparing the segmented tissue 

regions of UCSF validation data set using the MPDL tissue signatures.   
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Figure 2.9 Demonstration of three representative cases from the I-SPY2 validation cohort 

and the resulting MPDL segmentations.  In all cases, the segmented regions were highly 

correlated between each other. The color coding is shown to the right of the images. 

 

The segmented volumes of the UCSF set resulted in a low percent difference of 

4.4 ± 3.9% between lesion volumes defined by MPDL and USCF.  Bland-Altman plots 

are shown in Figure 2.10, demonstrating excellent agreement between the data sets. Bland 

Altman plots are useful in identifying the presence of any fixed bias in our data (e.g. if the 

difference between the lesion volumes measured by MPDL and UCSF increases as the true 

volume of the tumor increases).  The mean percentage difference in the volumes segmented 

by MPDL and UCSF was not significantly different from 0 (𝑝 = 0.18) indicating there 

was no fixed bias in our data.  
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Figure 2.10 Bland-Altman plots demonstrating the limits of agreement of the percent 

differences on the representative sagittal breast cases from the validation data set and 

MPDL segmentations.  The mean is shown by the center line and the confidential intervals 

(±2SD) are shown at 10.6% and -12.9%. The plot shows excellent agreement between the 

two measurements.  
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2.6 Discussion  

I have developed, tested, and validated a cognitive computing platform that organizes, 

integrates, and interprets imaging information using a MPDL tissue signature model. The 

application of the MPDL tissue signature model resulted in excellent segmentation and 

classification of different tissue classes. This study employed an integrated multiparametric 

breast MRI deep learning model in the clinical setting and demonstrates that MPDL tissue 

signatures define normal and abnormal tissue with excellent accuracy.  

 The MPDL model was able to accurately segment breast tissue irrespective of the 

magnetic field strength (3T for our model and 1.5T for the validation set). Furthermore, 

the MPDL model was invariant to the imaging orientation as our data was in the axial plane 

while the validation set was in sagittal plane. This invariance is due to the underlying 

depiction of the tissue using tissue signature vectors, which captures the tissue underlying 

characteristics and allows for the “adjustment” to different MRI input. Moreover, the MRI 

parameters, as well as, the time resolution of the DCE used to train the MPDL model were 

different for our dataset and the validation dataset reasserting the robust nature of the 

MPDL model and eliminates the need to “retrain” the MPDL model.  

 I evaluated the effect of unsupervised pre-training and fine tuning by implementing 

two additional models. First, I implemented a multi-layer perceptron (MLP) with exactly 

the same architecture as MPDL to evaluate the efficacy of unsupervised pre-training. Next, 

I evaluated the results of the SSAE algorithm without fine-tuning the complete architecture. 

The MPDL algorithm outperformed both MLP and SSAE without fine-tuning 

demonstrating the effectiveness of the complete MPDL architecture. Furthermore, the 

MPDL algorithm also compared favorably to the patch based 2D CNN algorithm. The 
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number of trainable parameters in a 2D CNN architecture was significantly higher than the 

number of trainable parameters for MPDL. As a result, the size of the training dataset was 

not sufficient to optimally train the CNN, thereby producing suboptimal results with 

potentially spurious segmentations.  

Currently, it is very unlikely that machine learning and deep learning will replace 

radiologists as has been suggested by some, yet there may be a role for improved efficiency 

in the workflow and accuracy of interpretation. Using advanced computational methods 

allow for this coming change to be better managed within radiology.  My results 

demonstrate that the MPDL method can be used on an independent data set acquired from 

different institutions. The I-Spy trial is one of the largest MRI trials and incorporates many 

different MRI field strengths.  Moreover, the ability for the MPDL to learn different tissue 

signatures allows it to adapt to different data sets with highly accurate results.  This was 

shown with the high dice similarity of the validation data using different input MRI data.  

There are, however, some technical limitations to the use the MPDL network in 

practice.  First, increased computational power on the graphical processor units ((GPU) > 

2500 cores, 12GB) used here may not be widely available.  However, the use of advanced 

GPU computing is rapidly finding applications in many different radiological datasets [52]. 

More specific to the present study, any assessment of the clinical value of MPDL network 

will require additional studies in a larger patient population. Moreover, a prospective trial 

with subsequent follow-up and pathological correlation using MPDL will provide us with 

new data to explore the exact application and methods to apply to larger studies.    

In conclusion, I have demonstrated that integrated MPDL method accurately 

segmented and classified different breast tissue from multiparametric breast MRI. The 
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MPDL images allow for improved visualization of different tissue characteristics based on 

multiple radiological parameters.   
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Chapter 3. Multiparametric Deep Learning: Looking 

under the hood 

3.1 Introduction 

In Chapter 2, I introduced the multiparametric deep learning approach for segmentation 

of different tissue types in a multiparametric radiological imaging dataset with excellent 

results on multiparametric breast MRI. However, we have treated the MPDL as a black 

box until now; i.e., we do not know how the MPDL organizes, integrates, and interprets 

the imaging information. For example, when radiologists look at radiological imaging 

datasets, they integrate them in their brain and use their “brain” to form intrinsic knowledge 

about the data (e.g. fluid is dark on T1WI and bright on T2WI). The goal of this chapter is 

to decompose the trained MPDL model, open the black box, and answer the following 

questions: 

1. How does the MPDL model encode the intrinsic representations? 

2. Can we visualize them? 

3. Can we reconstruct the input from the intrinsic representations? 

4. Can we predict when the MPDL model would fail? 

In this work, I implement different methods for visualization of layer weights and 

reconstruction of inputs from the activation patterns in different layers. Section 3.2 

describes the methods used to visualize and reconstruct inputs and outputs from different 

layers. The results from application of these methods are detailed in Section 3.3. The 

final section discusses the results from opening the deep learning black box and the 
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potential of MPDL tissue signature model in developing a general tissue recognition 

system. 

Author contributions 

I wrote the complete chapter. Dr. Jacobs reviewed it and helped with the editing. 

I developed the SAE correlation reduction algorithm and implemented all the techniques 

discussed in this chapter for visualization of layer weights and input reconstruction. 

3.2 Methods 

3.2.1 Visualization of layer weights 

Consider an example neural network shown in Figure 3. This is a simple neural network 

that directly maps input layer to the output layer with no hidden layer. Mathematically, the 

input layer is given as 𝑋 = {𝑥(1), 𝑥(2), … , 𝑥(𝑁)} ∈ 𝑅𝐷 and the output layer is given as 𝑌 =

{𝑦(1), 𝑦(2), … , 𝑦(𝑁)} ∈ 𝑅𝑑, where 𝐷 is the dimensionality of the input and 𝑑 is the 

dimensionality of the output. The activation of any node 𝑦𝑗
(𝑖) in the output layer is given 

by the following equation 

𝑦𝑗
(𝑖)
= 𝑓(𝑊𝑗. 𝑥

(𝑖) + 𝑏) 

Here 𝑊𝑗 is the vector of weights connected to node, 𝑦𝑗 and f is the activation 

function. The weight vector acts as a pattern recognizer and determines the input patterns 

that would activate the corresponding node. The goal here is to plot the weight vector 𝑊𝑗 

for all different nodes 𝑗 in the MPDL tissue signature model and understand what kind of 

patterns are encoded at different layers of the MPDL neural network.   
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Figure 3.1 (a) Illustration of a simplified neural network model with no hidden layers. The 

inputs are directly connected to the outputs. (b) Illustration of the weight vector 

[𝑤1, 𝑤2, … , 𝑤10]
𝑇 that determines the activation of the node 𝑦1 based on the input vector 

pattern, [𝑥1, 𝑥2, … , 𝑥10]𝑇. 

 

3.2.2 Layer Size Reduction 

Sparse Autoencoders (SAEs) produce specialized nodes using sparsity constraint as 

discussed in Section 2.3.2. Moreover, this property allows us to initialize SAEs with a 

hidden layer of size greater than that of the input layer. However, training an SAE with a 

large number of nodes could produce redundant nodes in the hidden layer. I developed the 

technique of correlation reduction to remove redundant nodes from the hidden layer. The 

technique of correlation reduction consists of three steps as shown in Figure 3.2.  The first 

step involves computation of a pairwise correlation matrix between the weight vectors of 
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all the nodes in the hidden layer. The next step involves identifying redundant nodes by 

setting a threshold on the value of correlation coefficient. The nodes with correlation 

coefficient greater than the threshold are considered as redundant. The final step involves 

selecting the node with the maximum average activation as the representative node from 

every set of redundant nodes and dropping all the other nodes from the hidden layer. 

Algorithm 3.1 summarizes the procedure for correlation reduction. 

 

Figure 3.2 Flowchart demonstrating the correlation reduction algorithm. The correlation 

reduction algorithm identifies weight vectors in the hidden layer that are highly correlated 

and removes the redundant nodes to produce a smaller hidden layer. 
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Algorithm 3.1 Correlation Reduction algorithm 
Inputs:  
𝑋: 𝑁 multiparametric MRI datasets  
𝑡: correlation threshold for network reduction 
Output: Trained 𝑆𝐴𝐸 model with optimal number of nodes 
1: Create a tissue signature database, 𝑆 of tissue signatures from 𝑋  
2: Train 𝑆𝐴𝐸 on 𝑆 
3: Extract weight vectors from the hidden layer of the trained 𝑆𝐴𝐸  
4: Compute correlation coefficient matrix, 𝐶𝐶𝑀 by computing pairwise correlation 

coefficient between all the pairs of weight vectors. 
5: Identify redundant nodes on the 𝐶𝐶𝑀 as the nodes with pairwise correlation 

coefficient >  𝑡 
6: For every set of redundant nodes, updated 𝑆𝐴𝐸 by keeping the node with maximum 

average activation on the training dataset. 
7: return 𝑆𝐴𝐸 
 

3.2.3 Reconstruction of inputs 

The MPDL deep network uses saturated linear function as the activation function for each 

node. This allows us to approximate the input tissue signatures from the activation pattern 

of a single node, a hidden layer, or the final classification layer using linear reconstruction. 

The process of linear reconstruction does not provide an accurate estimation of the input 

tissue signature but generates an approximate reconstruction of the relationships between 

different input parameters that could be useful in determining how these relationships relate 

to the relationships learned by the human brain. 

3.3 Experiments 

3.3.1 Weight vector visualization for the first and second layers  of the MPDL tissue 

signature model 

I did a layer-wise decomposition of the MPDL SSAE network for visualization and 

analysis of the intrinsic representation learnt by the MPDL for different tissue types. 

Figure 3.3a illustrates the weight vectors learnt by the SSAE in the first layers. The node 
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corresponding to the weight vector illustrated in Figure 3.3b would activate when the input 

is a lesion or glandular tissue. This can be inferred from the assignment of positive weights 

to the high resolution DCE images. Similarly, all the different weight vectors in the layer 

1 can be attributed to a single or a combination of closely related tissue types. Similarly, 

visualization of the layer 2 weights demonstrates how the nodes in layer 1 combine to 

generate more specialized activations as shown in Figure 3.4. 
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Figure 3.3 First Layer Decomposition of the MPDL neural network. (a) Expansion of the 

first layer nodes into their corresponding weight vectors (b) An example weight vector for 

the node selected in “a”. The amount of weight assigned to each MRI parameters by the 

node is shown here. This particular node will get activated if the input tissue signature has 

high intensity values for high-resolution DCE images. This node is not a specialized node 

and will get activated for both glandular tissue and lesion tissue, but not fatty tissue. 
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Figure 3.4 Second Layer Decomposition of the MPDL neural network. (a) Expansion of 

the second layer nodes into their corresponding weight vectors (b) An example weight 

vector for the node selected in “a”. The amount of weight assigned to each of the previous 

layer nodes is shown here. This particular node produces a more specialized activation by 

selecting which activations to suppress and which to express.  
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3.3.2 Input Reconstruction from the deep and the classification layers of the MPDL 

tissue signature model  

The weight vectors from deeper layers act as filters to produce a pure tissue signature 

representation that activates only for one particular tissue type as shown in Figure 3.5. 

Figure 3.5 illustrates how the network learns intrinsic relationships between different MRI 

parameters and leverages that information to produce accurate tissue segmentations. 

Approximate linear reconstruction of the tissue signatures for three different tissue types 

(fat, glandular and lesion tissue) was generated from the softmax layer output of the SSAE 

for an example case as shown in Figure 3.6. The visualization in Figure 3.6 gives an idea 

of how the SSAE network “sees” different tissue signatures. 
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Figure 3.5 Illustration of the fifth layer encoding for a subset of MRI parameters: Pre- and 

Post- contrast DCE, T1, and T2. Here Y-axis represent the weights or importance assigned 

to each of the parameters by the fifth layer nodes with MRI parameters on the X-axis. We 

can see that the network learns the relationship between T1 and T2 (nodes 1 and 4) which 

is useful in distinguishing fat from glandular and lesion tissue. Similarly, the network learns 

the relationship between pre- and post- DCE (nodes 1-3) which is useful in distinguishing 

lesion from glandular tissue. The network learned these relationships without any input of 

prior knowledge, hand crafted features or domain expertise. 
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Figure 3.6 Visualization of MPDL reconstructed tissue signatures to understand how the 

network sees the input tissue signatures for fatty, glandular and lesion tissues for an 

example patient. The ROIs have been highlighted using a yellow box on each of the images.  

 

3.3.3 Weight vector visualization from lesion tissue signatures 

Kinetic curve analysis characterizes the wash-out pattern of gadolinium contrast agent into 

three categories. The three curve types are type I: persistently enhancing curve, 

type II: plateau, and type III: washout type. Type I is suggestive of benign tumor while type 

III is suggestive of malignancy and type II has an intermediate probability of malignancy. For 

comparison, I trained the unsupervised SAE algorithm with correlation reduction on the lesion 
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DCE-MRI tissue signatures obtained from benign and malignant patients to automatically 

extract kinetic curve patterns from DCE-MRI. Figure 3.7a demonstrates the different kinetic 

curve patterns discovered by the unsupervised SAE trained on the lesion tissue signatures of 

benign and malignant patients. The SAE was able to discern the DCE curve types from just 

the multiparametric imaging data without any prior knowledge of the underlying tissue type. 

The SAE curves unique to benign and malignant patients were obtained from back-projection 

of these curves on to tumors using the SAE decoder as illustrated in Figures 3.7b and c. The 

SAE encoding unique to benign tumors had significantly higher type I curves (66% for benign 

vs. 49% for malignant patients, 𝑝 = 0.01) while the SAE encoding unique to malignant 

tumors had significantly higher type III curves (34% for benign vs. 51% for malignant 

patients, 𝑝 = 0.01).  
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Figure 3.7(a) Illustration of DCE kinetic curve patterns discovered by the correlation 

reduction algorithm. The algorithm discovered four unique DCE kinetic curve patterns in 

breast tumors (b) SAE kinetic curve patterns that were unique to benign patients (𝑝 = 0.01) 

(c) SAE kinetic curve patterns that were unique to malignant patients (𝑝 = 0.01) 
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3.4 Discussion 

I developed and tested multiple different approaches for visualization and analysis of the 

multiparametric deep learning (MPDL) tissue signature model developed in Chapter 2. 

The weight vector visualization and input reconstruction gave us valuable insights into how 

the MPDL model “looked” at the data and the intrinsic representation it formed within its 

network architecture.  

The MPDL model learned relationships such as “Fat is bright on T1 and dark on 

T2” and “lesion is bright on post-contrast DCE and dark on pre-contrast DCE”, which are 

very similar to radiologists. These results are very encouraging as the model was not trained 

with any prior knowledge on how these tissues appear on different radiological images. 

Furthermore, I was able to decode the intrinsic representations developed at each layer and 

how they relate to each other. The intrinsic representations got increasingly specific as the 

depth of the MPDL model increased. The first layer nodes could not distinguish between 

glandular tissue and lesion tissue whereas the final layer nodes had developed specific 

activation patterns that could distinguish between all types of tissue. 

The unsupervised SAE with correlation reduction produced equally spectacular 

results on the tumor tissue signatures. Using only the database of tissue signatures, the SAE 

model was able to identify all the three types of DCE kinetic curves and their relationships 

with benign and malignant lesions. This demonstrates the potential of unsupervised 

artificial neural networks in identifying patterns from high-dimensional data with 

comparable performance to humans. Moreover, this report demonstrates that the SAE can 

detect heterogeneous zones within breast lesions. These heterogeneous regions can be used 

for further classification of breast tissue by quantitative ADC maps and/or PK-DCE 
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parameters.  Finally, these results open up the possibility of deploying unsupervised neural 

networks across multiple different organs and pathologies for discovering patterns in 

high-dimensional radiological data. 

In conclusion, “opening the MPDL black box” gave us valuable insights into how 

the MPDL organizes, integrates, and interprets the radiological imaging information and 

how we could use these insights to develop more general models for tissue segmentation 

and pattern discovery.  
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Chapter 4. Organ Invariant Tissue Segmentation: 

Preliminary Results 

4.1 Introduction 

In Chapter 2, the MPDL model for multiparametric radiological image segmentation was 

developed, validated, and tested for application to segmentation of different tissue types 

from multiparametric breast MRI. While the MPDL model resolves the problem of 

segmentation of different tissues from a multiparametric radiological imaging dataset, it is 

very narrow in that it is limited to segmentation of tissue from a specific organ. On the 

other hand, if we look at deep learning models developed for computer vision applications, 

they are more general. For example, object recognition algorithms based on deep learning 

are not limited to recognition of sub-groups of objects (e.g., vehicles, food, and furniture), 

but are generalized to detect all kinds of objects, irrespective of their type, scale, or origin 

[36]. The true potential of artificial intelligence in radiological applications can be achieved 

when the model is generalizable to multiple different tasks such as segmentation of all kinds 

of tissue types from any organ within the body.  

Multiparametric Magnetic Resonance Imaging (mpMRI) is an ideal platform for 

development of a general AI because of its unique ability to form images influenced by 

different types of tissue parameters (i.e., proton density, T2, T1, diffusion, and perfusion 

weighted imaging (WI)). Each of these parameters interacts in a complex multidimensional 

space providing complementary information about the underlying tissue properties. The 

mpMRI complex interactions are based on the underlying MRI physics and remain 
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consistent across multiple applications. For example, the fluid is dark on T1WI and bright 

on T2WI irrespective of the application.  

The consistency in complex interactions between different MRI parameters across 

different organs and pathologies provides an opportunity to model them into a single deep 

learning model. To that end, I utilized the intrinsic representations formed by the MPDL 

network architecture (Chapter 2) and evaluated their consistency across different organs for 

a generalized segmentation architecture. This is a feasibility study that investigates the 

stability of the MPDL tissue signature model and its capability in segmenting different tissue 

classes across different organs, in this case, breast and brain.  

Section 4.2 describes the clinical brain data (brain tumor and stroke) acquired for this 

study and their corresponding acquisition protocols. The results from training the MPDL on 

breast data and testing the trained model on the brain data and vice versa have been detailed 

in Section 4.3. In the final section, I discuss the results from this study and the possibility of 

a universal deep learning framework for multi-organ, multi-tissue segmentation.  

Author contributions 

I wrote the complete chapter. Dr. Jacobs reviewed it and helped with the editing. 

I designed the experiment for testing organ invariant tissue segmentation using MPDL, did 

the entire implementation, and data analysis. 

4.2 Materials and Methods 

4.2.1 Clinical Stroke Data 

Five patients were part of this study (4 women and 1 man, age=70±19 years). Three of 

these patients with ischemic stroke underwent an acute stroke MRI protocol at different 

time-points divided into acute (0-12 hrs) and sub-acute (24-168 hrs) time-points. The other 
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two patients were also imaged at chronic timepoint (>168 hrs). The sample set consisted 

of 12 total studies (five acute, five sub-acute and two chronic time-points).   

Multiparametric clinical stroke MRI imaging protocol 

All patients were imaged on 1.5T clinical MRI system using a phased array head coil. The 

MRI parameters were: T1WI sagittal MPRAGE image (𝑇𝑅/𝑇𝐸 =  200/2.46𝑚𝑠, 

𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑣𝑖𝑒𝑤 (𝐹𝑂𝑉) = 24 𝑐𝑚 × 24 𝑐𝑚, 𝑠𝑙𝑖𝑐𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (𝑆𝑇)  =  5 𝑚𝑚), axial T2WI 

FLAIR (𝑇𝑅/𝑇𝐸/𝑇𝐼 =  9000/105/2500𝑚𝑠, 𝐹𝑂𝑉 = 17.3 𝑐𝑚 × 23 𝑐𝑚, 𝑆𝑇 = 4 𝑚𝑚), 

axial DWI (𝑇𝑅/𝑇𝐸 = 9000/98𝑚𝑠, 𝑏 − 𝑣𝑎𝑙𝑢𝑒𝑠 = 1000 𝑎𝑛𝑑 0 𝑠/𝑚𝑚2, 𝐹𝑂𝑉 =

 23 𝑐𝑚 × 23𝑐𝑚, 𝑚𝑎𝑡𝑟𝑖𝑥 = 128 × 128, 𝑆𝑇 = 4 𝑚𝑚) and echo planar T1WI perfusion 

(𝑇𝑅/𝑇𝐸 =  1350/30𝑚𝑠, 𝐹𝑂𝑉 =  23 𝑐𝑚 × 23𝑐𝑚, 𝑆𝑇 =  4 𝑚𝑚, total duration = 90 

seconds). The contrast agent GdDTPA (Magnevist) was power injected at a dose of 0.1 

mmol/kg and at a rate of 5 cc/sec.  

4.2.2 Clinical Brain Tumor Data 

Nine patients with grade IV glioblastoma (5 males and 4 females) were part of this study, 

with an average age of 59±13 years. MR images were obtained using a 3.0 Tesla Siemens 

Trio Tim system (Siemens Medical Solutions, Erlangen, Germany) with a 12-channel head 

matrix coil. Structural images included a 3D T1 MPRAGE sequence (𝑇𝑅 =  2300 𝑚𝑠, 

𝑇𝐼 =  900 𝑚𝑠, 𝑇𝐸 =  3.5 𝑚𝑠, 𝑓𝑙𝑖𝑝 𝑎𝑛𝑔𝑙𝑒 (𝐹𝐴) =  9°, 𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑣𝑖𝑒𝑤 (𝐹𝑂𝑉) =

 24 𝑐𝑚 × 24 𝑐𝑚, 𝑚𝑎𝑡𝑟𝑖𝑥 =  256 × 256, 𝑠𝑙𝑖𝑐𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (𝑆𝑇)  =  1 𝑚𝑚) and a 

2D T2-FLAIR axial sequence (𝑇𝑅 =  9310 𝑚𝑠, 𝑇𝐼 =  2500 𝑚𝑠, 𝑇𝐸 =  116 𝑚𝑠,    

𝐹𝐴 =  141°, 𝐹𝑂𝑉 =  24 𝑐𝑚 × 24 𝑐𝑚, 𝑚𝑎𝑡𝑟𝑖𝑥 =  320 × 240, 𝑆𝑇 =  3 𝑚𝑚).  
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4.2.3 SSAE Evaluation and Statistical Analysis 

The dice similarity metric between SSAE and EI segmentations was applied to evaluate 

the efficacy of SSAE segmentations on brain cancer and breast cancer mpMRI datasets. 

For stroke, I compared the SSAE segmentations with the EI segmentations at all three 

time-points (acute, sub-acute, and chronic) for both clinical and pre-clinical stroke mpMRI. 

The percentage difference in the size of lesion areas segmented from the SSAE and EI 

algorithms were computed. Similarly, the percentage differences in ADC values and TTP 

values of the areas segmented from the two algorithms were computed. Nonparametric 

Spearman rank correlations were performed between the SSAE maps and the segmented 

areas, quantitative ADC, and TTP values. The Bland-Altman technique was used to 

identify any systematic differences or biases between the EI and SSAE maps by plotting 

the difference versus results from EI algorithm [75]. Statistical significance was set at 𝑝 ≤

0.05.  

4.3 Experiments 

4.3.1 Brain Tumor Segmentation 

The grade IV brain tumors have tissue signatures that are very similar to breast tumors, in 

that, the dynamic contrast enhanced images demonstrate increased uptake in the tumor 

tissue. In addition, the fluid tissue signatures from glandular tissue in the breast should be 

adaptable to fluid tissue signature from cerebrospinal fluid (CSF). The MPDL trained on 

breast mpMRI (Chapter 2) was tested on brain mpMRI for segmentation of different tissue 

in the brain. The MRI parameters used were DCE-Pre, DCE-Post, and T2WI, which were 

acquired for both brain and breast mpMRI. 
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Furthermore, if the tissue signatures learned from breast are adaptable and 

transferrable to brain mpMRI, then the opposite should also be true. To test this hypothesis, 

I trained the MPDL network with same parameters on brain mpMRI and tested it on an 

example set of ten breast mpMRI cases (five benign and five malignant) for segmentation 

of different tissue in the breast. 

Figure 4.1 demonstrates the results of MPDL trained on breast data for 

segmentation of brain tumor and vice versa for two example brain mpMRI and two 

example breast mpMRI datasets. The segmentations have been overlaid with a synthetic 

color scale ranging from blue to red, with each color representing a different tissue type as 

indicated in the color scale shown in Figure 4.1. The breast-trained MPDL segmented 

eight of nine brain mpMRI datasets with excellent dice similarity of 0.86 ± 0.09, but failed 

to segment the tumor on one dataset, shown in Figure 4.2.   
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Figure 4.1 (a) Tissue segmentation of two example brain multiparametric MRI (mpMRI) 

datasets using the breast trained multiparametric deep learning (MPDL) model.  (b) Tissue 

segmentation of two example breast mpMRI datasets using the brain trained MPDL model. 

The synthetic color scale to highlight different tissue types has been shown to the right of 

the two datasets. 
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Figure 4.2 Tissue segmentation of the brain multiparametric MRI (mpMRI) dataset for 

which the breast-trained network failed to segment the tumor. There was no contrast 

enhancement in the tumor area due to which the MPDL failed to identify the tumor tissue 

correctly. 

 

4.3.2 Brain Stroke Segmentation 

For the clinical stroke mpMRI dataset, MRI parameters of perfusion-, diffusion-, T1-, and 

T2-weighted imaging (PWI, DWI, T1WI, and T2WI, respectively) were obtained from the 

stroke patients. There was a difference between the perfusion images obtained from breast 

and brain. Contrast wash-in and wash-out from the brain PWI is significantly faster than 

for breast DCE-MRI. As a result, the phase resolution of brain PWI was 50-60 images 

compared to the 15 images for breast DCE-MRI. The two dataset tissue signatures were 

matched by moving a sliding time window across the brain perfusion data to capture the 

appropriate time interval and then reslicing the imaging series within the sliding window 

to match the phase resolution of the breast DCE-MRI using wavelet decomposition [61]. 

The resliced PWI was combined with the remaining MR parameters to form the stroke 

MPDL tissue signature of the same size as that of breast tissue signatures. The MPDL 
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trained on breast mpMRI was then tested on the stroke MPDL tissue signatures obtained 

from all the patients. 

The SSAE segmentation maps corresponding to the MPDL algorithm trained on 

breast mpMRI (Chapter 2) and tested on the independent clinical stroke data are shown in 

Figure 4.3. The segmentations were overlaid with a synthetic jet colormap such that red 

represented ischemic tissue and blue represented normal tissue. 

 

Figure 4.3.  Illustration of the result of stacked sparse autoencoder (SSAE) network trained 

on axial breast mpMRI and applied to clinical stroke mpMRI in two representative stroke 

patients at different time-points after stroke. The color coding is shown to the right of the 

images.   
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Table 4.1 summarizes the areas segmented, ADC values, and TTP values of the 

clinical stroke lesion defined by the EI and SSAE maps for all the patients at different time-

points. Figure 4.4 illustrates the Bland Altman plots for the ischemic area along with 

quantitative ADC and TTP values characterized by the segmentations from the EI and 

SSAE maps. The Bland Altman plots show there was a good agreement between the 

ischemic areas segmented from the EI and SSAE. Furthermore, there was a high correlation 

between the quantitative metrics obtained from EI and SSAE segmentations (𝑎𝑟𝑒𝑎𝑠: 𝑅 =

0.99, 95%𝐶𝐼 = 0.99 − 1.0, 𝑠𝑙𝑜𝑝𝑒 = 1.08 ± 0.016, 𝑝 < 0.0001;  𝐴𝐷𝐶: 𝑅 = 0.86,

95%𝐶𝐼 = 0.56 − 0.96, 𝑠𝑙𝑜𝑝𝑒 = 1.04 ± 0.19, 𝑝 = 0.0004;  𝑇𝑇𝑃: 𝑅 = 0.99, 95%𝐶𝐼 =

0.98 − 1.0, 𝑠𝑙𝑜𝑝𝑒 = 0.99 ± 0.04, 𝑝 < 0.0001). Finally, the percentage difference in the 

stroke areas, TTP and ADC values segmented from EI and MPDL were 6 ± 2%, 3 ± 3%, 

and 7 ± 7%, respectively. 
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Table 4.1. Clinical stroke data. Ischemic areas and the quantitative values of apparent 

diffusion coefficient (ADC) and time-to-peak (TTP) segmented by the EI and SSAE 

algorithms. 

 

Patient Timepoint 

SSAE 

Area 

(mm2) 

EI Area 

(mm2) 

EI TTP 

(s) 

SSAE 

TTP (s) 

EI ADC 

(x 10-3 

mm2/sec) 

SSAE 

ADC 

 (x 10-3 

mm2/sec) 

Patient 1 Acute 19.44 19.14 10.92 11.01 659.14 626.94 

 Sub-acute 37.35 36.12 12.28 12.31 522.87 547.06 

 Chronic 87.21 81.15 13.44 13.79 600.70 606.96 

Patient 2 Acute 16.98 18.39 12.73 12.57 776.58 798.50 

 Sub-acute 4.17 4.41 10.78 10.85 733.32 792.61 

Patient 3 Acute 5.16 5.58 8.73 8.18 796.83 1035.30 

 Sub-acute 8.85 7.95 8.22 8.41 550.00 599.13 

Patient 4 Acute 12.63 13.53 6.98 7.68 716.65 770.21 

 Sub-acute 11.79 12.48 7.09 6.80 582.72 673.83 

Patient 5 Acute 15.66 14.82 14.64 14.88 821.58 791.05 

 Sub-acute 13.74 14.31 14.71 14.54 821.61 842.31 

 Chronic 22.71 24.06 12.86 12.94 832.65 841.38 
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Figure 4.4. Bland Altman plots for comparison between the Eigenfilter (EI) segmented 

stroke lesions and stacked sparse autoencoder (SSAE) segmented stroke lesions. (a) Time 

to peak (TTP). (b) Apparent diffusion coefficient values. (c) Lesion segmented areas. 
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4.4 Discussion 

The MPDL method based on an SSAE produced encouraging results for segmentation of 

different tissue types in breast tumor mpMRI, brain cancer mpMRI, and brain stroke 

mpMRI. The knowledge transfer between the MPDL trained on breast cancer and applied 

to brain cancer and stroke was excellent. Furthermore, the inverse knowledge transfer from 

brain to breast was also very encouraging. This feasibility study demonstrates the 

generalizability of the tissue signatures across different organs and the potential of a 

general AI that could be used to segment different tissue across multiple organs.  

Deep learning has previously been successfully applied to segment and classify 

tissue types from brain, breast, prostate, and other organs [52]. In this study, I demonstrated 

the feasibility of deep learning in producing organ invariant tissue segmentations. The 

MPDL tissue signature model which was introduced in Chapter 2 was able to segment 

different tissue types from pathologies (stroke) that the MPDL had never “seen” before. 

Moreover, the segmentations were irrespective of magnetic field strength (3T for breast 

data and 1.5T for clinical stroke data). 

This study successfully demonstrated the capability of deep learning algorithms to 

learn the underlying MRI inter-parameter relationships. For example, the T1 and T2 of the 

breast and brain data were similar. The DWI and ADC mapping were the same, except for 

the number of 𝑏 values. The MPDL method was able to adapt and apply the correct 

signatures.  The biological composition of glandular tissue is fluid which appears bright on 

T2 and dark on T1. Similarly, for brain data, CSF presents the same MRI characteristic as 

it is also fluid. The MPDL was able to classify CSF as the same group as glandular tissue. 

Similarly, white matter (WM) in brain and fat in breast exhibit the same MRI 
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characteristics (bright on T1WI and dark on T2WI). As a result, both WM and fat result in 

the same class.  

There were limitations to this study. This was a preliminary study to assess the 

possibility of organ invariant tissue segmentation using multiparametric MRI. The results 

from this study were encouraging but not comparable to the state-of-the-art results as 

demonstrated in my results from Chapter 2 and other results reviewed in [52]. This is 

because the tissue signatures obtained from different organs have intrinsic properties that 

were not captured in our model. This could potentially be resolved by using all the tissue 

signatures from all the organs during the SSAE pre-training step. In the future, I plan to 

experiment with different parametrizations and inputs to the SSAE and optimize the organ 

invariant tissue segmentation workflow.  

In conclusion, the MPDL method reveals the possibility of a universal deep learning 

model that can learn inter-parametric relationships corresponding to different tissue types 

across multiple organs based on the underlying MRI physics. In the future, I aim to develop 

a universal MPDL model which could automatically identify the underlying pathology and 

segment out the tissue accordingly for any organ or pathology.  
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Part II: Feature Extraction 

Part I introduced the problem of image segmentation and my contributions to the 

segmentation of different tissues from multiparametric radiological imaging datasets. The 

MPDL algorithm developed in Chapter 2 produced a segmentation map highlighting the 

different tissue types and their corresponding segmentation masks. The next step involves 

extraction of all the relevant information from the tissue of interest (TOI), for example, 

lesion or glandular tissue in breast. This section focuses on development of techniques for 

feature extraction from multiparametric radiological imaging datasets. 

Feature extraction from multiparametric radiological images can be broadly 

categorized into two categories: inter-voxel analysis and inter-parametric analysis. I 

developed the methods of radiomic feature mapping and contribution scattergram for 

inter-voxel and inter-parametric analysis, respectively. The goal of radiomics is to capture 

the spatial appearance of the TOI (shape and texture) on each of the acquired images. On 

the other hand, the contribution scattergram characterizes how the images acquired using 

different imaging parameters relate to each other by modeling their relationships as a 

complex network model.  

The majority of the feature extraction models developed in the literature focus on 

radiomics based approaches. As a result, I have devoted one complete chapter (Chapter 5) 

discussing the field of radiomics and the various applications of radiomics. My 

contributions to the field of radiomics have been detailed in Chapters 6 and 7. The final 

chapter (Chapter 8) of this section describes the technique of contribution scattergram and 

validates it on a multiparametric breast MRI dataset.
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Chapter 5. A review on radiomics and its application to 

precision radiology 

5.1 Introduction 

Radiological imaging techniques are powerful noninvasive tools used for the detection, 

differentiation, and diagnosis of different tissue characteristics in patients. These imaging 

methods include X-Ray, Computed Tomography (CT), Magnetic Resonance Imaging 

(MRI), Nuclear Medicine (NM) Positron Emission Tomography (PET), and 

Ultrasound (US). Each of these modalities creates different tissue contrast based on 

whether the tissue is normal or abnormal.  These different tissue contrast mechanisms are 

exploited by the radiologist to identify patterns to reach a diagnosis.  However, each of the 

radiological images contains more information content not visible to the clinician’s eye 

and this “hidden” information creates a “radiological texture” which can provide much 

more information about the tissue of interest than previously thought. Thus, radiomics was 

introduced as a “new” method to discover and translate the metrics obtained by using 

texture and other analysis techniques on radiological images. However, Radiomics is a new 

application using established techniques, specifically, entropy, mutual information, gray 

level co-occurrence matrix, and other features [24, 26, 27, 29]. The novel aspect of 

radiomics is the comparison of these measures to surrogate endpoints with the advent of 

increased computational power available today. The main idea is the information “hidden” 

within the radiological images can be extracted using texture feature analysis. 

Intuitively, texture is used by everyone to define objects either visually or by touch. 

The terms commonly used to describe texture are roughness, smoothness, and coarseness 
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but for digital data, analytical methods were needed to better “describe” the information 

content in digital objects.  Therefore, texture analysis, in part, is based on information 

theory developed in 1948 by Claude Shannon and extended by Haralick, Galloway, and 

others that incorporated different statistical measures to include gray level matrix 

operations on the input data [24, 26, 27, 29]. Historically, one of the first applications of 

texture analysis was in analyzing aerial photographs [76] then later applied to medical and 

other images [26, 77]. Currently, texture feature analysis is used in many different areas of 

research, especially, with increased computational power and digital storage capacity [78-

81]. Moreover, given a region of interest, shape based features can also be extracted along 

with texture analysis [30].  

Section 5.2 introduces the fundamental feature extraction methods followed by a 

review of historical and recent applications of radiomics techniques in detecting tumor 

characteristics in Section 5.3.  This chapter concludes with an outlook on the potential 

future of radiomics in “personalized medicine” cancer therapies. 

Publication from this work and author contributions 

Publication 

V. Parekh and M. A. Jacobs, "Radiomics: a new application from established techniques," 

Expert review of precision medicine and drug development, vol. 1, pp. 207-226, 2016.  

Author contributions 

I wrote the complete chapter. Dr. Jacobs reviewed it and helped with the editing. 

5.2 Radiomics Feature Extraction 

Radiomic feature extraction methods are based into primarily three categories consisting 

of statistical, filtering, and morphological features. In this chapter, I discuss the feature 

extraction methods from all the three categories; however, there are some other feature 
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extraction methods such as gray level size zone matrix based features and Minkowski 

functionals used in radiomics applications that have not been discussed here [17, 82]. 

5.2.1 Statistical texture features 

Statistical features characterize the texture in an image using statistical measures. There 

are two levels of texture statistical methods, first and higher order as shown in Figure 5.1. 

These statistical radiomic methods have been applied to different imaging modalities used 

in several different diseases and are outlined below. 
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Figure 5.1 Illustration of statistical texture feature extraction. (a) Segmented tumor image 

(b) Segmented tumor image quantized to four intensity levels (c) First order statistical 

features corresponding to first order histogram (d) Higher order statistical features 

corresponding to 1. GLCM (gray level co-occurrence matrix), 2. GLRLM (gray level run 

length matrix) and 3. NGTDM (neighborhood gray tone difference matrix). Modified 

from [17]. 

 

a) First order texture statistics 

First order texture statistics are based on the first order histogram that describes distribution 

of voxel intensities in an image. The normalized first order histogram (𝐻) is computed by 

dividing the voxel intensities (𝐼) in an image into 𝐵 equally spaced bins and computing the 

proportion of voxels in each bin as defined by the equation.  

𝐻(𝑖) =  
#𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝑔𝑟𝑎𝑦 𝑙𝑒𝑣𝑒𝑙𝑠 𝑖𝑛 {𝐼𝜖𝐵𝑖}

∑#𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒
      (1)   
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Entropy and uniformity are the two commonly used features computed using the 

histogram. Let 𝐻 be the first order histogram with 𝐵 bins, then the entropy [24] and the 

uniformity are given by the following equations:  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  −𝐾∑ 𝐻(𝑖) log𝐻(𝑖)𝐵
𝑖=1        (2) 

where 𝐾 is a positive constant and is determined by the units of the application. However, 

since we are dealing with bits of information, 𝐾 = 1 and the equation used in most 

digital applications is given as 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  −∑ 𝐻(𝑖) log2𝐻(𝑖)
𝐵
𝑖=1        (3) 

and 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 =  ∑ 𝐻(𝑖)2𝐵
𝑖=1         (4)   

Entropy measures the randomness in the gray level intensities of an image. The 

maximum value of entropy occurs when all the gray level intensities in an image occur 

with equal probability and is equal to log2 𝐵. On the other hand, uniformity, as its name 

suggests, measures the uniformity of gray level intensities in an image. The maximum 

value of uniformity is one which occurs when all the pixels in an image have the same gray 

level intensity. 

Both the first and second orders statistics can give different values based on the 

number of bins. The number of bins is a critical parameter defined by the user. If the 

number of bins is selected either too small or very large, then the histogram may not be 

able to correctly represent the underlying distribution. Several methods exist for 

determining the optimal number of bins without making any assumptions regarding the 

underlying data distribution [83, 84]. However, if different ROIs in a study have different 

number of bins in the first order histograms, then it is not possible to compare the results 
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directly. This is because number of bins, 𝐵, is an input parameter to both entropy and 

uniformity equations. 

Another approach would be to use the same number of bins for all ROIs. 

Unfortunately, this leads to an issue of dependence of first order statistic features on the 

size of ROI. For example, if we consider two ROIs of sizes 128 and 1024 voxels and bin 

the gray level intensities within these two ROIs into 1024 bins (as we are using the same 

number of bins), then the entropy values of data distributions with maximum randomness 

(each voxel has a different intensity) would be equal to 7 and 10 for 128 voxel-sized and 

1024 voxel-sized ROIs respectively. The issue of optimal binning is prominent for all 

statistical approaches as all the statistical approaches depend on the preprocessing step of 

image quantization. Thus, some form of feature normalization is required with respect to 

size in cases when the same number of bins is used for all the ROIs and with respect to 

number of bins when different number of bins is used for different ROIs. First order texture 

statistical features have been applied to a number of applications across different medical 

imaging modalities for characterization of biological tissue of interest [2-7, 17, 20, 30, 77, 

85-121, 122 ]. Table 5.1 summarizes the quantitative values of first order entropy for 

different organs and pathologies as reported in the literature. Depending on the organ being 

imaged and the imaging modality, the first order histograms may or may not have been the 

same across all the applications. However, a trend in the entropy values between 

pathological tissue and healthy tissue can be observed. The entropy values obtained from 

pathological tissue are relatively higher than the entropy values obtained from healthy 

tissues except for spinal cord and urinary bladder.  
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Table 5.1. Quantitative values of first order statistical entropy as reported in the literature. 

nMITR= normalized maximum intensity-time ratio, FA=fractional anisotropy and AD 

=Alzheimer’s disease [1-9]. 

Reference Tissue Image/Object type Pathology 

    Benign Malignant  

Sinha et 

al. [1] 
Breast 

Normalized radial 

length of tumor 
 1.46 1.6  

Ertas et 

al. [2] 
Breast nMITR projection  5.4 6.77  

Suo et al. [9] 
Urinary 

bladder 
DWI, b=700  4.08 4.06  

 
Urinary 

bladder 
DWI, b=1500  3.97 3.78  

Kierans et 

al. [4] 

Adnexal 

lesion 
ADC  4.54 4.94  

    Low grade High grade  

Ryu et al. [5] Glioma ADC  6.26 6.86  

    Volunteers Healthy  

Brinkmann 

et al. [6] 
Liver MRS  7.6 4.7  

   Healthy adult Elderly 
CSM 

patients 
 

Cui et al. [7] Spinal cord FA map 6.07 6.01 5.32  

   Young 
Middle 

aged 

Non-

demented 

elderly 

Elderly 

(AD) 

Chen et 

al. [3] 
Brain 

cortical surface 

structure 
1.2 1.24 1.28 1.33 

 

b) Higher order texture statistics 

The features generated from first order statistics provide information about the distribution 

of voxel intensities in an image but they do not provide any information about the 
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inter-voxel relationships. The inter-voxel relationships in an image can be quantified using 

three different methods viz. gray level co-occurrence matrix, gray level run length matrix, 

and neighborhood gray tone difference matrix outlined below. 

Gray level co-occurrence matrix 

The spatial distribution of gray level intensities within an image can be extracted by using 

the gray level co-occurrence matrix (GLCM). The GLCM is constructed by considering 

the relationship between voxel pairs and the frequency of each intensity pairs within an 

image or a region of interest [26]. The relationship between voxel pairs is characterized by 

two user defined parameters, distance (𝑑) and an angle (𝜃). Figure 5.2a illustrates the 

inter-voxel relationships characterized by the user defined parameter, 𝜃. If the number of 

gray levels in the image is 𝑁𝑔, the number of possible voxel pairs would be 𝑁𝑔 × 𝑁𝑔. The 

frequency of each voxel pair in the image or a region of interest is computed and stored in 

the 𝑁𝑔 × 𝑁𝑔 GLCM matrix. The GLCM constructed is either symmetric [26] or 

asymmetric depending on the ordering of values in voxel pairs.  
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Figure 5.2 (a) Illustration of the inter-pixel relationships characterized by the user defined 

parameter, 𝜃 (b) An example 5 x 5 matrix with gray values ranging from 1 to 5. (c) The 

resultant symmetric gray level co-occurrence matrix (GLCM) obtained by multiplying the 

asymmetric GLCM with its transpose.  

 

Mathematically GLCM of an image of size 𝑁𝑥 × 𝑁𝑦 with 𝑁𝑔  gray levels is given 

by the following equation: 

𝐺𝐿𝐶𝑀𝑑
𝜃(𝑖, 𝑗) =  |{((𝑟, 𝑠), (𝑡, 𝑣)): 𝐼(𝑟, 𝑠) = 𝑖, 𝐼(𝑡, 𝑣) = 𝑗}| ∀ 𝑖, 𝑗 𝜖{1,2,3, … ,𝑁𝑔}   (5) 

where  (𝑟, 𝑠), (𝑡, 𝑣) ∈ 𝑁𝑥 × 𝑁𝑦 ; 

(𝑡, 𝑣) =  {

𝑟 + 𝑑, 𝑠        𝑖𝑓 𝜃 = 0°      
𝑟 + 𝑑, 𝑠 + 𝑑 𝑖𝑓 𝜃 = 45°   
𝑟, 𝑠 + 𝑑        𝑖𝑓 𝜃 = 90°   
𝑟 − 𝑑, 𝑠 + 𝑑 𝑖𝑓 𝜃 = 135°

  

I represents the image as a function I: 𝑁𝑥 × 𝑁𝑦 → {1,2, … ,𝑁𝑔} and | . | denotes the 

cardinality of a set. 

The GLCM obtained from equation (5) is an asymmetric GLCM and can be 

converted to a symmetric GLCM by multiplying by the transpose (𝐺𝑠𝑦𝑚 =  𝐺 × 𝐺𝑇). 
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The range of input parameters is 𝜃𝜖{0°, 45°, 90°, 135°}, 𝑑 𝜖 {1, 2, 3, … , 𝑛} for a 

two-dimensional image. For a three-dimensional image, the range for theta increases to 13 

angles. An example 5 × 5 matrix with the corresponding symmetric GLCM for 𝜃 =

0° 𝑎𝑛𝑑 𝑑 = 1 is shown in Figure 5.2. Based on the different values of 𝜃 and 𝑑, a large 

number of GLCMs can be produced and for each GLCM, fourteen textural features were 

designed by Haralick et al. Subsequent research in texture analysis has led to construction 

of many more features, with most recent applications using twenty two GLCM based 

features [30].  

Several studies have employed GLCM based features to determine benign form 

malignant lesions or treatment response and found no significant differences in changing 

the number of gray levels used for the features from the image  [15].   

There are twenty-two GLCM texture features [30]. The most commonly used features are 

given below:  

𝐴𝑆𝑀 = ∑ ∑ (𝐺𝑛𝑜𝑟𝑚(𝑖, 𝑗))
2𝑁𝑔

𝑗=1

𝑁𝑔
𝑖=1

        (6) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  −∑ ∑ 𝐺𝑛𝑜𝑟𝑚(𝑖, 𝑗) log2(𝐺𝑛𝑜𝑟𝑚(𝑖, 𝑗))
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

     (7) 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ ∑ |𝑖 − 𝑗|2𝐺𝑛𝑜𝑟𝑚(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

       (8) 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ ∑ 𝑖𝑗(𝐺𝑛𝑜𝑟𝑚(𝑖,𝑗)−𝜇𝑥(𝑖)𝜇𝑦(𝑗)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

𝜎𝑥(𝑖)𝜎𝑦(𝑗)
       (9) 

The notation used in the above equations is explained in Table 5.2. 
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Table 5.2. Notation used in the equations for computing texture features using gray level 

co-occurrence matrix. 

𝐺𝑛𝑜𝑟𝑚 Normalized gray level co-occurrence matrix 

𝐺𝑥 Marginal probability matrix obtained by summing the rows of 𝐺𝑛𝑜𝑟𝑚 

𝐺𝑦 Marginal probability matrix obtained by summing the columns of 𝐺𝑛𝑜𝑟𝑚 

𝜇𝑥 Mean of 𝐺𝑥 

𝜇𝑦 Mean of 𝐺𝑦 

𝜎𝑥 Standard deviation of 𝐺𝑥 

𝜎𝑦 Standard deviation of 𝐺𝑦 

 

The angular second moment (ASM) feature is the measure of uniformity in an 

image. A uniform image will have a few gray level transitions with the maximum 

uniformity of one representing only a single type of gray level transition through the image. 

Entropy feature, in contrast, increases as more and more different kinds of gray level 

transitions are present in an image. The maximum value of entropy is achieved when all 

the different gray level transitions in an image occur exactly the same number of times and 

is equal to log𝑁𝑔 2 . Visually an image with higher entropy will appear more random or less 

homogeneous. Similarly, an image with higher contrast feature value will have higher 

frequency of large intensity differences between neighbors. An example high contrast 

image is a checkerboard. Finally, correlation measures the linear dependence between any 

two neighboring voxels throughout the image; i.e., an image with higher contrast will 
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generally have lower correlation. Furthermore, texture features obtained from gray level 

co-occurrence matrix are not rotationally invariant. Rotationally invariant features are 

obtained by taking mean and range of texture values obtained in all directions (four for 2D 

images and thirteen for 3D volumes). Computation of rotationally invariant features for 3D 

is not straightforward because voxel spacing along the third dimension may not be same 

as voxel spacing in the other two dimensions. Thus, using the same value of 𝑑 (GLCM 

input parameter) as voxel spacing in mm in all three dimensions is very important to 

achieve rotationally invariant texture features. 

For many applications, GLCM based features are the most commonly used textural 

features applied to different medical imaging modalities for characterization of biological 

tissue of interest [1, 5, 13-17, 20, 30, 85-87, 91, 93, 95, 96, 99, 101, 103-105, 111-113, 

116-121, 123-154]. These applications used symmetric GLCMs for texture analysis as 

defined by Haralick et al.; however, recent applications of GLCM based features have also 

used asymmetric GLCMs with some success [30]. Chen et al. compared the GLCMs 

generated from 2D slices vs. 3D volume on breast DCE-MRI and showed that 3D GLCM 

texture features performed significantly better than 2D GLCM texture features in 

classifying malignant from benign breast lesions [14]. 

Gray level run length matrix 

The gray level run length matrix (GLRL) is defined as the number of contiguous voxels 

that have the same gray level value and it characterizes the gray level run lengths of 

different gray level intensities in any direction [27]. Elements (𝑖, 𝑗) in the matrix represents 

the number of times, 𝑗, a gray level value, 𝑖, appears in the image. Based on the direction 

angle, 𝜃 (4 for two dimensions and 13 for three dimensions), different GLRL matrices can 
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be constructed. The inter-pixel relationship based on the user defined parameters of angle, 

𝜃 and run length, 𝑗 is illustrated in Figure 5.3a.  

 

Figure 5.3 (a) Illustration of the inter-pixel relationships characterized by the user defined 

parameters, angle 𝜃 and run length j. (b) Example 5x5 matrix with values ranging from 1 

to 5. (c) Resultant gray level run length matrix (GLRL) for run lengths of 1 to 5 and 

𝜃 =  0°. 

 

Mathematically GLRL of an image of size 𝑁𝑥 × 𝑁𝑦 with 𝑁𝑔  gray levels is given by 

the following equation:  

𝐺𝐿𝑅𝐿𝜃(𝑖, 𝑗) = |{(𝑚, 𝑛) ∶  |{(𝑘, 𝑙) ∈  𝑁𝑏(𝑚, 𝑛, 𝑗, 𝜃) ∶  𝐼(𝑘, 𝑙) = 𝑖}| =

𝑗}|  ∀ 𝑖, 𝑗 𝜖{1,2,3, … ,𝑁𝑔}   (10) 

where  (𝑚, 𝑛) ∈ 𝑁𝑥 × 𝑁𝑦 ; 

𝑁𝑏(𝑚, 𝑛, 𝑗, 𝜃) =

{
 

 
{(𝑚 + 1, 𝑛), (𝑚 + 2, 𝑛),… , (𝑚 + 𝑗, 𝑛)}                                      𝑖𝑓 𝜃 = 0°   

{(𝑚 + 1, 𝑛 + 1), (𝑚 + 2, 𝑛 + 2),… , (𝑚 + 𝑗, 𝑛 + 𝑗)}               𝑖𝑓 𝜃 = 45°

{(𝑚, 𝑛 + 1), (𝑚, 𝑛 + 2),… , (𝑚, 𝑛 + 𝑗)}                                      𝑖𝑓 𝜃 = 90°

  

    {(𝑚 − 1, 𝑛 + 1), (𝑚 − 2, 𝑛 + 2),… , (𝑚 − 𝑗, 𝑛 + 𝑗)}               𝑖𝑓 𝜃 = 135°   
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I represents the image as a function : 𝑁𝑥 × 𝑁𝑦 → {1,2, … ,𝑁𝑔} and | . | denotes the 

cardinality of a set 

Galloway et al. developed five features from the GLRL matrix viz. short runs 

emphasis (SRE), long runs emphasis (LRE), gray level nonuniformity (GLN), run length 

nonuniformity (RLN), and run percentage (RP) given by the following equations: 

𝑆𝑅𝐸 =
∑ ∑

𝐺𝐿𝑅𝐿(𝑖,𝑗)

𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝐺𝐿𝑅𝐿(𝑖,𝑗)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

         (11) 

𝐿𝑅𝐸 =  
∑ ∑ 𝑗2𝐺𝐿𝑅𝐿(𝑖,𝑗)

𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝐺𝐿𝑅𝐿(𝑖,𝑗)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

         (12) 

𝐺𝐿𝑁 = 
∑ (∑ 𝐺𝐿𝑅𝐿(𝑖,𝑗)

𝑁𝑟
𝑗=1 )

2𝑁𝑔
𝑖=1

∑ ∑ 𝐺𝐿𝑅𝐿(𝑖,𝑗)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

         (13) 

𝑅𝐿𝑁 =  
∑ (∑ 𝐺𝐿𝑅𝐿(𝑖,𝑗)

𝑁𝑔
𝑖=1

)
2

𝑁𝑟
𝑗=1

∑ ∑ 𝐺𝐿𝑅𝐿(𝑖,𝑗)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

         (14) 

𝑅𝑃 =  ∑ ∑
𝐺𝐿𝑅𝐿(𝑖,𝑗)

𝑃

𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

         (15) 

where 𝑁𝑟 is the number of different run lengths measured to compute GLRL matrix and 𝑃 

is the total number of voxels in the image. A total of eleven features based on gray level 

run length matrices have been proposed in the literature [27, 155, 156]. Current 

applications in texture analysis use the complete set of eleven features derived from GLRL 

matrix [30]. 

An example 5x5 input matrix and the corresponding GLRL matrix for horizontal 

direction are shown in Figures 5.3b and 5.3c respectively. The GLRL matrices are 

generally normalized (by the total number of entries in the matrix) in order to facilitate 

consistency between different scans of different patients, as well as different scans for same 

patient considered across a time interval. GLRL matrix based features have also been 
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applied to a number of applications across different medical imaging modalities for 

characterization of biological tissue of interest [17, 30, 85, 87, 93, 95, 96, 99, 101, 103, 

105, 106, 113, 116-121, 125, 134].  

Neighborhood gray tone difference matrix 

The neighborhood gray tone difference matrix (NGTDM) is a texture analysis method 

based on the visual properties of an image [29]. Neighborhood gray tone difference matrix 

(NGTDM) is a one-dimensional matrix computed such that each gray level entry, defined 

as 𝑔𝑡, in the NGTDM is the summation of the differences between all the pixels with gray 

level value, 𝑔𝑡 and the average gray level value of its neighborhood. The size of the 

neighborhood is defined by the user.  

 

Figure 5.4 (a) Illustration of the neighborhood around the pixel of interest based on the 

user defined neighborhood parameter, 𝑑 (b) Example 5x5 input matrix with values ranging 

from 1 to 5. (c) Neighborhood gray tone difference matrix for 𝑑 = 1. 

 

Mathematically, NGTDM of an image (𝑁𝑥  ×  𝑁𝑦) with 𝑁𝑔 gray levels is given 

using the following set of equations: 
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𝐴𝑁𝐺𝑇(𝑖, 𝑗) =
1

𝑊−1
 (∑ ∑ 𝐼(𝑖 + 𝑖𝑘, 𝑗 + 𝑗𝑘)𝑑

𝑗𝑘=−𝑑
𝑑
𝑖𝑘=−𝑑 ), (𝑖𝑘, 𝑗𝑘) ≠ (0,0)   

∀ 𝑖 ∈ {1,2,3, … , 𝑁𝑥} 𝑎𝑛𝑑  𝑗 ∈ {1,2,3, … ,𝑁𝑦}       (16) 

𝑁𝐺𝑇𝐷𝑀(𝑔𝑡) = ∑ |𝑔𝑡 − 𝐴𝑁𝐺𝑇(𝑖, 𝑗)|(𝑖,𝑗) | 𝐼(𝑖,𝑗)=𝑔𝑡   ∀ 𝑔𝑡 ∈ {1,2, … ,𝑁𝑔 }  (17) 

Here, 𝐴𝑁𝐺𝑇 is the average neighborhood gray tone in the neighborhood of the pixel 

at position (𝑖, 𝑗), 𝑊 = (2𝑑 + 1)2 and 𝑑 =  𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 (e.g. 1 in case of 

3 x 3 neighborhood).  There are five features derived from the NGTDM and are given by 

the following equations: 

𝐶𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 = [𝜖 + ∑ 𝑃𝑖𝑁𝐺𝑇𝐷𝑀(𝑖)
𝑁𝑔
𝑖=1

]
−1

       (18) 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = [
1

𝑁𝑡(𝑁𝑡−1)
∑ ∑ 𝑃𝑖𝑃𝑗(𝑖 − 𝑗)

2𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

] [
1

𝑛2
∑ 𝑁𝐺𝑇𝐷𝑀(𝑖)
𝑁𝑔
𝑖=1

]   (19) 

𝐵𝑢𝑠𝑦𝑛𝑒𝑠𝑠 =
[∑ 𝑃𝑖𝑁𝐺𝑇𝐷𝑀(𝑖)
𝑁𝑔
𝑖=1

]

[∑ ∑ 𝑖𝑃𝑖−𝑗𝑃𝑗
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

]
, 𝑃𝑖 ≠ 0, 𝑃𝑗 ≠ 0     (20) 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =  ∑ ∑ {
|𝑖−𝑗|

𝑛2(𝑃𝑖+𝑃𝑗)
} {𝑃𝑖𝑁𝐺𝑇𝐷𝑀(𝑖) + 𝑃𝑗𝑁𝐺𝑇𝐷𝑀(𝑗)}, 𝑃𝑖 ≠ 0,𝑃𝑗 ≠ 0  

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

  (21) 

𝑇𝑒𝑥𝑡𝑢𝑟𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
[∑ ∑ (𝑃𝑖+𝑃𝑗)(𝑖−𝑗)

2𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

]

[𝜖+ ∑ 𝑁𝐺𝑇𝐷𝑀(𝑖)
𝑁𝑔
𝑖=1

]
       (22)  

where 𝑃𝑖 is the probability of occurrence of a gray level value 𝐼, 𝑛 is the number of entries 

in the NGTDM and 𝑁𝑡 is the total number of gray levels present in the image. For example, 

Figure 5.4 demonstrates the application to a 5x5 gray level input matrix.  

The NGTDM features have been developed to correlate the quantitative values of 

texture features as closely as possible to the visual interpretation of texture by humans. For 

example, coarseness provides a quantitative measure of local uniformity while contrast 

provides quantitative information about the difference in the intensity levels of neighboring 

regions. Similarly, busyness tells us how “busy” (rapid intensity changes) are the 
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neighborhoods in a given image or a region of interest. Furthermore, NGTDM complexity, 

as the name suggests, quantifies the complexity of the spatial information present in an 

image. Finally, texture strength can be defined as characterizing the visual aesthetics of an 

image. Images with higher texture strength are generally more attractive to look at than 

images with low texture strength. The NGTDM features have been applied to some medical 

image applications [10, 17, 112]. 

5.2.2 Morphological texture features 

Morphological features are used in many applications to define the shape of an object. The 

shape of the tumor can be quantified using fractal dimension [25, 157]. Fractal dimension 

is a measurement of irregularity in the shape of the tumor. Different methods proposed in 

the literature for computing the fractal dimension of a pattern are discussed in [158]. Other 

methods based on volume and surface area of the tumor have been summarized in [30].  

However, different fractal sets having different textures may have the same fractal 

dimension values. Consequently, Mandelbrot introduced the concept of lacunarity for 

characterization of texture in an image [25]. Lacunarity quantifies how fractals fill space – 

larger the gaps, higher the lacunarity. Different methods proposed in the literature for 

computing the fractal dimension of a pattern are discussed in [158]. Li et al. [159] 

evaluated four methods for computing fractal dimension of parenchymal patterns obtained 

from mammography in assessment of breast cancer risk. The four methods evaluated 

included conventional box counting method, modified box counting method using linear 

discriminant analysis (LDA), global Minkowski method, and modified Minkowski method 

using LDA. The authors observed that the advanced methods using LDA resulted in better 

classification between low and high-risk patterns (AUC = 0.9 for modified box counting 
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method and AUC=0.93 for modified Minkowski method). Likewise, Guo et al. [12] 

compared five different methods for computing the fractal dimension as well as lacunarity 

analysis of breast regions obtained from mammography to classify breast masses from 

normal parenchyma. The fractal dimension methods tested in this study were reticular cell 

counting method [160], differential box counting method [161], blanket method [162], 

Fourier power spectrum method [163], and fractional Brownian motion (FBM) 

model [164]. The highest AUC of 0.84 was achieved for the FBM method. Moreover, when 

FBM method was combined with lacunarity, the AUC increased to 0.90. Morphological 

features based on Renyl fractal dimension, shape analysis, volume, and surface area of the 

tumor have also been implemented in the literature [30, 165, 166].   

5.2.3 Filtering texture features 

The basic idea of filtering approaches is that the original textured image is subjected to 

some form of linear or nonlinear transform, followed by statistical analysis of the 

transformed image to obtain texture information. A comparative study of different filtering 

approaches can be found in [167]. In this chapter, I discuss the filtering techniques 

commonly used for texture analysis of medical images. 

a) Spatial filtering techniques 

Spatial filtering techniques are based on neighborhood operations on the original textured 

input images. These neighborhood operations are based on filters or kernels of size 𝑛 × 𝑛, 

where 𝑛 determines the size of the neighborhood considered by the kernel. Some examples 

commonly used filters for texture analysis include statistical filters like average filter, range 

filter, and entropy filter or edge filters like Prewitt filter, Sobel filter, Laplacian filter, and 

Laplacian of Gaussian (LoG) filter. The input image is convolved with the desired kernel 
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to produce filtered images highlighting specific texture information in the original texture 

image. The resultant filtered images are analyzed using first order statistics (mean, median, 

and standard deviation). Statistical and edge filtering techniques have been applied to 

medical images for texture analysis in a number of applications [20, 77, 168-176].  

Apart from statistical and edge kernels, special kernels have also been designed for 

identifying different types of textures. For example, Laws designed three sets of 

one-dimensional convolution masks of different sizes corresponding to different types of 

textures such as level, edge, spot, wave, ripple, undulation, and oscillation [28, 177]. All 

the convolution masks were center weighted, symmetric or asymmetric and zero-sum 

except the level convolution masks.  Using a vector product between the masks of the same 

sizes, different spatial domain filters or kernels of size 3x3, 5x5, and 7x7 were generated 

by Laws.  Laws texture energy measures have been used in filtering input medical images 

for texture analysis in many applications [103, 178-189]. Another example of a specially 

designed kernel is the fractal dimension kernel designed by Al Kadi et al. [18]. Examples 

of different techniques for filtering in the spatial domain have been illustrated in 

Figure 5.5. 
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Figure 5.5 Illustration of different techniques used for spatial domain filtering (a) statistical 

kernel (e.g. median filter) (b) Edge kernel (e.g. Laplacian of Gaussian filter) (c) Special 

kernel (e.g. Fractal dimension filter). Modified from [18-20]. 

The value of 𝑛 (size of the kernel neighborhood) is determined by the spatial 

resolution of the image being filtered. Higher the spatial resolution of the image being 

filtered, higher the value of neighborhood, 𝑛, used for filtering. However, further research 

is required to standardize the size of the neighborhood for different resolution images 

acquired using different imaging modalities. 

b) Multi-resolution image scaling 

The frequency of variations in the gray level values in a region of interest is dependent on 

the scale of the region of interest. The frequency content within an image can be analyzed 
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at different scales using wavelets [190-193]. Image texture can be analyzed at different 

scales by representing the image in a pyramid structure. Using discrete wavelet transform, 

four low resolution images can be obtained from the original image viz. ILL, ILH, IHL, and 

IHH. By repeatedly applying discrete wavelet transform on ILL at each level, hierarchical 

pyramid structure for different resolutions can be created. 

Texture analysis can be done by computing statistical texture features at each level 

or averaging the results across multiple resolutions. Wavelets have been extensively used 

in multiresolution texture analysis of medical images [20, 30, 102, 113, 117-121, 126, 129, 

132, 142, 189, 194]. The use of multiresolution can decompose the data into different 

frequency components, thereby facilitating the study of each component with a resolution 

matched to its scale. Figure 5.6 illustrates multiresolution scaling on an example breast 

MRI diffusion weighted image [21].   
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Figure 5.6.  Multiresolution methods applied to a diffusion-weighted image (𝑏 = 500): a) 

the original size 256x256; b) compressed image (64x64) at different levels. c) For 

compression 2D biorthogonal spline wavelets were used. 𝑑      𝑗
(ℎ) , 𝑑      𝑗

(𝑣)  and 𝑑     𝑗
(𝑑)  respectively 

are detail components corresponding to vertical, horizontal, and diagonal. 𝑎𝑗, is the 

approximation (coarse) component at decomposition level.  Modified from [21]. 

5.3 Radiomics applications 

In early applications to medical imaging, the majority of methods used texture analysis, 

which, then evolved into the current application of radiomics. An extensive review on the 

applications of both texture and radiomics analysis in neurologic pathologies can be found 

in [195]. In this chapter, I review the application of these analyses to mostly body 

applications. 
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5.3.1 Lung 

a) X-Ray 

Texture analysis was first used in 1972 for automatic classification of pulmonary disease 

by Sutton and Hall [77]. They employed texture measures of symmetry, directional 

gradient, and Fourier domain energy on a dataset of 24 patients to classify between lung 

tissue using linear discriminant analysis. The authors observed that the texture features 

based on directional gradient gave the best classification accuracy. The training 

classification accuracy was achieved at 92% while the testing classification accuracy was 

achieved at 84%. This study was directed towards demonstrating the usefulness of texture 

in automatic screening of chest radiographs.  

b) Computed Tomography 

Al-Kadi and Watson implemented the differential box counting based fractal analysis 

method as well as lacunarity analysis on contrast enhanced (CE) CT images for 

differentiation of aggressive malignant lung tumors from the nonaggressive ones on a 

cohort of 15 patients [18]. The authors achieved an accuracy of 83.3% for distinguishing 

between these two groups using average fractal dimension. The authors also observed high 

correlation between the average fractal dimension and tumor uptake of 18FDG obtained 

using PET.  

Ganeshan et al. [171] developed texture features using multiscale (fine to coarse) 

application of spatial domain filtering algorithm LoG (Laplacian of Gaussian) followed by 

extraction of statistical features of mean gray intensity (MGI) along with entropy (E) and 

uniformity (U) on unenhanced CT scans of 18 non-small cell lung cancer patients to 

correlate with tumor glucose metabolism and stage. The authors found significant 



Chapter 5. Review on Radiomics 

 100   
 

associations between coarse texture features and tumor standard uptake value (SUV) and 

fine texture features and tumor stage.  In another study, Ganeshan et al. [174] used the 

texture feature of uniformity to associate with patient survival in a study of 54 patients. 

The authors observed that patients with coarse texture uniformity of less than 0.62 did not 

survive more than two and a half years. The same research group further extended their 

research to correlate texture features with histopathological markers of angiogenesis and 

hypoxia on a dataset of 14 patients with unenhanced as well as CE CT images [175]. The 

same texture analysis method was employed with different statistical features (standard 

deviation (SD) along with mean (MPP) and uniformity (UPP) of positive pixel 

distribution). The results indicated significant associations between texture features and 

average intensity of tumor staining with pimonidazole, tumor Glut-1 expression, and tumor 

CD34 expression. The relationships between image features and the histograms generated 

at different scales using spatial domain filtering algorithm, LoG have also been analyzed 

by the same group to provide clinical understanding of results [196].  

Aerts et al. [30] used texture features based on first order statistics, GLCMs, GLRL 

matrices at multiple scales using wavelets on CT images of 1019 patients with non-small 

cell lung cancer or head-and-neck (H&N) cancer to associate radiomic features with 

primary tumor stage as well as patient survival. The radiomic features of first order 

statistics energy, shape compactness, and gray level nonuniformity (GLRL feature) 

obtained from unscaled data as well as wavelet HLH scaled data were found to be most 

significant. Good to moderate prediction concordance indices (CIs) of 0.65, 0.69, and 0.69 

were achieved on one lung cancer validation dataset of 225 patients and two H&N datasets 

of 136 and 95 patients. The authors found significant associations between radiomic 
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features and gene expression patterns indicating the utility of radiomic features in 

characterizing underlying biological mechanisms. Strong correlations were observed 

between the radiomic features (GLRL gray level non-uniformity obtained from unscaled 

data as well as wavelet HLH scaled data) and cell cycling pathways, demonstrating higher 

proliferation for more heterogeneous tumors. 

Recent studies by the same group achieved low AUCs of 0.66 (lung cancer) using 

random forest and CIs of 0.6 (lung cancer) and 0.68 (H&N cancer) using consensus 

clustering on the same set of radiomic features for predicting patient survival, which needs 

further investigation [120, 121]. Moreover, using consensus clustering, the authors also 

found either no or some association between consensus clusters and lung stage (AUC 

=0.61), lung histology (AUC=0.56), H&N stage (AUC=0.77), and H&N histology 

(AUC=0.58) based on the poor AUC.  However, these are essentially low AUCs and more 

research is needed. 

The same group used additional texture features based on first order statistics 

obtained after the application of LoG filter in addition to the other radiomic features used 

previously on a cohort of 182 patients to predict probability of distant metastasis in lung 

adenocarcinoma in addition to patient survival [20]. The authors found thirty-five radiomic 

features to be somewhat prognostic for distant metastasis (CI>0.6) and twelve features for 

patient survival (CI=0.55). The authors reported four features based on the LoG filter to be 

trending for potentially prognostic for distant metastasis and patient survival. A recent 

study by the same group tested two new features of entropy ratio and convexity for 

association with patient survival in lung adenocarcinoma using two independent patient 
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cohorts of 61 and 47 patients [122]. The authors found significant association between the 

two features and patient survival for only the first cohort. 

In summary, statistical features obtained from LoG based spatial domain filtering 

of tumors at coarse level were found to be more predictive in different applications than 

statistical features obtained at fine level. A LoG filter highlights the edges within an ROI, 

suggesting that edges found by the filter using a wider Gaussian were more informative 

than edges produced using a narrow Gaussian. This may be because edges found using a 

narrow Gaussian are more susceptible to noise in the input image, Furthermore, LoG based 

features were also found to be more informative than statistical features based on first order 

statistics, GLCM and GLRL [20].  

c) PET 

Cook et al. [10] investigated the texture features obtained from NGTDM extracted from 

FDG PET images of 53 non-small cell lung cancer patients for association with 

chemoradiotherapy response and survival. The texture features were compared to the three 

survival groups (overall survival (OS), progression free survival (PFS), and local PFS 

(LPFS) obtained using RECIST (Response Evaluation Criteria in Solid Tumors) criteria. 

The authors found the texture features of coarseness, busyness, and contrast to significantly 

predict survival in the patient cohort as summarized in Table 5.3. The authors observed 

that responders had lower coarseness but higher contrast and busyness than 

non-responders. This suggests that the texture obtained for tumors corresponding to 

responders is less uniform with high frequency of intensity changes; i.e., they are more 

heterogeneous than tumors corresponding to non-responders. 
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Table 5.3 Summary of coarseness, contrast, busyness and complexity values 

corresponding to responders and non-responders of NSCLC obtained using Lung PET as 

reported in the literature [10]. 

Pathology Coarseness Contrast Busyness Complexity 

Responders 0.01 0.11 0.76 1938 

Non-responders 0.03 0.04 0.37 1926 

 

d) PET-CT 

Vaidya M et al. [111] used FDG-PET/CT dataset of 27 patients for characterization of 

radiotherapy tumor response in non-small cell lung cancer. Texture features of first order 

statistics and gray level co-occurrence matrix features were combined with the SUV/HU 

(Hounsfield units) measurements in this study. The model was built using logistic 

regression and resampling methods of cross validation and bootstrapping. The authors 

observed that the first order statistics features obtained from intensity volume histogram 

correlated more strongly with loco-regional control in contrast with the GLCM based 

features which correlated more strongly with local control. 

5.3.2 Breast  

a) Mammogram 

Texture analysis was first used on mammograms in 1986 by Magnin et al. [123] to evaluate 

the risk for developing breast cancer.  GLCM based texture features were used in this study. 

However, this study did not yield very good results with reproducibility barely reaching 

80%. Wei et al. [126] successfully implemented GLCM based texture analysis at multiple 

scales using wavelets on 672 ROIs to classify between biopsy proven masses and normal 

parenchyma using linear discriminant analysis. They achieved an AUC of 0.89 on the 
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training set and an AUC of 0.86 on the test set. A study by Chan et al. [131] investigated 

the use of texture analysis on mammograms for associating the presence of clustered 

microcalcifications with malignant pathology. The authors implemented the GLCM texture 

features on a set of 86 mammograms followed by a backpropagation artificial neural 

network classifier to achieve an AUC of 0.88. Multiple studies have since investigated the 

use of texture analysis on mammograms for detection of masses [11, 12, 103, 132, 134, 

136, 142, 165, 180, 183, 197-199] with an average AUC of 0.87 and a maximum AUC of 

0.96  achieved with texture features obtained using first order statistics based features, 

GLCM based features, GLRL matrix based features and Law’s texture energy measures.  

The quantitative values of the fractal dimension obtained from breast mammograms 

corresponding to normal, mass, and architectural distortion as reported in the literature are 

summarized in Table 5.4. 

Table 5.4. Summary of fractal dimension values corresponding to different breast tissue 

classes obtained using mammogram as reported in the literature [11, 12]. 

Tissue class Fractal 
dimension 

Normal 2.64 

Mass 2.39 

Architectural distortion 2.52 

 

b) Ultrasound 

Garra et al. [86] performed texture analysis (first order statistics, GLCM, and fractal 

dimension) on breast ultrasound in a cohort of 80 patients. The authors were able to identify 

malignant lesions with a sensitivity of 100% and specificity of 80% (78% for 

fibroadenoma, 73% for cysts, and 91% for fibrocystic nodules). The best features identified 
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in this study were GLCM based contrast with 𝜃 = 45° and GLCM based correlation with 

𝜃 = 0°. Numerous studies have since used texture analysis to differentiate between benign 

and malignant breast lesions using ultrasound [138, 189, 194, 200]. 

c) MRI 

The first application of texture analysis in breast MRI was in 1997 by Sinha et al. [1]. This 

study included 43 breast cases (23 benign and 20 malignant) and used eight texture features 

in combination with patient age and the DCE-MRI parameter of maximum enhancement 

to obtain sensitivity and specificity of 93% and 95%, respectively. In reality, it was 

radiomics, since they compared the results to an outcome or clinical variable.  Moreover, 

Gibbs et al. [13] implemented GLCM based texture features to differentiate between 

benign and malignant breast tumors on post contrast MRI images from 79 patients. Texture 

features of variance, entropy, and sum entropy were found to be most significant using 

logistic regression analysis and the ROC analysis resulted in an excellent AUC of 0.92. 

Similarity, Ertas et al. [2] extracted first order statistics from normalized maximum 

intensity-time ratio (nMITR) projection generated using DCE-MRI to classify between 

benign and malignant breast tumors in 46 patients. The texture features of entropy, mean, 

standard deviation, and maximum were observed to be the most significant (p<0.001) with 

excellent AUCs between 0.86 and 0.97. 

Nie et al. [143] used GLCM based features along with morphological features to 

distinguish between benign and malignant tumors using post contrast MRI images of 71 

patients. The authors found the texture features of compactness, normalized radial length 

entropy, volume, and GLCM based features of entropy, sum average, and homogeneity to 

most significantly differentiate benign and malignant tumors and obtained an AUC of 0.82. 
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The same group compared the two feature selection and classification methods of logistic 

regression and artificial neural network for the task of classifying malignant breast tumors 

from benign breast tumors [146]. The authors found there was no significant difference in 

the results obtained from the two methods. 

Instead of using post contrast MRI images, Karahaliou et al. [16] used parametric 

maps derived from DCE-MRI (e.g. signal enhancement ratio map) to extract GLCM based 

features. The authors found the GLCM ASM, GLCM entropy, and GLCM sum entropy 

obtained from signal enhancement ratio (SER) map as the most discriminative features 

producing an AUC of 0.92. Agner et al. [19] used kernels based on GLCM features along 

with other filters on the DCE MRI images in a dataset containing 41 patients for 

differentiating malignant from benign breast tumors. The authors created textural kinetic 

curves by computing the mean of the filtered image within the region of interest across the 

DCE sequence of images. The textural kinetic curves were classified using a probabilistic 

boosting tree and achieved sensitivity and specificity of 99% and 76%, respectively. In a 

recent study, Wang et al. [154] used morphological and GLCM texture features in 

combination with pharmacokinetic parameters obtained from DCE-MRI to classify 

between benign and malignant breast tumors. The authors found the texture feature of 

GLCM entropy, GLCM energy, and compactness along with pharmacokinetic parameters 

of rate constant (kep) and volume of plasma (vp) to be the most discriminative with 

sensitivity and specificity of 91% and 92%, respectively. Cai et al. [152] used GLCM based 

texture features from DCE-MRI in combination with ADC, kinetic curve features, and 

morphological features to distinguish between benign and malignant breast tumors on a 

cohort of 234 patients. The authors achieved sensitivity and specificity of 85% and 89%, 
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respectively. They also tested the same set of features on a validation dataset consisting of 

93 patients and achieved sensitivity and specificity of 69% and 91%, respectively [151]. 

Holi et al. [106] applied texture analysis (first order statistics, GLCM, GLRL) on 

T1-weighted pre contrast, post contrast and subtraction breast MRI datasets from twenty 

patients in order to associate texture features with histological types of invasive breast 

cancer (lobular vs. ductal). The authors identified the entropy based GLCM features to be 

the most effective features and were able to achieve a maximum accuracy of 100% using 

linear discriminant analysis (LDA) and nonlinear discriminant analysis (NDA) on the first 

subtraction and contrast images. 

A recent study by Ahmed et al. [15] performed GLCM based features on breast MRI to 

predict chemotherapy response in 100 breast cancer patients. The authors found the texture 

features of contrast, variance, difference in variance, sum variance, sum entropy, sum 

average, cluster shade, and cluster prominence showed significant difference between 

responders and partial responders of chemotherapy when implemented on post contrast 

images. Parikh et al. [201] used multiscale LoG filter followed by extraction of first order 

statistical features from T2-weighted MRI of 36 patients to predict chemotherapy response. 

The authors found the texture features of entropy and uniformity showed significant 

different between responders and non-responders with an AUC of 0.84. 

 In summary, post contrast enhanced MRI was the most frequently used image for 

texture analysis of breast tumors. This is consistent with the clinical environment where 

radiologists also use post contrast enhanced MRI to discern textural features corresponding 

to breast tumors. The quantitative values of the texture features obtained using post contrast 
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enhanced breast MRI images for benign and malignant lesions reported in the literature are 

summarized in Table 5.5.  

  The quantitative texture values of entropy, energy, etc. obtained from various 

studies may be difficult to compare due to several reasons.  For example, the use of 

different magnet strengths (1.5 or 3T), different preprocessing steps, binning methods, and 

gray level normalization. However, a trend in the quantitative values can still be observed, 

for example, entropy and contrast values tend to be increased for malignant compared to 

benign and/or normal tissue.  These metrics may provide an insight into the heterogeneity 

of the tumor tissue. Based on the current literature, It may be inferred that malignant tumor 

tissue is more heterogeneous (high entropy, low uniformity, and high contrast) than benign 

tumor tissue and seen in pathological samples [202]. This correlation is the impetus for 

further radiomics research in developing noninvasive tools for clinical decision.  
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Table 5.5. Summary of quantitative values of four GLCM based features obtained using 

post contrast enhanced breast MRI images for benign and malignant lesions as reported in 

the literature [1, 13-16].  

    Benign lesion Malignant lesion 

Referenc
e 

Image 
analyzed 

Pre-
processing GL ASM H Con Cor ASM H Con Cor 

Sinha et 
al. [1] 

Post 
contrast 

DCE-MRI 
None 16 0.02 1.96 34.3 - 0.01 2.27 535.8 - 

Ahmed 
et 

al. [15] 

Post 
contrast 

DCE-MRI 
H.Eq 16 - - - - 0.01 7.13 8.5 0.8 

Gibbs et 
al. [13, 

14] 

Post 
contrast 

DCE-MRI 
H,Eq 32 0.004 5.85 25.5 0.84 0.004 5.94 23.2 0.86 

Chen et 
al. [14] 

Post 
contrast 

DCE-MRI 
H.Eq 32 0.01 5.41 52.1 0.6 0.01 5.44 75.8 0.6 

Chen et 
al. [14] 

Post 
contrast 

DCE-MRI 
H.Eq 32 0.01 5.12 67.5 0.5 0.01 5.26 69.2 0.55 

Karahili
ou et 

al. [16] 
SER map None 64 0.025 1.71 12.8 0.37 0.01 2.12 23.8 0.51 

Parekh 
et al. 

[Chapter
 6] 

Post 
contrast 

DCE-MRI 
None 256 0.002 6.44 351.28 0.69 0.001 7.24 294.53 0.79 

H.Eq =histogram equalization  
SER= signal enhancement ratio  
GL = gray levels 
ASM = angular second moment 
H = GLCM Entropy  
Con = Contrast 
Cor = Correlation. 

5.3.3 Liver 

a) Computed Tomography 

Mir et al. [125] implemented texture analysis based on GLCMs and GLRL on the liver CT 

images of 60 patients to classify the CT images as normal liver, clearly visible malignancy, 
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and invisible malignancy. The authors found the texture features of entropy (normal: 

1.65±0.12, visible malignancy: 2.13±0.17, invisible malignancy: 1.64±0.08), local 

homogeneity (normal: 2.30±0.25, visible malignancy: 1.48±0.21, and invisible 

malignancy: 2.23±0.15), and gray level distribution (normal: 5.54±0.31, visible 

malignancy: 2.09±0.61, invisible malignancy: 4.72±0.54) to be the most significant. Chen 

et al. [135] used fractal analysis along with GLCM based features to classify the liver 

tumors as hemangioma or hepatoma in a dataset of 30 patients. Using modified 

probabilistic neural network classifier, the authors were able to achieve classification 

accuracy of 83%. In a study by Gletsos et al. [140], GLCM based features were used to 

classify the CT focal liver lesions of 147 patients into four classes (normal, hepatic cysts, 

hemangioma, and hepatocellular carcinomas). The authors used three sequentially placed 

feed forward neural networks and achieved excellent accuracies of 97%, 100%, and 82% 

in classifying the normal from abnormal, hepatic cysts from others, and hemangioma from 

hepatocellular carcinomas, respectively. Huang et al. [203] used autocovariance function 

on a dataset of 164 liver CT images to classify malignant (hepatocellular carcinomas and 

colorectal metastases) lesions from benign lesions and achieved moderate sensitivity and 

specificity of 75% and 88%, respectively.  

b) MRI 

Jirak et al. [91] extracted first order statistical and GLCM based texture features using 

T2-weighted MRI images obtained from 43 patients to classify between healthy and 

cirrhotic liver. The authors achieved classification error around 8%. Along with T2-

weighted MRI images, Mayerhoefer et al. [105] also extracted texture features (first order 

statistics, GLCM, and GLRL matrix) from T1-weighted images to classify focal liver 
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lesions achieving error rates of 12-18% on T2-weighted images and 16-18% to 

T1-weighted images. Fujimoto et al. [110] used entropy of ADC to classify normal from 

abnormal fibrosis stage (AUC =0.94, p<0.001, entropy cutoff = 1.30). ADC maps were 

created using diffusion weighted MRI (b =0 and 1000 s/mm2). O’ Connor et al. [108] 

quantified tumor heterogeneity using first order statistics on voxel-wise Ktrans, ve, and vp 

and fractal dimension analysis on DCE-MRI data obtained from 10 patients with 26 

colorectal cancer liver metastases to predict shrinkage in tumor volume in response to 

bevacizumab and cytotoxic chemotherapy. The authors found the median ve, tumor 

enhancing fraction (Ef), and microvascular uniformity obtained using fractal dimension to 

be the most significant features and the median classification error was achieved at 12%.  

c) Ultrasound 

Texture analysis was first implemented on liver ultrasound images in 1985 by 

Raeth et al. [85] to classify liver into normal, diffuse parenchymal, and malignant disease 

on a dataset of 71 patients with an accuracy of 96%. Wu et al. [124] used multiresolution 

fractal analysis to classify between normal liver, hepatoma, and cirrhosis on a dataset of 40 

patients and achieved an accuracy of 90%. The authors observed that multiresolution 

fractal analysis features outperformed the GLCM based texture features as well as Laws 

texture energy measures. Sujana et al. [87] extracted first order statistical features along 

with GLCM and GLRL matrix based features to classify liver ultrasound images from 113 

patients into normal, hemangioma, and malignant categories. Using artificial neural 

network, the authors were able to achieve classification accuracy of 100%. 

Horng et al. [139]  developed a new texture analysis method called texture feature coding 

to classify liver ultrasound images into normal, hepatitis, and cirrhosis on 120 patients (30 
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training and 90 test images). The authors achieved an accuracy of 86.7% as compared to 

75.7% obtained by the same group using GLCM, texture spectrum, and fractal dimension 

based features [127]. Yoshida et al. [94] used multiresolution analysis on a dataset of 44 

patients and obtained an AUC of 0.92 in classifying malignant from benign lesions.  

Numerous studies have since used texture analysis to classify focal hepatic lesions 

using ultrasound [181, 185, 204-208]. A comparative study of different texture analysis 

approaches implemented in the literature can be found in [209]. A recent implementation 

by Mitrea et al. [188] extracted GLCM based texture features from the Laws texture energy 

images obtained from filtering liver ultrasound images and achieved an accuracy of 90% 

in liver cancer detection.   

5.3.4 Colorectal cancer 

a) Computed Tomography 

A study by Ganeshan et al. [168] investigated the use of texture analysis of liver on 28 

patients with colorectal cancer. The authors used multiscale (fine to coarse) application of 

the spatial domain filtering algorithm LoG followed by extraction of first order statistical 

features. The authors observed that the relative scale texture parameter correlated inversely 

with the corresponding PET SUV metric (𝑟 = −0.59, 𝑝 = 0.007) and hepatic 

phosphorylation index (HPFI) (𝑟 = −0.59, 𝑝 = 0.006). There was a positive correlation 

with the total hepatic perfusion (THP) (𝑟 = 0.51, 𝑝 = 0.02) and hepatic portal perfusion 

(HPP) (𝑟 = 0.45, 0.05) for patients without liver metastases. The same research group used 

the same set of texture features obtained from liver CT to predict survival in patients with 

colorectal cancer [170]. The texture feature of uniformity was obtained for the scale ratios 

of 1.5 (fine) to 2.5 (course) and 2 (medium) to 2.5(coarse) were observed to be significant 
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(p<0.005) prognostic factors for surival.  Goh et al. [210] extracted fractal dimension based 

features from colorectal perfusion CT images of 20 patients to differentiate between colon 

cancer and normal bowel. The authors found the fractal dimension and fractal abundance 

were significantly (𝑝 ≤ 0.001) higher for colon cancer (1.71 ± 0.07 and 7.82 ± 0.62) 

than normal bowel (1.61 ± 0.07 and 6.89 ± 0.47). Cui et al. [109] used fractal dimension 

analysis on CT images obtained from 228 patients to classify the status of lymph nodes in 

rectal cancer as benign or malignant. The authors were able to classify the malignant nodes 

from benign nodes with an accuracy of 88%. 

 Ganeshan et al. [172] used their previously developed multiscale texture analysis 

algorithm on dynamic contrast enhanced CT of the liver obtained from 27 patients to 

classify between node negative and not positive non metastatic colorectal cancer. The 

authors observed significant difference in entropy and uniformity of the node negative and 

node positive patients. Using fine texture entropy of the images obtained between 26 and 

30 seconds after contrast injection, the authors were able to achieve sensitivity and 

specificity of 100% and 71% respectively in identifying node positive patients (entropy 

cutoff ≤ 0.0807). The same group used texture analysis of the colorectal tumor obtained 

from contrast enhanced CT of 57 patients to define biomarkers for 5-year survival [176]. 

The authors used the texture features of fine scale entropy, uniformity, kurtosis, skewness, 

and standard deviation to define the five-year survival rate with the corresponding cutoffs 

at less than 7.89 for entropy, greater than 0.01 for uniformity, less than 2.48 for kurtosis, 

greater than 20.38 for skewness, and less than 61.83 for standard deviation.  

5.3.5 Head and Neck 

a) Computed Tomography 
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Leijenaar et al. [118] chose four radiomic features (Energy, compactness, GLRL 

non-uniformity and wavelet GLRL non-uniformity obtained by Aerts et al. [30] described 

previously to investigate their prognostic ability on 542 oropharyngeal squamous cell 

carcinoma (OPSCC) patients that underwent CT. The features were weighted in a Cox 

model [211] to develop and test a prognostic index for validation of the radiomic 

signatures. The authors observed that the Kaplan-Meiyer survival curves were significantly 

different (𝑝 < 0.05) between low and high radiomic signature predictions using a log-rank 

test, however, the C-index was 0.628 which is lower than reported in previous reports (C 

index=0.686 and 0.685) [30] 

b) PET 

El Naqa et al. [144] explored the GLCM texture and features on a cohort of nine head & 

neck patients and 14 cervical cancer patients undergoing chemoradiotherapy and imaged 

with PET. The most discriminative features from the GLCM included energy, contrast, 

local homogeneity, and entropy.  The authors were able to achieve moderate to high AUCs 

of 0.76 (cervical cancer) and 1.0 (H&N) on the very small datasets indicating a potential 

usefulness of texture in PET imaging. For cervical cancer, the GLCM entropy of the CTV 

(clinical tumor volume) was much lower (3.6) than that of the tumor (5.3). A similar trend 

was observed for H&N cancer as well where entropy of the CTV was 3.8 and that of the 

tumor was 4.7.  

5.3.6 Esophageal cancer 

a) PET 

Tixier et al. [17] used first order texture features from the GLCM, GLRL matrix and 

NGTDM on a PET dataset to classify between response in 41 esophageal cancer patients 



Chapter 5. Review on Radiomics 

 115   
 

treated with chemoradiation. The authors found the texture features of GLCM entropy 

(sensitivity=79%, specificity=91%) and GLCM angular second moment (sensitivity=88%, 

specificity=73%) along with size (sensitivity=76%, specificity=91%) and intensity 

variabilities (sensitivity=76%, specificity=91%) of uniform zones were the most 

discriminative between responders and non-responders compared to the SUVmax 

(sensitivity=46%, specificity=91%).  

5.3.7 Adnexal lesion 

a) MRI 

Kierans et al. [4] extracted first order statistical features of entropy from ADC maps to 

classify between benign and malignant adnexal lesions in 37 patients. The average entropy 

ADC was significantly higher for malignant (4.94±0.4) than benign (4.54±0.44) lesions.  

However, the sensitivity (66.7%) and specificity (82.4%) of the entropy ADC was low in 

diagnostic performance. 

5.3.8 Prostate lesion 

a) MRI 

Wibmer et al. [212] performed GLCM texture analysis on T2-weighted and diffusion 

weighted MRI of prostate obtained from 147 patients to associate the results with Gleason 

score as well as cancer detection. The authors used five GLCM features of inertia, entropy, 

energy, correlation, and homogeneity for analysis. According to the authors, the texture 

features of cluster shade and cluster prominence “over-emphasize” the other GLCM 

features such as energy, entropy, homogeneity, and contrast and hence were not used. 

There were a total of 186 cancerous lesions in the 147 patients with 143 lesions in the 

posterior zone (PZ) and 43 lesions in the transition zone (TZ). The authors observed a 
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similar trend in the GLCM texture features obtained from PZ tissue in both ADC map and 

T2WI as well as from TZ tissue in ADC map. For all these cases, the GLCM texture 

features of entropy and inertia were significantly higher for cancer while the remaining 

three features were significantly lower for cancer than non-cancerous tissue (𝑝 <

0.0001 − 0.008). Furthermore, the authors observed that only the GLCM texture features 

inertia (𝑝 = 0.001) and correlation (𝑝 = 0.041) obtained from T2 were significantly 

different between TZ cancerous and non-cancerous tissue. Moreover, when compared to 

Gleason score, GLCM energy was lower while GLCM entropy was higher for increased 

Gleason scores (𝑝 < 0.05 for all inter-score GLCM feature values).  

5.4 Discussion 

Radiomics and texture analysis have been widely used for diagnosis and prognosis in many 

different applications. In fact, some of the initial applications of texture analysis date back 

to 1970s. The most commonly implemented features across all the applications are based 

on GLCMs. The reason behind the popularity of GLCMs as the texture analysis method of 

choice is because the GLCM features analyze the inter-voxel relationships in both voxels 

that are in immediate neighborhood as well as voxels that are far apart. Moreover, GLCMs 

are easy to implement and the features are more intuitive to interpret. In spite of being the 

most popular method, the features identified as the most predictive GLCM features are not 

consistent across different applications. In fact, the most predictive GLCM features are not 

even consistent within the same organ, same modality, and the same diagnostic application. 

For example, in breast MRI, the texture features identified as the most important for 

diagnosis were not consistent across different implementations in the literature. For 

example, Sinha et al. [1] observed the GLCM features of difference entropy, contrast, sum 
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entropy, and inverse difference of moments to be the most predictive, Gibbs et al. [13] 

observed the GLCM features of variance, entropy and sum entropy as the most predictive 

and Nie et al. [143] observed the GLCM features of entropy, sum average, and 

homogeneity as the most predictive in classifying benign from malignant breast lesions. 

Moreover, all the studies demonstrated excellent results. The variations in the radiomics 

results may arise from the image preprocessing steps such as segmentation, image 

quantization (for statistical features), neighborhood size (for statistical and filtering 

features), or the modeling steps of feature selection and classification. 

  The development of a texture feature set that is consistent across different 

modalities, organs and pathologies may not be possible or practical. This is because 

different modalities highlight separate characteristics of the tissue of interest. Furthermore, 

different organs may have distinct inherent texture. However, it is very important to 

develop a consistent feature subspace for each application even though different 

applications may have different feature subspaces. Furthermore, consistency in feature 

subspaces is also required to understand and correlate the texture features with tissue 

biology. For example, if the entropy values of benign and malignant tumors are 

significantly different for one research and not for another, it is not possible to establish 

any correlation between tumor biology and texture values. In the following chapters 

(Chapter 7 and 8), I will discuss these shortcomings in further detail and develop methods 

to address these shortcomings.  
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Chapter 6. Radiomic feature mapping for visualization 

and characterization of texture in normal and 

pathological tissue 

6.1 Introduction 

In Chapter 5, I introduced the field of radiomics and its application to various organs for 

clinical decision support. The current radiomic methods extract information about the 

gray-scale patterns, inter-pixel relationships, and shape-based properties of the region of 

interest (ROI) [24-30]. However, these methods in radiomics have certain limitations as 

detailed below.  

1. Radiomic features are dependent on the size of region of interest. For example, the 

range of values that the first order entropy feature can take varies between 0 and 

log2𝑁, where N is the number of voxels in the tissue. Therefore, larger 

homogeneous tumors could be misinterpreted as being heterogeneous when 

compared to a significantly smaller heterogeneous tumor.  

2. Radiomic features are not standardized. The values a radiomic feature takes are 

dependent on size and preprocessing steps such as image quantization and image 

filtering. 

3. Radiomic metrics for normal tissue has not yet been established. This is very 

important because a quantitative metric for normal tissue can be evaluated and used 

to standardize the metrics for abnormal tissue. 
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4. The understanding of what these features mean and how they correlate to tissue 

biology is limited.  

This chapter presents the radiomic feature mapping (RFM) framework to overcome 

the limitations of current methods in radiomics. The RFM framework uses radiomic filters 

to transform radiological images into radiomic feature maps for visualization and analysis 

of textural information present in the images. The motivation behind the development of 

radiomic feature mapping is to empower the radiologists with the ability to “see” the hidden 

textural information present in the radiological images and correlate it with tissue biology.   

I developed the RFM framework for radiomic analysis using breast multiparametric 

magnetic resonance imaging (mpMRI). The unique ability of mpMRI to better characterize 

tissue parameters using the different contrasts of each sequence provides us with an 

opportunity to develop standardized radiomic metrics and better correlate them to tissue 

biology. The mpMRI of breast involves acquisition of conventional T1- and T2-weighted 

images and advanced functional MRI parameters of dynamic contrast enhanced-MRI 

(DCE-MRI) and diffusion weighted imaging (DWI) with apparent diffusion coefficient 

(ADC) mapping.  The DCE-MRI is a time series acquisition of T1-weighted scans that 

results in time intensity curves corresponding to the different tissue vascularity. Moreover, 

these differences can be evaluated using pharmacokinetic modeling (PK) of the temporal 

DCE.  Similarly, radiomic analysis of the PK images could produce textural evolution 

curves and provide insight into the underlying vascular “texture” heterogeneity 

corresponding to different tissue types. Radiomic analysis applied to the ADC mapping 

obtained from DWI could help investigate the underlying cellular heterogeneity of the 

tissue of interest, where the DWI measures the intra- and extra-cellular water content.  
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In this chapter, I developed standardized temporal evolution curves from DCE-MRI 

RFMs for evaluation of vascular heterogeneity and standardized diffusion evolution curves 

from DWI RFMs for evaluation of cellular heterogeneity.  Furthermore, I analyzed the 

diagnostic capabilities of RFM features for prediction of breast tumors as benign or 

malignant using a novel multiview feature embedding and classification model. The rest 

of the chapter is organized as follows: Section 6.2 introduces the novel radiomic feature 

mapping (RFM) algorithm and the new radiomic metrics developed in this thesis, followed 

by the details of patient population, MRI parameters acquired and image analysis 

techniques in Section 6.3. The application of RFM on multiparametric MRI (mpMRI) 

datasets of breast for correlation with tissue biology and tumor diagnosis is discussed in 

Section 6.4. The final section of this chapter discusses the advantages and limitations of 

the different techniques developed in this chapter for the development of potential 

precision medicine biomarkers.  

Publication from this work and author contributions 

Publication 

V. S. Parekh and M. A. Jacobs, "Integrated radiomic framework for breast cancer and 

tumor biology using advanced machine learning and multiparametric MRI," NPJ breast 

cancer, vol. 3, p. 43, 2017  

Author contributions 

I wrote the complete chapter. Dr. Jacobs reviewed it and helped with the editing. 

I developed the algorithms for radiomics (RFM) and patient classification (IsoSVM), the 

mathematical formulae for standardized DCE (texture evolution curves) and DWI 

radiomics (texture evolution metric), and did the entire implementation. I performed all the 

data analysis described in this chapter.  
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6.2 Radiomic Feature Mapping algorithm 

The radiomic feature mapping algorithm transforms any radiological image into a radiomic 

feature map (RFM) using a radiomic filter based on either first or higher order statistical 

features described in Chapter 5. A large number of RFMs can be generated from a 

radiological image by filtering it with different radiomic filters. The RFM algorithm is 

dependent on three parameters: 𝑆 × 𝑆, the size of radiomic filters; 𝐺, the number of gray 

levels used to quantize the input radiological image and 𝐹, the set of radiomic filters used. 

The size of the radiomic filters or the neighborhood scaling parameter, 𝑆 is determined by 

the user depending on the spatial resolution of the input image. The value of 𝐺 is 

determined by the user based on the range of intensities as well as the number of bits 

required to represent voxel intensity in the input image. The RFM algorithm is described 

in Algorithm 6.1. 

Algorithm 6.1 Radiomics Feature Mapping algorithm 
Inputs: 
𝑖𝑚𝑔: 𝑁 × 𝑁 sized radiological image 
𝐹: set of radiomic filters 
𝑆: filter size (3, 5, 7, 9, …) 
𝐺: number of gray levels to use for gray level quantization (2, 4, 8, 16, 32, 64, 128, …) 
Output: 𝑅𝐹𝑀𝑆: set of radiomic feature maps  
Initialization: initialize each map in RFMS to N x N null matrix. 
1: Quantize 𝑖𝑚𝑔 to 𝐺 gray levels 
2: for each function, 𝑓 in 𝐹 
3:     for each sliding window, 𝑊 of size 𝑆 ×  𝑆 in 𝑖𝑚𝑔 
4:         Evaluate 𝑊 using statistical function, 𝑓 to get radiomic metric for 𝑊 
5:         Set the center voxel position of 𝑊 in 𝑅𝐹𝑀𝑆𝑓 to the calculated radiomic metric 
6: return 𝑅𝐹𝑀𝑆 
 

The means of the radiomic values were calculated from different regions of interest 

(ROI) in each RFM as features for classification and further analysis. Consequently, every 

RFM feature from every patient corresponds to the average value taken from sliding same 
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sized image window (𝑊 ×𝑊) across the whole ROI ensuring there is no mathematical 

dependence between the computed RFM features and size of the ROI. The input parameters 

for this study were 𝐺 = 256, 𝑊 = 9 and 𝑁 = 30 based on empirical analysis. Out of 30 

RFMs, 7 were generated using first order statistics, 22 were generated using second order 

statistics, and one was generated using Laplacian of Gaussian (LoG) filter. The complete 

set of features used in this study has been enlisted in Appendix 6.A.  

6.2.1 Standardized Radiomic Metrics 

a) Textural evolution curves 

The PK-DCE MRI RFMs provided information on the vascular heterogeneity within lesion 

tissue. The RFM textural evolution curves capture the time evolution of tissue 

heterogeneity as a function of contrast uptake using the time series derived from DCE 

images. The mean radiomic feature value across all the voxels within a region of interest 

in the RFMs was used to construct textural evolution curves for each tissue type. In order 

to compare the textural evolution curves across different ROIs, normalization of the 

radiomic feature values were applied. 

Analysis of textural evolution curves from entropy feature maps was done using the time 

to peak and the textural wash out slope from the DCE RFMs. The time to peak is defined 

as the time it takes for the textural evolution curves to reach its maximum value. The 

textural wash out slope is as the textural wash out of the textural evolution curves within 

the lesion tissue. This was computed as the slope of the line connecting the peak texture 

enhancement in the first two minutes to the last time point including all the intermediate 

time points.  
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b) Textural evolution metric for DWI 

The textural evolution metric (TEM) was developed to investigate the cellular of different 

tissue types. The TEM map for DWI is computed from RFMs generated from DWI 

obtained at b=0 and b>0 using the following equation: 

𝑇𝐸𝑀𝐷𝑊𝐼 =
𝑅𝐹𝑀𝐷𝑊𝐼𝑏>0

𝑅𝐹𝑀𝐷𝑊𝐼𝑏0

 

Similarly, a textural evolution metric (TEM) was defined for the high spatial resolution 

DCE-MRI dataset (HR-DCE-MRI) as shown here: 

𝑇𝐸𝑀𝐻𝑅−𝐷𝐶𝐸−𝑀𝑅𝐼 =
𝑃𝑜𝑠𝑡𝐻𝑅−𝐷𝐶𝐸−𝑀𝑅𝐼
𝑃𝑟𝑒𝐻𝑅−𝐷𝐶𝐸−𝑀𝑅𝐼

 

6.3 Materials and Methods 

6.3.1 Clinical data 

The radiomic feature mapping framework was tested on a multiparametric MRI dataset 

obtained from a retrospective cohort of 124 patients (mean age = 52, range = 24-80) to 

classify malignant and benign lesions. Out of the 124 patients, 98 had malignant lesions 

while 26 patients had benign lesions.  Patients were selected for the study based on the 

potential for malignant breast lesions with a BIRADS score of 3 or greater from 2008-2010. 

This retrospective study was approved by the IRB at our facility and conforms to HIPAA 

requirements. The multiparametric MRI imaging protocol and the algorithms for 

registration, tissue signature generation, and image segmentation have been previously 

detailed in Chapter 2.  

6.3.2 Dynamic MRI with Pharmacokinetic (PK) Contrast Enhancement  

The vascularity of breast tissue was obtained using different semi-quantitative and 

quantitative metrics [213, 214].  The semi-quantitative metrics use the temporal evolution 



Chapter 6. Radiomic Feature Mapping 

 124   
 

of the time series curves from the DCE MR images and are scaled into three categories 

relating to the potential characterization of the tissue and other known metrics [53, 55, 58].  

The PK-DCE quantitative metrics derived were volume transfer constant (Ktrans (min-1)), 

the fractional volume of the extracellular extravascular space (EVF (Ve)), and the transfer 

rate constant (kep (min-1)) using commercial software DynaCad (InVivo, Gainesville, 

Florida) [58, 68].  For both benign and malignant patients, glandular and lesion tissue, the 

mean values and standard deviations of the transfer constant (Ktrans) and extra-vascular 

volume fraction-EVF (Ve) were recorded. 

6.3.3 Statistical analysis 

I computed summary statistics (mean and standard error of the mean) for the radiomic 

metrics and functional metrics from mpMRI. An unpaired t-test (two tailed) was performed 

to compare the RFMs for the benign and malignant patient datasets. Statistical significance 

was set at 𝑝 ≤ 0.05. Univariate logistic regression analysis was used to find associations 

between the RFMs and the final diagnosis. Receiver operating characteristic (ROC) and total 

operating characteristic (TOC) [215] curve analysis was performed to assess the diagnostic 

performance of each RFM in characterizing benign versus malignant lesions.  

6.4 Experiments 

6.4.1 Experimental Summary 

The radiomic feature maps were computed and analyzed for one hundred and twenty-four 

women with breast lesions that underwent mpMRI scan. The mean age of the patients was 

52 years (range: 24-80 years). Ninety-eight women (79%) had malignant lesions and 

twenty-six women (21%) had benign lesions. The radiomic features were extracted using 

the radiomic feature mapping (RFM) method that creates whole breast texture images of 
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each feature. The overview of the radiomic feature mapping procedure for classification of 

a multiparametric radiological dataset as benign or malignant is illustrated in Figure 6.1. 

 

 

Figure 6.1 Concept of the radiomic feature mapping framework.  A.  The multiparametric 

radiological dataset (𝑁 = 23) is transformed into a high-dimensional radiomic feature 

space (𝐷 = 690) consisting of radiomic feature maps generated using Laplacian of 

Gaussian, texture statistical kernels (𝑛 = 30). B. The RFM space is first transformed to the 

patient network using the IsoSVM and then high-dimensional radiomic feature map space 

from each patient is classified as benign or malignant. 

 

Figures 6.2 and 6.3 illustrate typical entropy feature maps corresponding to a 

benign and a malignant patient. A total of 690 RFMs were generated for the twenty-three 

image multiparametric MRI dataset of each patient. Regions of interest were defined on 
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each tissue type using the Eigen filter segmentation method and the MR radiomic feature 

maps were computed for different breast tissue. Finally, ROI size (area in cm2), ADC value, 

and PK-DCE parameters for different regions of interest in each of these patients were 

obtained. There was no significant difference in the tumor size between benign and 

malignant patient groups (Benign size: 3.24 ± 2.67 𝑐𝑚2,Malignant size: 2.44 ± 0.31 𝑐𝑚2, 

𝑝 = 0.77).   

 

Figure 6.2 Typical multiparametric breast image of a malignant patient.  A. Dynamic 

contract enhanced, B. T2-weighted, C. T1-weighted, D. Pharmacokinetic-DCE overlay of 

Ktrans and EVF, where red indicates high Ktrans and blue demonstrates low Ktrans E. ADC 

maps, and F. whole breast entropy feature map.   
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Figure 6.3 Typical multiparametric breast image of a benign patient.  A. Dynamic 

contract enhanced, B. T2-weighted, C. T1-weighted, D. Pharmacokinetic-DCE overlay of 

Ktrans and EVF, where red indicates high Ktrans and blue demonstrates low Ktrans E. ADC 

maps, and F. whole breast entropy feature map.   

 

Table 6.1 summarizes the entropy values corresponding to the different regions of 

interest from the DCE-MRI and ADC map. Malignant lesions demonstrated significantly 

higher entropy on both post contrast DCE-MRI and ADC maps as compared to benign lesions 

(Benign DCE: 5.72 ± 0.12, Malignant DCE: 6.29 ± 0.06, 𝑝 = 0.0002; Benign ADC: 

5.65 ± 0.15, Malignant ADC: 6.20 ± 0.07, 𝑝 = 0.002). There was no significant difference 

in the glandular tissue entropy values between the two groups (Benign DCE: 6.08 ± 0.10 
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Malignant DCE: 5.91 ± 0.05, 𝑝 = 0.16; Benign ADC: 6.06 ± 0.32 Malignant ADC: 

6.06 ± 0.19, 𝑝 = 1.00).  

Table 6.1 Summary of radiomic feature values and quantitative MpMRI metrics  

Feature 
Glandular 

tissue 

Benign 

lesion 

Malignant 

lesion 
p value 

Entropy 

(Post-Contrast 

DCE) 

5.95±0.05 5.72±0.12 6.29±0.06 0.0002 

Entropy 

(ADC map) 
6.06±0.16 5.65±0.15 6.20±0.07 0.002 

ADC Map 

(mm2x10-3) 
2.13±0.03 1.69±0.08 1.26±0.03 0.00001 

Ktrans (min-1)  0.27±0.21 0.69±0.45 0.001 

EVF (Ve)  0.27±0.10 0.61±0.31 0.006 

Tumor size (cm2)  3.24±2.67 2.44±0.31 0.77 

Ktrans = volume transfer constant, EVF (Ve) = extracellular extravascular space 
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6.4.2 Correlation between tumor biology and radiomics using breast 

multiparametric MRI 

a) Analysis of textural evolution curves 

Figure 6.4 illustrates the textural evolution curves corresponding to the different radiomic 

features obtained from DCE MRI. Figures 6.4(a) and 6.4(b) exhibit the textural evolution 

curves of the normalized mean values obtained from the entropy feature maps (top) 

corresponding to tumor and glandular tissue, respectively. The error bars in the textural 

evolution curves represent the standard error for the normalized mean of the entropy 

values. In Figure 6.4(b), there is no change in the texture for glandular tissue for both 

benign and malignant patients. However, the shapes of textural evolution curves were 

significantly different between benign and malignant lesions illustrating the difference in 

contrast uptake within benign and malignant lesions. The normalized entropy values during 

the wash-in phase were significantly (𝑝 < 0.05) higher for malignant than for benign 

lesions depicting a rapid textural enhancement for malignant lesions. Similarly, the 

normalized entropy values during the washout phase were significantly lower for malignant 

than for benign lesions depicting a rapid textural washout for malignant lesions. Moreover, 

similar trends were observed in the textural evolution curves obtained from range feature 

maps as illustrated in Figure 6.4 (Bottom).   
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Preliminary analysis of textural evolution curves from entropy feature maps based on the 

time to peak and the textural wash out slope is shown below. 

a. Time to peak: The average time to peak for benign lesions (2.21 ± 0.16 𝑚𝑖𝑛𝑠) was 

significantly longer (𝑝 = 0.0003) than for malignant lesions (1.24 ± 0.07 𝑚𝑖𝑛𝑠).  

b. Textural wash out slope: The slope of the textural washout curves was also significantly 

different (𝑝 = 0.001) between benign (0.001 ± 0.001) and malignant lesions 

(−0.002 ± 0.0003).   
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Figure 6.4. The DCE-MRI entropy evolution curves corresponding to the mean value of 

the entropy feature map and the range feature map. The range feature corresponds to the 

difference between the maximum and minimum intensity values of all the voxels within 

the sliding window. The error bars correspond to standard error. (Top) Normalized entropy 

and (bottom) range feature evolution curves.  (A) Lesion graphs of benign (blue) and 

malignant (red). (B) Contralateral glandular tissue from benign (blue) and malignant 

patients (red). The shape of the radiomic feature evolution curves was significantly 

different between the benign and malignant lesions (𝑝 < 0.05). However, there was no 

significant difference between the contralateral glandular tissue from benign and malignant 

patients. Indicative of consistent radiomic features in normal tissue. 
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b) Analysis of textural evolution metric on DWI 

I observed an increase in the first order energy of the lesion tissue from DWI-b0 to b600 

with a texture evolution metric that was significantly higher (p<0.001) for malignant 

(3.09 ± 0.23) than for benign patients (1.84 ± 0.25). Similarly, the contrast in the lesion 

tissue also increased significantly (𝑝 = 0.001) for malignant (1.73 ± 0.14) than benign 

lesions (1.07 ± 0.13). The texture evolution metrics for five different radiomic feature 

maps portraying different textural characteristics have been summarized in Table 6.2.  

Table 6.2. Summary of the texture evolution metric extracted from different RFMs DWI.  

 
Benign 

Lesion 

Malignant 

Lesion 
p value 

Energy 1.84±0.25 3.09±0.23 <0.001 

GLCM dissimilarity 0.98±0.06 1.26±0.05 0.001 

GLCM contrast 1.07±0.13 1.73±0.14 0.001 

GLCM homogeneity 1.10±0.05 0.99±0.02 0.08 

First order entropy 0.93±0.02 0.97±0.01 0.12 

GLCM = Gray Level Co-Occurrence Matrix 

 

 

 

 

 



Chapter 6. Radiomic Feature Mapping 

 133   
 

6.4.3 Breast Cancer Diagnosis 

a) Multiview IsoSVM framework for feature embedding and classification  

The radiomic feature maps were computed from a mpMRI dataset resulting in a 

high-dimensional feature space. Furthermore, the radiomic feature maps corresponding to 

different imaging sequences highlight different functional textural properties of the tissue of 

interest. Consequently, I developed a multiview feature embedding and classification 

framework termed IsoSVM by modifying and combining the Isomap and support vector 

machine (SVM) algorithms [216]. The overview of the IsoSVM framework is shown in 

Figure 6.5. 
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Figure 6.5 Illustration of the multiview feature embedding and classification framework. 

The six MRI datasets are first transformed into radiomic feature map (RFM) space using 

radiomic feature mapping. The RFMs for DCE-MRI are transformed into textural 

evolution curves, which are subsequently reduced to one-dimensional embedding using the 

Isomap algorithm. The vector of one-dimensional embedding corresponding to each RFM 

forms the 30-dimensional DCE-MRI radiomic signature. The RFMs for DCE High spatial 

resolution MRI and DWI are transformed into their respective radiomic signatures based 

on the textural evolution metric. The remaining datasets of ADC map, T1WI, and T2WI 

are directly transformed into radiomic signatures by calculating the mean of the RFMs. 

Finally, subsets of features (𝑓1, 𝑓2,… , 𝑓6) from each RFM signature form a unified RFM 

signature used to train the IsoSVM Classification model.  
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Computation of radiomic signatures 

The high-dimensional mpMRI radiomic feature space was first analyzed to compute six 

different radiomics signatures as follows:  

a. PK-DCE MRI radiomic signature: The textural evolution curves corresponding to 

the radiomic feature maps were transformed into a radiomic signature using the 

Isomap algorithm. For the PK-DCE RFM dataset, the 15-dimensional textural curves 

were transformed into a single-dimensional representation of the textural evolution 

curve characteristic. The correlation coefficient between the textural evolution curves 

of different patients was used as the distance metric to compute geodesics for the 

low-dimensional embedding.   

b. DWI & DCE-MRI High spatial resolution radiomic signatures: The vector of the 

textural evolution metrics for the radiomic feature maps was used as the radiomic 

signature for both the datasets.  

c. ADC map, T1WI, and T2WI radiomic signatures: Each one was a single image, 

making the vector of the mean of the radiomic feature maps, their radiomic signature. 

Feature Selection  

The set of radiomic signatures from the MRI datasets resulted in a 180-dimensional radiomic 

feature space. The 180-dimensional radiomic feature space was then transformed and 

modeled into an IsoSVM classification model as detailed below. 

a. The feature set from each of the radiomic signatures was sorted from largest to smallest 

based on the area under the receiver operating characteristic curve obtained using 

univariate logistic regression. 

b. A subset of top features (𝑓1, 𝑓2, … , 𝑓6) from each of the radiomic signatures were 

selected to create a unified radiomic signature, 𝑔 = ⋃𝑓𝑖 
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c. The unified radiomic signature, 𝑔 was then transformed into a linearly separable, 

low-dimensional feature space, ℎ using the Isomap algorithm. The feature transformation 

was executed using Isomap because the Isomap algorithm is not prone to overfitting 

because of its unsupervised nature and at the same time, accounts for the dependencies 

between different RFMs. 

Classification 

i. The support vector machine algorithm trains a classification model to classify 

between benign and malignant patients on the transformed feature space, ℎ. Because 

SVM is a linear binary classification algorithm that attempts to create a hyperplane 

that best separates the different groups, the application of Isomap algorithm prior 

to SVM reduces the non-linearity in the data by transforming the feature space, 𝑔 

to ℎ. The steps c and d combine to form the hybrid IsoSVM classification model. 

Mathematically, the hybrid IsoSVM classifier is represented using the following 

equation: 

 

𝑓(𝑥) =  ∑𝛼𝑖𝑦𝑖 < 𝜙(𝑥𝑖), 𝜙(𝑥) > +𝑏

𝑁

𝑖=1

 

 

where 𝜑() is the Isomap transformation function that maps the unified radiomic 

signature, 𝑔 into a linearly separable space, ℎ, 𝑁 is the number of patients in the 

training set, 𝛼𝑖 are the Lagrange multipliers, 𝑥𝑖 represents the radiomic signatures 

of training set patients and 𝑥 represents the radiomic signature of the test patient.  



Chapter 6. Radiomic Feature Mapping 

 137   
 

ii. For comparison, I tested five different SVM kernels on the unified radiomic 

signature, 𝑔 including the hybrid IsoSVM kernel to classify the benign and 

malignant patients to determine the optimal kernel. 

iii. Finally, due to class imbalance between the number of benign and malignant 

patients, the ratio between penalty for misclassification of different patient data 

sets was varied to identify the optimal penalty ratio and shown in the 

supplementary data [217].  

The complete set of input parameters (input feature space: 𝑓1, 𝑓2,… , 𝑓6; Isomap 

neighborhood parameter, 𝑘; Isomap dimensionality, 𝑑; and misclassification penalty 

ratio) were estimated using leave-one-out and k fold cross validation (𝑘 = 10).  

K-fold Cross validation 

The set of benign and malignant patients were first separately divided into ten randomly 

sampled subsets due to an imbalance in the number of patients in each patient group. Next, 

the ten subsets from both categories were combined to form ten patient subsets. As a result, 

the ratio between the number of benign and malignant patients was maintained similar to 

the original patient cohort in the patient subsets. The ten-fold cross validation procedure 

was performed on these ten subsets. The complete procedure of generating ten subsets and 

performing ten-fold cross validation was repeated 100 times to avoid any bias that may 

occur due to specific partitioning of the data.  

Receiver Operating Characteristic analysis 

The value of predicted outcome using IsoSVM is given by 𝑦 = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏), where 𝑤 

and 𝑏 are the optimized values of the weights and intercept of the hyperplane, respectively. 

In order to plot the receiver operating characteristic (ROC) curve, I modified this function 

as follows: 
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𝑦 = {1      𝑖𝑓 𝑤
𝑇𝑥 + 𝑏 ≥ 𝜂

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
  

Instead of 𝜂 = 0, I varied the value of 𝜂 to generate different values of sensitivity and 

specificity to plot on the ROC curve. The final values of sensitivity and specificity are still 

considered as the values corresponding to 𝜂 = 0. 

Total Operating Characteristic analysis 

I used total operating characteristic (TOC) curves in addition to the ROC curves for 

assessing the diagnostic performance of the IsoSVM classifier [215]. The advantage of 

TOC over ROC curves is that the TOC curves allow us to visualize and compute true 

positive (TP), false positives (FP), true negatives (TN), and false negatives (FN) for each 

threshold directly from the curves.  

The y-axis of a TOC plots TP and goes from zero to the percentage of malignant 

patients in the patient population. On the other hand, the x-axis of a TOC plots TP+FP and 

goes from zero to one (total population). Based on the number of benign and malignant 

patients in the patient population, a parallelogram is drawn to define the mathematically 

possible space for the TOC curve. At any point on the TOC curve, the values for TP, FN, 

TN, and FP can be inferred as follows. The TP corresponds to the value of the point’s 

y-coordinate. The FP is calculated by subtracting TP from the value of the point’s 

x-coordinate. The FN is calculated by subtracting TP from the maximum possible value of 

the y-axis. The TN is calculated by subtracting FP from the width of the parallelogram 

(percentage of benign patients in the patient population). 
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b) Results 

Multiview feature embedding and classification 

The multiview feature embedding and classification framework was set up as illustrated in 

Figure 6.5 (Page 134). The optimal set of hyperparameters for the multiview classification 

framework, obtained using leave-one-out-cross-validation based grid search, were 𝑓1 =

18, 𝑓2 = 0, 𝑓3 = 6, 𝑓4 = 8, 𝑓5 = 0, 𝑓6 = 0, neighborhood parameter 𝑘 = 45, 

dimensionality 𝑑 = 10, and 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 = 2.5: 1. The parameter 

space for each of the input parameters was set as follows: 

a. The subset of features, 𝑓𝑖 selected from each MRI dataset were iteratively selected based 

on the area under the ROC curve computed using univariate logistic regression. 

b. The neighborhood parameter was varied from 5 through 120 in steps of 5. 

c. The dimensionality of the transformed feature space was varied between one and ten. 

d. The misclassification penalty ratio between benign and malignant classes was selected 

from the set {2: 1, 2.5: 1, 3: 1, 3.5: 1, 4: 1}. 

The multiview feature embedding and classification model trained using leave-one-

out cross validation resulted in sensitivity and specificity of 93% and 85% respectively 

with an AUC of 0.91 in classifying benign from malignant lesions. The ROC curves for 

the IsoSVM classification model and other kernels are shown in Figure 6.6. The TOC 

curve for the IsoSVM classification model is shown in Figure 6.7. The search space for 

the misclassification penalty parameter for the SVM kernels was increased to all the ratios 

in the set {2: 1, 2.5: 1, 3: 1, 3.51, 4: 1,4.5: 1,5: 1,5.5: 1,6: 1} The resultant sensitivity, 

specificity, and AUC from all the SVM classifiers are shown in Table 6.3. The multiview 

feature transformation and classification framework was further tested using ten-fold cross 
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validation performed across 100 trials. The optimal set of hyperparameters obtained with 

ten-fold cross validation concurred with the previously obtained optimal set of 

hyperparameters using leave one out cross validation. The average sensitivity and 

specificity achieved from ten-fold cross validation experiment were 91% and 82% 

respectively with an AUC of 0.87. The result from ten-fold cross validation ascertains the 

stability of the unified RFM signature as well as the IsoSVM classifier. For comparison, 

the classification of benign from malignant using tumor size alone produced an AUC of 

0.77 which was significantly lower than the AUC of 0.91 obtained from the unified RFM 

signature using the IsoSVM classifier. 
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Figure 6.6 The receiver operating characteristic curves corresponding to the IsoSVM 

classification (black), radial basis function (RBF) kernel SVM (blue), linear kernel SVM 

(red), quadratic kernel SVM (dashed green), and the cubic kernel SVM kernel (dotted 

black) evaluated using leave one out cross validation. The area under the ROC were 

obtained at 0.91, 0.82, 0.78, 0.65, and 0.71 for IsoSVM, RBF, linear, quadratic, and cubic 

kernel SVMs, respectively.  

 



Chapter 6. Radiomic Feature Mapping 

 142   
 

 

Figure 6.7 The total operating characteristic (TOC) curve for the IsoSVM classifier. The 

TOC curve allows us to compute the true positives (TP), false positives (FP), true negatives 

(TN), and false negatives (FN) at every point on the curve. The TP, FN, TN, and FP for 

the optimal IsoSVM hyperplane were 91, 7, 22, and 4, respectively. 
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Table 6.3. Summary of sensitivity, specificity, and AUC for the IsoSVM classifier and 
various SVM kernels.  
 

Classifier Input parameters Sensitivity Specificity AUC 

IsoSVM 𝑘 = 45;  𝑑 = 10;  𝑃𝑅 = 2.5: 1 0.93 0.85 0.91 

Radial basis 

function SVM 
𝑠𝑖𝑔𝑚𝑎 = 19;  𝑃𝑅 = 5: 1 0.80 0.77 0.82 

Linear SVM 𝑃𝑅 = 3.5: 1 0.85 0.62 0.78 

Quadratic SVM 𝑃𝑅 = 5.5: 1 0.85 0.54 0.65 

Cubic SVM 𝑃𝑅 = 5: 1 0.93 0.50 0.71 

AUC = Area under the Curve 
IsoSVM=Hybrid Isomap and Support Vector Machine  
PR= The misclassification penalty ratio between benign and malignant classes 

6.5 Discussion  

I have demonstrated that the radiomic feature maps for visualization and evaluation of 

radiological texture in radiological images produced excellent features that were correlated 

to breast tissue biology and compared with quantitative metrics of radiological parameters.  

Malignant lesions demonstrated increased entropy compared to benign lesions for both 

ADC maps and DCE MRI. In contrast, glandular tissue entropy was similar across all 

subjects. Furthermore, the radiomic feature maps (RFMs) demonstrated excellent 

sensitivity and specificity in classifying benign from malignant lesions. Moreover, this is 

the first study to relate the quantitative metrics of ADC and PK-DCE to radiomics values. 

In addition, I also demonstrated that multiparametric radiomic features distinguished 

responders from non-responders with excellent sensitivity and specificity.   
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Radiomic features such as entropy have been shown to classify between benign and 

malignant tumors in addition to predicting patient survival and treatment response in 

previous studies as reviewed in Chapter 5.  However, my work explored the whole image 

visualization and interpretation of these quantitative radiomic values employing RFMs. 

Indeed, the entropy feature maps exhibit higher entropy and intra-tumor heterogeneity for 

malignant tumors compared to benign tumors. The RFMs would provide the radiologists 

with a tool for visual interpretation of the radiomic feature values. Furthermore, radiomic 

feature maps provide a visualization of intra-tumor heterogeneity as opposed to a single 

quantitative value provided by quantitative radiomic analysis. In addition, radiomic feature 

maps produce voxel-wise radiomic values improving the quantitative measure. In contrast, 

single quantitative value corresponding to the whole tumor region may not define the entire 

tumor. This study investigated the relationship between RFMs and underlying tissue 

biology derived from the radiological images. Preliminary analysis of RFMs corresponding 

to DCE-MRI suggest that time evolution of RFMs is indicative of heterogeneity in the 

vasculature of tissue of interest. The textural evolution curves obtained from mean value 

of the radiomic feature maps had significantly different curve characteristics for benign 

and malignant tumors. Furthermore, the curve characteristic for the glandular tissue 

corresponding to benign and malignant patients demonstrated no shape difference 

indicating there is no textural evolution with contrast uptake within glandular tissue.  The 

radiomic features provided new metrics for comparison of the different tissue types. 

Moreover, the vascular parameters of Ktrans and EVF have been shown to be different 

between benign and malignant tumors. In concordance, the radiomic values also 

demonstrated significant differences.   In the previous studies, the ADC value and PK-DCE 
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for a given region of interest have been established as excellent biomarkers in classification 

between benign and malignant breast tumors [57, 59, 218-223]. Here, I established 

radiomic entropy (and others) of the ADC map and DCE-MRI within the tumor ROI as a 

biomarker for correlation with cellular and vascular heterogeneity. The ADC and DCE 

entropy values were significantly different between benign and malignant tumors. 

Furthermore, the entropy ADC feature map provides more insight into the cellular 

distribution within the tumor, whereas, the DCE radiomic metric provides information 

about the vascularity texture of the tissue.  Additionally, a metric for quantification of tissue 

heterogeneity evolution with increasing b value was developed and analyzed. A subset of 

the texture evolution metrics for DWI were significantly different between benign and 

malignant lesions indicating a potential biomarker in the texture evolution metric.  In 

addition, the glandular ADC and radiomics values were similar across all subjects. These 

findings lay the groundwork in radiomic metrics to describe normal vs abnormal tissue, 

which is needed for increased use in clinical applications.      

The training efficacy of most machine learning algorithms depend on the balance 

between the number of instances corresponding to each class. Typically, benign breast 

tumors are more frequently observed in clinical setting as compared to malignant tumors. 

However, in research setting, MRI for malignant breast tumors are more frequently 

obtained than for benign breast tumors producing a class imbalance that may result in 

performance bias of the trained classifier towards one class. Class imbalance is a frequent 

occurrence in health care machine learning applications. My work approached the problem 

of class imbalance by assigning different misclassification penalty to each class type. My 



Chapter 6. Radiomic Feature Mapping 

 146   
 

results indicate that setting an appropriate misclassification penalty significantly improves 

the classification accuracy.  

This work has certain limitations. First, the radiomic feature maps were created and 

classified on a retrospective data and no separate validation data was used. Second, this 

study evaluated radiomic feature maps corresponding to only first and second order 

statistical features. Other statistical radiomic methods such gray level run length matrix 

features, Neighborhood gray tone difference matrix feature have not been evaluated in this 

study. Third, RFMs provide voxel wise heterogeneity information of the whole tissue of 

interest. However, the feature used in the texture evolution curves and classification model 

was the mean derived from the RFMs. In addition, the radiomic features were extracted 

corresponding to each radiological image in the mpMRI datasets, which could lead to a 

large number of features and potential overfitting. I discuss this issue in Chapter 7 and 

develop a method for multiparametric radiomic feature extraction. 

In summary, RFMs present a new powerful tool for analysis of textural information 

present within radiological images and may provide a new perspective into the biological 

information radiomics is capable of providing and the potential it holds in future diagnostic 

applications. 
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APPENDIX  

6.A List of first and second order statistical features 

extracted using radiomic feature mapping 

Table 2.A.1 List of all the features used for extraction of radiomic feature maps. The 

mathematical formulation of these features can be found in [30]. 

S. No. First Order Statistics Features 
1 Entropy 
2 Energy 
3 Kurtosis 
4 Range 
5 Skewness 
6 Uniformity 
7 Variance 
  Grey Level Co-occurrence Matrix Features 
1 Autocorrelation 
2 Cluster Prominence 
3 Cluster Shade 
4 Cluster Tendency 
5 Contrast 
6 Correlation 
7 Difference Entropy 
8 Dissimilarity 
9 Energy 
10 Entropy  
11 Homogeneity 1 
12 Homogeneity 2 
13 Inverse Difference Moment Normalized 
14 Inverse Difference Normalized 
15 Informational Measure of Correlation 1 
16 Informational Measure of Correlation 2 
17 Inverse Variance 
18 Maximum Probability 
19 Sum Average 
20 Sum Entropy 
21 Sum Variance 
22 Variance 
1 Laplacian of Gaussian 
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Chapter 7. Multiparametric Radiomics 

7.1 Introduction 

I introduced the radiomic feature mapping for radiomic analysis of mpMRI with improved 

visualization and interpretability of feature metrics in Chapter 6. However, the RFM 

framework is still based on extraction of textural patterns from a single image or volume 

and is not capable of extraction of textural patterns from multimodal or multiparametric 

datasets consisting of multiple image sequences. For example, multiparametric magnetic 

resonance imaging (mpMRI) produces soft tissue contrasts of the tissue, where each 

imaging sequence (e.g., proton density, T2, T1, diffusion, and perfusion weighted 

imaging (WI)) provides a specific representation of the tissue based on the underlying 

physics and gray level. Integrating the imaging information from different imaging 

modalities and parameters provides a more holistic view of the underlying tissue 

characteristics. Correspondingly, texture analysis on a high-dimensional multi-sequence 

data would provide information about the “true texture” of the tissue rather than from a 

specific point of view. To that end, I developed a multiparametric imaging 

radiomics (MPRAD) framework for extracting radiomics information from 

multiparametric and multimodal imaging data. 

In a multiparametric setting, tissue signatures (TS) encode the characteristics of a 

tissue instead of a grayscale value. Moreover, different imaging parameters that form the 

tissue signature interact with each other in a complex high-dimensional space forming a 

complex interaction network. Probing the complex interaction network could provide 

information that was not possible to extract using conventional radiomic features. The 
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MPRAD framework analyzes both the spatial distribution of TS in addition to the complex 

interaction network within a region of interest (ROI) to compute multiparametric imaging 

radiomic features. In this chapter, I present the theory of the MPRAD framework, develop 

radiomic features for multi-sequence images and implement the MPRAD framework in 

two different applications. First, I applied the MPRAD framework to multiparametric 

breast MRI for classification of benign from malignant lesions and compare the obtained 

results to single image radiomics. Next, the MPRAD framework was applied to 

multiparametric brain MRI for classification of diffusion perfusion mismatch in stroke 

patients [224-228].  

Publication from this work and author contributions 

Publication 

V. S. Parekh and M. A. Jacobs, "MPRAD: A Multiparametric Imaging Radiomics 

Framework," Submitted, Nature Communications, 2018 

Author contributions 

I wrote the complete chapter. Dr. Jacobs reviewed it and helped with the editing. 

I developed the concept of multiparametric radiomics, all the four methods discussed in 

this chapter, and their corresponding mathematical formulae. I did the entire 

implementation for extraction and visualization of multiparametric radiomics from 

multiparametric radiological images. I performed all the data analysis described in this 

chapter. 
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7.2 Multiparametric Radiomic Framework 

7.2.1 Tissue Signature 

The concept of tissue signature was previously established in Chapter 2 for the 

development of the multiparametric deep learning (MPDL) tissue signature model. Here, I 

only provide a brief overview of tissue signatures as a refresher. In multiparameter imaging 

settings, a tissue signature represents a composite feature representation of a tissue type 

based on the physical modeling of different imaging parameters acquired. For 𝑁 different 

imaging parameters, a tissue signature at a voxel position, 𝑝 is defined as a vector of gray 

level intensity values at that voxel position across all the images in the data sequence and 

given by the following equation 

𝑆𝑝 =  [𝐼𝑝
(1), 𝐼𝑝

(2), 𝐼𝑝
(3),  … , 𝐼𝑝

(𝑁)]
𝑇

 

7.2.1 Tissue Signature Probability Matrix Features 

The tissue signature probability matrix (TSPM) characterizes the spatial distribution of 

tissue signatures in an ROI. The mathematical formulation of TSPM is as follows: 

Suppose that the intensity values representing each voxel are quantized to 𝐺 levels, then 

the total number of possible tissue signatures in a dataset consisting of 𝑁 images will be 

equal to 𝐺𝑁. We define a function 𝑓: 𝑇 → 𝑀, where 𝑇 is the set of all tissue signatures in 

the dataset and 𝑀 is a 𝑁-dimensional matrix with edges of length 𝐺 where each tissue 

signature is represented as a cell. The function 𝑓 populates each cell of the matrix 𝑀 with 

the frequency of occurrence of the corresponding tissue signature in the set 𝑇. The matrix 

𝑀 is called the tissue signature probability matrix (TSPM).  
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The information content of the 𝑁-dimensional multiparametric imaging dataset 

(𝑋1, 𝑋2, …𝑋𝑁) can be analyzed by computing the joint entropy, uniformity and mutual 

information of the resultant TSPM [229]. These are defined below. 

1. The TSPM entropy, 𝐻 is given by the following equation 

𝐻(𝑋1, 𝑋2, …𝑋𝑁) =  − ∑ ∑ … ∑ 𝑇𝑆𝑃𝑀(𝑖1, 𝑖2, … , 𝑖𝑁) log2 𝑇𝑆𝑃𝑀(𝑖1, 𝑖2, … , 𝑖𝑁)

𝑁𝑔

𝑖𝑁=1

𝑁𝑔

𝑖2=1

𝑁𝑔

𝑖1=1

 

2. The TSPM uniformity, 𝑈 is given by the following equation 

𝑈(𝑋1, 𝑋2, …𝑋𝑁) =  ∑ ∑ … ∑ 𝑇𝑆𝑃𝑀(𝑖1, 𝑖2, … , 𝑖𝑁)
2

𝑁𝑔

𝑖𝑁=1

𝑁𝑔

𝑖2=1

𝑁𝑔

𝑖1=1

 

3. The TSPM mutual information, 𝐼 is given by 

𝐼(𝑋1; 𝑋2; … ; 𝑋𝑁) = (𝐻(𝑋1) + 𝐻(𝑋2) + ⋯+𝐻(𝑋𝑁)) − ⋯+⋯(−1)
𝑁−1𝐻(𝑋1, 𝑋2, … , 𝑋𝑁)  

By choosing different possible subsets 𝑌 ⊆ {𝑋1, 𝑋2, … , 𝑋𝑁}, different values of 

𝐻(𝑌), 𝑈(𝑌) and 𝐼(𝑌) can be obtained producing a large number of multiparametric 

imaging radiomic features. 

7.2.3 Tissue Signature Co-occurrence Matrix Features 

The tissue signature co-occurrence matrix (TSCM) characterizes the spatial relationship 

between tissue signatures within an ROI. The TSCM is defined similar to the gray level 

co-occurrence matrix (GLCM) using two input parameters, distance (𝑑) and angle (𝜃) 

between the two tissue signature locations. Mathematically the GLCM between any two 

tissue signatures, 𝑆𝑖 and 𝑆𝑗 is given by the following equation 

𝐺𝐿𝐶𝑀𝑑
𝜃(𝑆𝑖, 𝑆𝑗 , 𝑚, 𝑛) =  |{𝑟 ∶ 𝑆𝑖(𝑟) = 𝑚, 𝑆𝑗(𝑟) = 𝑛}| ∀ 𝑚, 𝑛 𝜖{1,2,3, … , 𝐺}    

where  𝑟 ∈ 𝑁 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑖𝑛𝑔 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠) and | . | denotes the cardinality of a set.  
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Given a distance, 𝑑 and angle, (𝜃), the co-occurrence matrix for all such possible pairs of 

tissue signatures is given as follows: 

𝑇𝑆𝐶𝑀𝑑
𝜃( 𝑚, 𝑛) = Σ𝑖,𝑗𝐺𝐿𝐶𝑀𝑑

𝜃(𝑆𝑖, 𝑆𝑗, 𝑚, 𝑛)  

∀ 𝑖, 𝑗 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑑 𝑎𝑛𝑑 𝜃 

Here, 𝑇𝑆𝐶𝑀𝑑
𝜃 is the tissue signature co-occurrence matrix. The TSCM can then be 

analyzed to extract twenty-two different TSCM features using the equations developed by 

Haralick et al. [26].  

7.2.4 Tissue Signature Complex-Interaction Network Analysis Features 

The tissue signature complex interaction network (TSCIN) analysis characterizes the 

complex interactions that define the inter-parametric relationships between different 

imaging parameters using statistical analysis. The TSCIN features are extracted by 

transforming a high-dimensional multiparametric radiological imaging data into a radiomic 

feature map using first or higher order statistical analysis of the tissue signature vectors, 𝑆𝑝 

at each voxel position.  

The TSCIN feature maps are transformed into a single radiomic quantitative value 

corresponding to a region of interest using a summary statistical metric such as mean, 

median or standard deviation.  

a) First order TSCIN features 

The first order TSCIN features are straightforward and calculated directly from the tissue 

signature. For example, the TSCIN entropy at a voxel position, 𝑝 is given by the following 

equation: 
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑇𝑆𝐶𝐼𝑁 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑝) 

Similarly, all the other first order TSCIN features follow.  

b) Second order TSCIN features 

The second order TSCIN features characterize the inter-parameter relationships within the 

tissue signature by computing a TSCIN relationship matrix (TSRM). Mathematically, 

TSRM for a 𝑁-dimensional tissue signature at voxel position, 𝑝 with 𝑁 imaging sequences 

quantized to 𝐺 gray levels is given by the following equation:  

𝑇𝑆𝑅𝑀𝑑
𝑝(𝑖, 𝑗) =  |{𝑘: 𝐼𝑝

(𝑘)
= 𝑖, 𝐼𝑝

(𝑘+𝑑)
= 𝑗}| ∀ 𝑖, 𝑗 ∈ {1,2,3, … , 𝐺}, 𝑘 ∈ {1,2, … ,𝑁}  

Here, d represents the distance between the two imaging parameters, I(k) and I(k+d). 

The TSRM is dependent on the relative location of different imaging parameters 

within the tissue signature. As a consequence, TSRM requires the input imaging series to 

have an intrinsic relationship between different imaging sequences, for example, 

pharmacokinetic dynamic contrast enhanced (PK-DCE) imaging and diffusion weighted 

imaging (DWI) sequences. The structure of the TSRM is similar to a 𝐺 × 𝐺 gray level co-

occurrence matrix, thereby allowing us to utilize all the twenty-two equations established 

to extract relevant features from such matrices [26].  

All the four classes of features developed in this manuscript have been illustrated 

in Figure 7.1 on an example multiparametric breast MRI dataset. 
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Figure 7.1 Illustration of the four different types of multiparametric imaging radiomic 

features based on the first and second order statistical analysis. The tissue signature 

probability matrix (TSPM) and tissue signature co-occurrence matrix (TSCM) features are 

based on the spatial relationship between tissue signatures while the tissue signature 

complex interaction network (TSCIN) and tissue signature relationship matrix (TSRM) 

features evaluate the inter-parameter complex interactions. A typical tissue signature is 

demonstrated using a yellow arrow that runs through all the images in the multiparametric 

imaging dataset and tumor in the images is indicated using an orange arrow. 
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7.3 Experiments 

7.3.1 Digital Phantom 

a) Experimental Setup 

The multiparametric imaging radiomic feature extraction methods developed in this 

manuscript were first tested on a digital phantom shown in Figure 7.2A and 7.2B. The 

texture phantom images (Figure 7.2A1 and A2) consists of a composite mixture of several 

raw texture images of grass, sand, wool, water, and others derived by Brodatz [230]. Using 

these composite images ground truth texture images can be determined to demonstrate the 

effectiveness of any radiomic method [28, 177]. The ground truth images are shown in the 

top row in Figure 7.2A1 and A2.  I stacked a series of these texture phantom images to 

demonstrate the effectiveness of the MPRAD tissue signature model to accurate segment 

each of the different textures. I applied single image radiomics to each image and MPRAD 

to stacked images to compare the results from the two methods. The radiomic parameters 

of neighborhood and gray level quantization were set to 15x15 and 256 gray levels, 

respectively.  

a) Results 

The MPRAD features on each USC composite texture image are shown in Figure 7.2.  The 

reference texture ground truth images provide a method to evaluate the radiomic features 

from known objects with high texture.  From the two composite images, the MPRAD 

feature of TSCM mutual information (IMC1) was able to produce a 100 percent match 

with the reference images, confirming the method on an independent data set.  Moreover, 

the multiparametric radiomic features were able to capture the differences in the shape and 

intensity distribution of both single parameter radiomic images with excellent detail of the 

underlying structure. The higher order entropy (GLCM) values for the highlighted 
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subregion in Figure 7.2 were 9.9 and 9.7 for the single radiomic images corresponding to 

the square and mosaic, respectively while the MPRAD TSCM entropy was 10.23. 

 

Figure 7.2 A. USC reference texture ground truth images. 1. Reference image made out of 

a composite of several different shapes and textures and (right) single radiomic image.  2.  

The composite Reference image and (right) single radiomic image B. Multiparametric USC 

composite images. C. mpRadiomics image of USC images.  D and E. Enlarged radiomic 

images from reference images 1 and 2.  F. Enlarged mpRadiomic image from the 

combination of the images.  The multiparametric radiomic features were able to capture 

the differences in both shape and intensity distribution of both single parameter radiomic 

images with excellent detail of the underlying structure. 
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7.3.2 Multiparametric Breast MRI Dataset 

a) Experimental Setup 

Multiparametric breast MRI dataset consisted of a cohort of 138 patients (Age = 52±11) to 

classify between malignant and benign lesions. Of the 138 patients, there were 97 patients 

with biopsy proven malignancy whereas 41 patients had benign lesions. All the studies 

were performed in accordance to the institutional guidelines for clinical research under IRB 

approved protocol. MRI scans were performed on a 3T magnet, using a dedicated phased 

array breast coil with the patient lying prone with the breast in a holder to reduce motion. 

The methods for MRI Image Processing, registration, segmentation, and classification have 

all been detailed in Chapter 2. For radiomic analysis, the radiological images were 

quantized to 128 gray levels and the neighborhood was set to 5x5. 

b) Results 

Figure 7.3 illustrates both the single and MPRAD feature maps from a patient with a 

malignant lesion in the upper outer quadrant of the right breast with a benign appearing 

cyst superior and more medial to the lesion (curved yellow arrow). The cyst is uniformity 

bright on T2 and the ADC map consistent with known tissue characteristics associated with 

cysts. Similarly, the cyst is dark on T1 and no contrast enhancement on the DCE image 

indicating no vascularity.  Moreover, the lesion appears to heterogenous on all the MRI 

images with decreased ADC and increased DCE characteristics.  The single radiomic 

images do show some texture features, however, there is a striking difference in the textural 

representation shown by the MPRAD radiomics.  In particular, the cyst is shown with 

decreased entropy in the MPRAD compared to single radiomic images.  The lower entropy 

in the cyst is consistent with the fact, that the homogenous object has less disorder and 
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hence lower entropy.  This is clearly evident when looking at the lesion which has much 

higher entropy values.  

Figure 7.4 illustrates both the single and MPRAD feature maps from a benign 

patient. There was a clear difference between the textural representation of the lesion and 

glandular tissue. Furthermore, the tissue characterization of lesion and glandular tissue was 

consistent for both the benign and the malignant patient.  Table 7.1 summarizes the 

quantitative values from single parameter and TSPM entropy for individual and MPRAD 

features on benign and malignant patient cohorts demonstrating improved tissue 

characterization using MPRAD. The MPRAD TSPM entropy computed using all the MRI 

parameters was significantly different between benign and malignant lesions (Benign: 

7.06 ± 0.27, Malignant: 8.93 ± 0.17, 𝑝 < 0.00001).  Furthermore, the univariate AUC of 

TSPM entropy was 0.82, 9% higher than the maximum AUC (0.75 for post contrast DCE) 

obtained from univariate analysis of first order entropy computed from different imaging 

parameters. More importantly, there were no significant differences between the single and 

multiparametric radiomic features values in the contralateral glandular tissue from benign 

and malignant patients as shown in Table 7.2.   
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Figure 7.3. The radiomic feature maps (RFM) obtained from single and multiparametric 

radiomic analysis in a malignant patient.  The straight yellow arrow highlights the lesion. 

The curved arrow demonstrates a benign cyst. A.  Multiparametric MRI parameters B. 

Single radiomic gray level co-occurrence matrix (GLCM) entropy features maps of each 

MRI parameter.  C. The MPRAD RFMs tissue signature co-occurrence matrix (TSCM) 

and tissue signature complex interaction network (TSCIN) radiomic features. Note, the 

improved tissue delineation between the different tissue types using MPRAD. 

 



Chapter 7. Multiparametric Radiomics 

 160   
 

 

Figure 7.4. The radiomic feature maps (RFM) obtained from single and multiparametric 

radiomic analysis in a benign patient.  The yellow arrow highlights the lesion. A.  

Multiparametric MRI parameters B. Single radiomic gray level co-occurrence matrix 

(GLCM) entropy features maps of each MRI parameter.  C. The MPRAD RFMs tissue 

signature co-occurrence matrix (TSCM) and tissue signature complex interaction network 

(TSCIN) radiomic features. 

 

 

 



Chapter 7. Multiparametric Radiomics 

 161   
 

Table 7.1. Summary of single and multiparametric entropy values corresponding to 

benign and malignant breast tumors 

Single Parameter Entropy Benign 
Tumor 

Malignant 
Tumor p Value AUC 

Entropy T1 4.14±0.11 4.66±0.06 0.00008 0.72 

Entropy T2 4.98±0.12 5.42±0.06 0.002 0.68 

Entropy b0 4.44±0.17 5.06±0.09 0.002 0.67 

Entropy b600 3.00±0.20 3.77±0.09 0.0009 0.67 

Entropy ADC 4.90±0.12 5.40±0.06 0.0004 0.70 
Entropy Post-Contrast DCE (High Spatial 
Resolution) 5.00±0.10 5.54±0.05 0.00001 0.75 

Entropy PK-DCE Pre  4.32±0.12 4.65±0.05 0.02 0.62 

Entropy PK-DCE Post (wash-in) 4.89±0.08 5.30±0.05 0.00006 0.72 

Entropy PK-DCE Post (wash-out) 4.90±0.09 5.24±0.04 0.00007 0.69 

       

Multiparametric Entropy        

TSPM Entropy (all Parameters) 7.06±0.27 8.93±0.17 P<0.00001 0.82 

TSPM Entropy (PK-DCE) 7.06±0.27 8.92±0.17 P<0.00001 0.82 

TSPM Entropy (High Spatial Resolution DCE) 6.74±0.19 8.28±0.12 P<0.00001 0.82 

TSPM Entropy (DWI) 6.66±0.22 8.20±0.15 P<0.00001 0.78 
DWI: Diffusion Weighted Imaging 
ADC: Apparent Diffusion Coefficient 
PK: Pharmacokinetic 
DCE: Dynamic Contrast Enhancement 
FOS: First Order Statistics 
TSPM: Tissue Signature Probability Matrix 
 

 

 

 



Chapter 7. Multiparametric Radiomics 

 162   
 

Table 7.2. Summary of single and multiparametric entropy values corresponding to 

contralateral glandular tissue in patients with benign and malignant breast tumors 

Single Parameter Entropy 

Glandular 
Tissue 
Benign 
Patients 

Glandular 
Tissue 

Malignant 
Patients 

p Value 

Entropy T1 5.29±0.11 5.12±0.06 0.20 

Entropy T2 5.37±0.10 5.32±0.06 0.68 

Entropy b0 5.19±0.24 4.89±0.10 0.27 

Entropy b600 3.46±0.24 3.13±0.10 0.20 

Entropy ADC 5.27±0.28 5.39±0.16 0.71 
Entropy Post-Contrast DCE (High Spatial 
Resolution) 5.13±0.10 5.00±0.06 0.26 

Entropy PK-DCE Pre  5.24±0.12 5.12±0.05 0.38 

Entropy PK-DCE Post (wash-in) 5.28±0.11 5.18±0.05 0.40 

Entropy PK-DCE Post (wash-out) 5.30±0.10 5.24±0.05 0.60 

      

Multi-sequence entropy       

TSPM Entropy (all Parameters) 10.93±0.34 10.64±0.17 0.46 

TSPM Entropy (PK-DCE) 10.92±0.34 10.64±0.17 0.47 
TSPM Entropy (High Spatial Resolution 
DCE) 9.17±0.17 9.04±0.10 0.51 

TSPM Entropy (DWI) 9.31±0.35 9.06±0.18 0.54 
DWI: Diffusion Weighted Imaging 
ADC: Apparent Diffusion Coefficient 
PK: Pharmacokinetic 
DCE: Dynamic Contrast Enhancement 
FOS: First Order Statistics 
TSPM: Tissue Signature Probability Matrix 
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Table 7.3 Top multiparametric radiomic features for classification of malignant from 

benign breast tumors.  

MIRAD Radiomic feature Benign 
Tumor 

Malignant 
Tumor p Value AUC 

TSPM entropy (all 
parameters) 7.06±0.27 8.93±0.17 p<0.00001 0.82 

TSPM entropy (DCE) 7.06±0.27 8.92±0.17 p<0.00001 0.82 

TSPM entropy (HiRes) 6.74±0.19 8.28±0.12 p<0.00001 0.82 

TSPM entropy (DWI) 6.66±0.22 8.20±0.15 p<0.00001 0.78 

TSCIN DWI max maximum 0.44±0.02 0.34±0.01 p<0.00001 0.77 

TSCIN DWI standard 
deviation 0.18±0.01 0.12±0.00 p<0.00001 0.79 

TSCIN DWI range 0.34±0.02 0.24±0.01 p<0.00001 0.79 

TSCIN DWI median absolute 
deviation 0.13±0.01 0.09±0.00 p<0.00001 0.78 

TSCIN DCE kurtosis 2.63±0.14 3.37±0.08 0.00004 0.76 

TSCIN DCE skewness -0.69±0.07 -1.06±0.04 0.00001 0.75 

DWI: Diffusion Weighted Imaging 
PK: Pharmacokinetic 
DCE: Dynamic Contrast Enhancement 
FOS: First Order Statistics 
TSPM: Tissue Signature Probability Matrix 

The top MPRAD features for differentiating benign patients from malignant 

patients have been encapsulated in Table 7.3. Using IsoSVM (Chapter 6) with leave-one-

out cross validation, these features produced a sensitivity and specificity of 82.5% and 

80.5% respectively with an AUC of 0.87. The optimal IsoSVM parameters were 𝑘 = 20, 

𝑑 = 1 with an imbalance ratio of 3:1 (benign:malignant). The ROC curves demonstrating 

the predictive power of single and multiparametric radiomic features as well as the IsoSVM 
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model have been displayed in Figure 7.5. Figure 7.6 illustrates the TOC curve for the 

IsoSVM model for improved visualization.  

 

Figure 7.5 Comparison between the predictive accuracy of the single parameter based 

radiomics features and multiparametric radiomic features using receiver operating 

characteristic (ROC) curve analysis. The multiparametric radiomic feature ROC curves 

(displayed in red) produced area under the ROC curve (AUC) values that were 9%-28% 

greater than the AUCs obtained for single parameter radiomics (ROC curves displayed in 

blue). The ROC curve obtained from applying IsoSVM (Chapter 6) for classification of 

benign from malignant patients is displayed in black. The area under the ROC curve (AUC) 

for IsoSVM was obtained at 0.87.  
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Figure 7.6 The total operating characteristic (TOC) curve for the IsoSVM classifier applied 

to MPRAD features. The true positives (TP), false negatives (FN), true negatives (TN), 

and false positives (FP) for the optimal IsoSVM hyperplane were 80, 17, 33, and 8, 

respectively. 

 

7.3.4 Multiparametric Brain Stroke MRI Dataset 

a) Experimental Setup 

Our stroke data consisted of ten patients (n=10, 5 women and 5 men, age=64±19 years) 

that were imaged at the acute time point (<12h) on a 1.5T clinical MRI system using a 

phased array head coil. The sample set consisted of 10 total studies. The mean age of 

patients was 64±19 ranging between 36-87. The MRI parameters were: T1WI sagittal 

MPRAGE image (𝑇𝑅/𝑇𝐸 200/2.46𝑚𝑠, 𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑣𝑖𝑒𝑤 (𝐹𝑂𝑉) = 24 𝑐𝑚 × 24 𝑐𝑚, 
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𝑠𝑙𝑖𝑐𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (𝑆𝑇)  =  5 𝑚𝑚), axial T2WI FLAIR (𝑇𝑅/𝑇𝐸/𝑇𝐼 = 9000/105/

2500𝑚𝑠, 𝐹𝑂𝑉 = 17.3𝑐𝑚 𝑥 23𝑐𝑚, 𝑆𝑇 = 4 𝑚𝑚), axial DWI (𝑇𝑅/𝑇𝐸 = 9000/98𝑚𝑠, 

𝑏 − 𝑣𝑎𝑙𝑢𝑒𝑠 = 1000 𝑎𝑛𝑑 0 𝑠/𝑚𝑚2, 𝐹𝑂𝑉 = 23𝑐𝑚 𝑥 23𝑐𝑚, 𝑚𝑎𝑡𝑟𝑖𝑥 = 128𝑥128, 𝑆𝑇 =

4 𝑚𝑚) and echo planar T1WI perfusion (𝑇𝑅/𝑇𝐸 =  1350/30𝑚𝑠, 𝐹𝑂𝑉 =

23 𝑐𝑚 𝑥 23𝑐𝑚, 𝑆𝑇 =  4 𝑚𝑚, 𝑡𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  90 𝑠𝑒𝑐𝑜𝑛𝑑𝑠). The contrast agent 

GdDTPA (Magnevist) was power injected at a dose of 0.1 mmol/kg and at a rate of 5 cc/sec.  

The infarcted tissue was segmented from the diffusion DWI and ADC map using the 

Eigen filter algorithm [69, 231]. The input to Eigen filter algorithm was the selection of white 

matter, gray matter, cerebrospinal fluid, potential infarcted tissue, and the tissue at risk using 

pixels from each tissue type and respective sequence. The Eigen filter then used Gram-

Schmidt orthonormalization to segment complete areas for each tissue type. Similarly, the 

tissue at risk was segmented from the PWI using the Eigen filter algorithm. The areas for the 

two tissue types were calculated by counting the number of pixels within the Eigen filter 

followed by multiplication with the pixel resolution in mm2. Furthermore, the ROIs defined 

by the Eigen filter were overlaid on the ADC map and TTP map to obtain quantitative 

measurements. 

b) Results 

Four MPRAD features were extracted from ten patients with stroke imaged at acute 

timepoint (<12h). The mean age of patients was 64±19 ranging between 36-87. 

Figures 7.7 and 7.8 illustrates both the single and multi-parametric radiomic feature maps 

from the DWI and PWI MRI.  As shown in Figure 7.7, there is a striking difference in the 

textural representation shown by single and multi-parametric radiomics from the DWI and 

ADC maps.  The majority of the single radiomic second order features (GLCM) did not 
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show any significant textural difference between infarcted tissue and tissue at risk on the 

ADC map. Whereas the same second order multiparametric radiomic features (TSPM) 

were significantly different for multiparametric complete DWI dataset. These results have 

been tabulated in Table 7.4.   

Similarly, multiparametric radiomic values for the TTP and perfusion dataset (all 

parameters, dimensionality > 50) demonstrated excellent results for the MPRAD as shown 

in Figure 7.8.  For example, The MPRAD TSPM Entropy exhibited a significant 

difference between infarcted tissue and tissue-at-risk: (6.6 ± 0.5 vs 8.4 ± 0.3, 𝑝 = 0.01).   

These results are summarized in Table 7.5 detailing the comparison between the single 

and multiparametric radiomics on PWI. Table 7.6 summarizes the results from 

multiparametric radiomics applied to all the parameters. 
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Figure 7.7. Illustration of radiomic feature maps (RFM) obtained from single and 

multiparametric radiomic analysis of an acute stroke patient with mpMRI Diffusion 

weighted imaging and ADC mapping. Top Row. ADC map with the yellow arrow showing 

the densely ischemic tissue. The RFMs in the illustrate different gray level co-occurrence 

matrix (GLCM) single radiomic features maps for the ADC map. The delineation of the 

infarcted tissue is hard to discern. Bottom Row. MPRAD of the DWI data set with yellow 

arrows showing the infarcted tissue. The MPRAD demonstrates excellent delineation of 

the infarcted tissue. The enlarged area shows the heterogeneity of the lesion.   
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Figure 7.8. Illustration of radiomic feature maps (RFM) obtained from single and 

multiparametric radiomic analysis of an acute stroke patient with mpMRI perfusion 

weighted imaging. Top Row. Time to Peak (TTP) map from the perfusion MRI with the 

yellow arrow showing potential “tissue at risk”. The first order (FOS) RFMs illustrate the 

different gray level single radiomic and co-occurrence matrix (GLCM) maps from the TTP.  

Bottom Row.   MPRAD images from perfusion MRI illustrates the power mpRadiomics 

and the striking difference in the “tissue at risk” delineation in both the tissue signature 

matrix (TSCIN) and tissue signature relationship matrix (TSRM) radiomic features. The 

black dotted arrows show the infarcted tissue in the caudate putamen and internal capsule. 
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Table 7.4 Summary of multiparametric radiomic features for diffusion weighted imaging 

in stroke infarcted and tissue at risk  

 Radiomic Feature Infarcted 
Tissue Tissue at Risk White 

matter 
Gray 

matter 

p value 
(Infarcted 
vs Tissue 
at Risk) 

Single 
Parameter 
Radiomics  

(ADC map) 

Mean ADC value 0.66±0.04 0.88±0.05 0.91±0.04 1.14±0.06 0.003 

GLCM 
Autocorrelation 42.36±5.09 71.61±7.66 74.59±7.30 111.20±11.

17 0.01 

GLCM Cluster 
Tendency 2.64±0.69 7.29±3.81 1.65±0.40 14.15±2.27 0.26 

GLCM Contrast 0.83±0.12 1.20±0.24 0.61±0.11 5.02±0.90 0.19 

GLCM 
Homogeneity1 0.74±0.02 0.72±0.01 0.79±0.02 0.54±0.02 0.43 

GLCM Variance 42.76±5.08 72.20±7.69 74.87±7.30 113.69±11.
10 0.01 

GLCM Entropy 2.10±0.20 2.59±0.20 1.73±0.15 3.24±0.13 0.10 

GLCM IMC1 -0.18±0.03 -0.19±0.03 -0.18±0.02 -0.28±0.03 0.75 

       

Multiparame
tric Imaging 
Radiomics 
(all DWI + 

ADC) 

TSCM 
Autocorrelation 199.66±23.35 133.96±17.33 110.95±19.8

7 
137.16±18.

54 0.04 

TSCM Cluster 
Tendency 206.16±29.37 90.61±18.50 73.95±33.10 66.26±15.3

8 0.01 

TSCM Contrast 4.20±0.94 1.92±0.48 0.58±0.08 5.50±0.18 0.05 

TSCM 
Homogeneity1 0.64±0.02 0.70±0.02 0.80±0.01 0.58±0.02 0.05 

TSCM Variance 201.73±23.40 134.90±17.41 111.22±19.8
9 

139.88±19.
08 0.04 

 TSCM Entropy 3.94±0.17 3.73±0.19 2.70±0.13 4.21±0.15 0.43 

 TSCM IMC1 -0.43±0.02 -0.44±0.02 -0.54±0.02 -0.31±0.01 0.74 

 
DWI: Diffusion Weighted Imaging 
ADC: Apparent Diffusion Coefficient 
GLCM: Gray-level co-occurrence matrix 
TSCM: Tissue Signature Co-occurrence Matrix 
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Table 7.5 Summary of multiparametric radiomic features for perfusion weighted imaging 

in stroke infarcted and tissue at risk  

 Radiomic 
Feature 

Infarcted 
Tissue  

Tissue at Risk White matter 
(contralateral) 

Gray matter 
(contralateral) 

p value 
(Infarcted 
vs Tissue 
at Risk) 

Single 
Parameter 
Radiomics  
(TTP map) 

Mean TTP 
value 

11.19±1.90 
(sec) 

10.81±1.34 
(sec) 

8.23±1.06 
(sec) 

7.61±1.09 
(sec) 0.88 

FOS Entropy 2.96±0.72 2.83±0.33 1.22±0.36 2.12±0.35 0.88 

FOS 
Uniformity 0.26±0.16 0.21±0.05 0.54±0.12 0.36±0.09 0.77 

FOS Kurtosis 0.24±0.08 0.40±0.03 3.26±0.34 10.72±2.52 0.12 

FOS 
Skewness 1.64±0.57 1.11±0.46 0.14±0.33 0.22±1.16 0.49 

GLCM 
Correlation 0.18±0.03 0.31±0.04 0.20±0.09 0.21±0.06 0.04 

GLCM IMC1 -0.28±0.04 -0.17±0.03 -0.19±0.10 -0.26±0.05 0.05 

       

Multiparame
tric Imaging 
Radiomics  
(all PWI 
series) 

TSPM 
Entropy 6.62±0.53 8.41±0.33 6.16±0.41 6.46±0.15 0.01 

TSPM 
Uniformity 

0.016±0.00
5 0.004±0.001 0.019±0.005 0.012±0.002 0.05 

TSCIN 
Kurtosis 4.70±0.58 4.63±0.54 5.93±0.79 5.08±0.50 0.94 

TSCIN 
Skewness -0.47±0.25 -0.59±0.17 -1.11±0.28 -0.84±0.24 0.71 

TSCM 
Correlation 0.76±0.06 0.85±0.04 0.86±0.05 0.78±0.03 0.24 

TSCM IMC1 -0.23±0.03 -0.30±0.03 -0.37±0.05 -0.22±0.03 0.11 

 
TTP: time-to-peak 
PWI: Perfusion Weighted Imaging 
FOS: First Order Statistics 
GLCM: Gray-level co-occurrence matrix 
TSCM: Tissue Signature Co-occurrence Matrix 
IMC1: Informational Measure of Correlation 1 
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Table 7.6 Summary of multiparametric radiomic features for the complete dataset 

consisting of diffusion and perfusion weighted imaging in stroke infarcted and tissue at 

risk  

 Radiomic 
Feature 

Infarcted 
Tissue 

Tissue at 
Risk 

White matter 
(contralateral) 

Gray matter 
(contralateral) 

p value 
(Infarcted 
vs Tissue 
at Risk) 

Multipara
metric 

Imaging 
Radiomics 

(PWI+ 
DWI) 

TSPM 
Entropy 6.65±0.52 8.41±0.33 6.16±0.41 6.47±0.15 0.01 

TSPM 
Uniformity 0.015±0.004 0.004±0.001 0.019±0.005 0.012±0.002 0.02 

TSCM 
Correlation 0.88±0.03 0.92±0.01 0.94±0.01 0.81±0.03 0.26 

TSCM IMC1 -0.33±0.03 -0.27±0.02 -0.42±0.04 -0.23±0.02 0.07 

PWI: Perfusion Weighted Imaging 
TSPM: Tissue Signature Probability Matrix 
TSCM: Tissue Signature Co-occurrence Matrix 
IMC1: Informational Measure of Correlation  

7.4 Discussion 

I have developed and validated a novel multiparametric imaging radiomics (MPRAD) 

framework that integrates all the data to define different tissue characteristics. MPRAD 

outperformed single radiomic features in both synthetic and clinical datasets. The MPRAD 

features captured the underlying tissue texture based on tissue signatures rather than 

individual imaging parameter intensities. In addition, MPRAD produces full texture 

images for visualization of normal and lesion heterogeneity, thereby providing radiologists 

with a tool for visualization and quantization of the true underlying tissue heterogeneity.    

In multiparametric imaging settings, single radiomic features from each individual 

image can result in large numbers of texture features creating a high-dimensional dataset 

across all images for analysis. These single radiomic features may not reflect the true 

underlying tissue contrast, heterogeneity, or homogeneity and only provide a limited 

information corresponding to the physical modeling of each imaging parameter. The 
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MPRAD framework extracts radiomic features that consider the complete multiparametric 

dataset, hence producing more meaningful features and textural visualization of the 

underlying tissue. In addition, the MPRAD framework allows us to analyze the complex 

interactions between different imaging parameters, consequently opening up a completely 

new source of information that did not exist with conventional radiomic features.  

In breast, consistent with other reports, malignant lesions had increased entropy 

compared to benign lesions (Chapter 5).  Importantly, there were no differences in the 

normal glandular tissue between each group (Chapter 6).   The MPRAD radiomic features 

delineated different tissue types better than the single radiomic features, for example, in 

cysts, normal, and peri-tumoral regions.  Finally, the MPRAD demonstrated excellent 

sensitivity and specificity with increased AUC compared to single radiomic features 

comparable with those achieved by radiologists.  

In stroke patients, predicating stroke outcome is very challenging and the evaluation 

and treatment are determined by the ability to identify the ischemic penumbra, oligemic, and 

potential salvageable tissue.  Ischemic penumbra refers to brain tissue which is at risk for 

infarction [224, 225, 232, 233]. Damage to this salvable tissue can be potentially prevented or 

reversed using thrombolytic therapy [227]. The brain tissue corresponding to ischemic 

penumbra and oligemia can be identified using advanced MRI parameters of 

diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) [228, 233, 234].  

The MPRAD was able to accurately separate the diffusion-perfusion mismatch at the acute 

time point.  The diffusion-perfusion mismatch maybe indicative of the extent of the stroke 

and if therapeutic intervention needed and MPRAD will provide new quantitation and 

visualization tools for use in stroke patients.  
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The integration of advanced MPRAD features with the ADC map and perfusion 

metrics could provide important information about the spatial distribution and 

characteristics of the tissue. For example, the ADC map and entropy values for infarcted 

tissue were decreased. The perfusion values were prolonged and where the entropy values 

were higher. This is consistent with the known biology of ischemic tissue, where the tissue 

is dead or dying and will exhibit a more uniform pattern.  In contrast, tissue at risk is highly 

variable with different tissue characteristics and has increased ADC and perfusion values.  

The MPRAD radiomic entropy values were increased, reflecting this tissue heterogeneity.  

Thus, by combining these new radiomic features could be very helpful in clinical decision 

to give treatment or withhold it 

In general, multiparametric imaging for applications such as brain, breast, and 

prostate MRI produces a large number of images (>50) corresponding to each slice 

location, thereby producing a high-dimensional image space. Extracting radiomic features 

from each image in such datasets may not provide complete information about the tissue. 

In addition, given the high-dimensionality of the dataset, there is an increase in both the 

computational and space complexity of the radiomic process making radiomics analysis 

impractical for such cases. The MPRAD framework resolves this issue by extracting 

radiomic features that not only analyze the progression of tissue texture with time but also 

evaluate the overall tissue texture in large data sets.  

There are, however, some technical limitations to the use the MPRAD in practice.  

First, there is a need for graphical processor units (GPU) with large memory and 

user-friendly software for processing.  These items may not be widely available.  More 

specific to the present study, any assessment of the clinical value of MPRAD framework 
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will require additional prospective studies. These studies would have subsequent follow-up 

and pathological correlation using MPRAD in breast. In stoke, these types of studies would 

provide us with new MPRAD data to predict final infraction volume or identify markers 

of hemorrhagic transformation over time.  

In conclusion, I have demonstrated that MPRAD framework shows a great potential 

in analysis of textural information in multimodal and multiparametric imaging settings. 

With increasing use of multiparametric imaging in the clinical setting, MPRAD provides 

an ideal framework for future clinical decision support systems. 
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Chapter 8. Contribution Scattergram: A complex 

network model of inter-parametric relationships for 

high-dimensional multiparametric radiological imaging 

data 

8.1 Introduction 

Multiparametric data acquisition techniques such as multiparametric magnetic resonance 

imaging (MRI) or multispectral imaging produce a diversity of different parameters with 

each parameter quantifying a certain aspect of the structural and functional property of the 

underlying data type. Different parameters acquired interact with each other based on 

complex high-level relationships which could provide important insight into the data being 

acquired. I am interested in modeling the relationships between these imaging parameters 

and understand how they interact with each other.  

 In the previous chapter (Chapter 7), I discussed the technique of multiparametric 

radiomics (MPRAD), which characterized the inter-parametric relationships between 

different imaging parameters using statistical methods. In addition, quantitative imaging 

methods such as pharmacokinetic analysis for DCE-MRI and ADC mapping for DWI also 

model multiparametric relationships using mathematical models of underlying tissue 

biology. However, all of these methods model the inter-parametric relationships based on 

a specific model. As a result, they are not capable of uncovering the complete underlying 

network structure of multiparametric MRI. In addition, the previously developed 

techniques are based on voxel-wise analysis and do not model the tissue of interest as a 
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whole. To that end, we developed the technique of contribution scattergram (CSg) to 

uncover the underlying multidimensional complex network for multiparametric imaging 

data [235, 236]. 

The contribution scattergram is constructed by transforming the high-dimensional 

multiparametric space into a complex network model such that the vertices on CSg 

represent the imaging parameters and the edges, relationship between different parameters. 

The CSg is visualized in a lower dimensional space using manifold learning algorithms. 

Manifold learning algorithms transform high-dimensional multiparametric imaging 

datasets into a lower dimensional representation of its intrinsic dimensionality. Moreover, 

the intrinsic dimensionality of the CSg is obtained by calculating residual variance between 

the high- and low- dimensional geodesic networks.  

The contribution scattergram is analyzed using graph theoretic techniques to 

determine the contribution of each parameter and quantify the complex interactions 

between different parameters. Graph theoretic analysis of complex networks has received 

extensive attention in the recent years following the seminal papers by Watts and Strogatz   

on small world phenomenon and by Barabasi and Albert on scale free property of complex 

networks. Graph theoretic techniques have been very effective in extracting the intrinsic 

properties of complex networks in many different applications; namely, genetic networks, 

brain networks, social media networks, and traffic networks [237-244].   

Multiparametric breast MRI involves acquisition of anatomical parameters of 

T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) and advanced functional 

MRI parameters of dynamic contrast enhanced-MRI (DCE-MRI) and diffusion weighted 

imaging (DWI). These MRI parameters provide complimentary noninvasive information 
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about the underlying tissue biology. Specifically, DWI provides information about the 

cellularity of the underlying tissue through computation of apparent diffusion coefficient 

(ADC) map while DCE-MRI provides information about the vascularity of the tissue.  I 

used the contribution scattergram to analyze the complex network formed by the anatomic 

and functional MRI parameters, quantify the inter-parameter relationships as well as their 

contribution to breast cancer diagnosis. I implemented the IsoSVM algorithm as the breast 

tissue classifier (discussed in Chapter 6). IsoSVM is a nonlinear classifier that implements 

an Isomap kernel  for the support vector machine (SVM) classifier [216].  

The background on manifold learning and graph theoretic techniques used for 

contribution scattergram analysis have been described in Section 8.2. Section 8.3 details 

the contribution scattergram algorithm. The breast cancer clinical data, multiparametric 

MRI acquisition protocol, and image analysis techniques used in this chapter have been 

explained in Section 8.4 followed by the results from application of contribution 

scattergram on this data. This chapter concludes with a discussion on the potential of 

contribution scattergram in precision medicine applications. 

Publication from this work and author contributions 

Publication 

V. Parekh, A. Akhbardeh, M. Jacobs, "Contribution Scattergram: A complex network 

model based on graph theory and manifold learning for creating a unique signature for 

high-dimensional multiparametric data," Ready for Submission, 2018  

Author contributions 

I wrote the complete chapter. Dr. Jacobs reviewed it and helped with the editing. 
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Dr. Jacobs and Dr. Akhbardeh developed the concept of contribution scattergram for 

visualization of relationships between different imaging parameters (Section 8.2.1). I 

developed the complex network model for analyzing inter-parametric relationships and 

standardized network metrics for quantitative evaluation of the tissue of interest as a whole 

and for correlation to tissue biology. 

I solely implemented all the algorithms for complex network analysis. The 

algorithms for manifold learning were jointly implemented by me (Isomap and Laplacian 

Eigenmap) and Dr. Akhbardeh (Diffusion map and Locally Linear Embedding). The code 

for visualization of multiparametric MRI in a two-dimensional space was also jointly 

developed by Dr. Akhbardeh and me, while the code for visualization in a 

three-dimensional space was solely developed by me. I solely performed all the data 

analysis described in the chapter. 

8.2 Background 

Dr. Jacobs and Dr. Akhbardeh developed the concept of contribution scattergram using 

manifold learning for visualization of relationships between different imaging parameters 

(Section 8.2.1) 

8.2.1 Manifold learning 

Manifold learning algorithms transform high-dimensional datasets into a lower 

dimensional representation of its intrinsic dimensionality, 𝑑. A 𝑑-dimensional manifold is 

defined as a Hausdorff, second countable topological space, 𝑋 for which every point 𝑥 ∈ 𝑋 

has an open neighborhood, 𝑁𝑥 which is homeomorphic to a 𝑑-dimensional Euclidean space 

𝑅𝑑   [245, 246]. Let us consider a high-dimensional MRI dataset, 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} ⊂ 𝑅𝐷 

where, 𝑥𝑖 represents an MRI image or volume (e.g. T1, T2, DCE, and DWI), 𝑁 represents 
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the number of MRI images, and 𝐷 represents the number of voxels in each MRI image. 

The goal of manifold learning is to transform 𝑋 into a 𝑑-dimensional representation, 

𝑌 = {𝑦1, 𝑦2, … 𝑦𝑁} ⊂ 𝑅
𝑑 corresponding to the intrinsic dimensionality of 𝑋. Here, 𝑌 

represents the contribution scattergram and 𝑦𝑖 represents each MRI image in the 

𝑑-dimensional contribution scattergram.  

Many different algorithms such as Isometric feature mapping (Isomap) [43], 

Locally Linear Embedding (LLE) [42], Diffusion maps [41] and Laplacian 

Eigenmaps [247] have been proposed in the literature for manifold learning and are 

divided into global and local methods [248].  

The algorithms for manifold learning were jointly implemented by me (Isomap and 

Laplacian Eigenmap) and Dr. Akhbardeh (Diffusion map and Locally Linear Embedding). 

a) Isomap 

Isomap is a metric extension of classical multidimensional scaling (MDS), where geodesic 

distances represent the interpoint distances on the weighted graph instead of Euclidean 

distances [43, 249].  If the high-dimensional data lies on or near a curved smooth manifold, 

Euclidean distance does not consider the distribution of the neighboring data points and 

might consider two data points as close, whereas their distance over the manifold is much 

larger than the typical interpoint distance. Isomap overcomes this problem by preserving 

pairwise geodesic (or curvilinear) distances between data points using a neighborhood 

graph.  

Geodesic distance (GD) is defined as the distance between two points measured 

over the manifold. GD is estimated using a shortest path algorithm such as Dijkstra's or 

Floyd's algorithm [250, 251]. These algorithms construct a neighborhood graph, G and 
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calculate shortest path distances (GD) from every point to every other point on the graph 

based on the neighborhood connectivity.  Once the GDs for the complete data is calculated, 

MDS is applied such that it attempts to preserve the interpoint geodesic distance of the 

higher dimension as the interpoint Euclidean distance in the lower dimensional space, 𝑌. 

Topological instability is one major weakness of the Isomap algorithm [252]. The Isomap 

algorithm is highly sensitive to the selection of the neighborhood parameter. The solution 

to this is proposed which is a parameterless implementation of the Isomap algorithm. 

Another important weakness of Isomap is that it can fail if the manifold is non-convex.  

b) Diffusion maps 

Diffusion maps are based on diffusion distances as opposed to geodesic distances used in 

Isomap [41]. The diffusion distances are based on defining a Markov random walk on a 

Laplacian graph. Diffusion maps find the subspace that best preserves the interpoint 

diffusion distances. Diffusion maps are more robust to short circuits than Isomap owing to 

the fact that the diffusion distance between any two points on the graph is computed using 

several paths between the two points instead of just the shortest path (geodesic distance). 

The procedure for nonlinear dimensionality using diffusion maps is as follows: 

In the first step, a similarity matrix, 𝐾 is computed for every pair of points (𝑖, 𝑗) on the input 

dataset using the gaussian kernel: 

𝐾𝑖𝑗 = 𝑒
−
‖𝑥𝑖− 𝑥𝑗‖

2

2𝜎2   1 ≤ 𝑖, 𝑗 ≤ 𝑁 

Here, 𝑁 equals the number of multidimensional points and 𝜎 is the kernel scale. In 

the next step, the matrix, 𝐾 is normalized such that its rows add to 1. The resultant matrix, 

𝑝 is given as: 
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𝑝𝑖𝑗 =
𝐾𝑖𝑗

∑ 𝐾𝑖𝑛
𝑁
𝑛=1

 

The elements of matrix, 𝑝 characterize the forward transition probability of a single step 

taken from point 𝑖 to point 𝑗. For characterizing the transition probability of a t-step random 

walk from 𝑖 to 𝑗, powers of 𝑝 are computed as follows: 

𝑝𝑖𝑗
𝑡 =

𝐾𝑖𝑗
∑ 𝐾𝑖𝑛
𝑁
𝑛=1

 

Increasing powers of 𝑝 allows us to explore the data at different scales (local and 

global). Consequently, the diffusion distance between any two points 𝑖 and 𝑗 is defined as 

follows:  

𝐷𝑡(𝑥𝑖, 𝑥𝑗)
2
 =  ∑

(𝑝𝑖𝑟
(𝑡) − 𝑝𝑟𝑗

(𝑡))
2

𝜓(𝑥𝑟)

𝑁

𝑟=1

  

𝜓(𝑥𝑚) =
∑ 𝑝𝑗𝑚
𝑁
𝑗=1

∑ ∑ 𝑝𝑗𝑘
𝑁
𝑘=1

𝑁
𝑗=1

  

The goal of diffusion mapping is to preserve the diffusion distances when going 

from higher dimensional space to a lower dimensional space. The lower dimensional 

representation, 𝑌 can be obtained by computing the top 𝑑 nontrivial eigenvectors of the 

matrix, 𝑝 [41] 

𝑌: 𝑥 → {𝜆2𝑉2, … , 𝜆𝑑𝑉𝑑} 

The DfM graph is fully connected, therefore eigen vector 𝑣1 of the largest 

eigenvalue (𝜆1 =  1) is discarded, and the remaining eigenvectors are normalized by their 

corresponding eigenvalues.  
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c) Locally Linear Embedding 

Locally Linear Embedding (LLE) is a local method for nonlinear dimensionality reduction 

that aims to preserve local properties of the data [42, 253]. LLE breaks the data space into 

a number of small connected overlapping regions which can be assumed to be 

approximately locally linear. For every point in the data, 𝑘 nearest neighbors are chosen to 

represent the local neighborhood of that point. LLE attempts to model the geometric 

property of the local neighborhood around every point by attempting to represent that point 

as a weighted summation of its 𝑘 nearest neighbors. The reconstruction weights for every 

neighborhood are computed by minimizing the following error function: 

𝐸𝑟𝑟(𝑊) =  ∑‖𝑥𝑖 − ∑ 𝑤𝑖𝑗𝑥𝑗
𝑗∈𝑁(𝑖)

 ‖2 

𝐿

𝑖=1

 

subject to two constraints,  ∑ 𝑤𝑖𝑗 = 1 𝑗∈𝑁(𝑖) and 𝑤𝑖𝑗 = 0 when j ∉ N(i). Here, 𝑋 is the input 

data, 𝐿 is the number of points and 𝑁(𝑖) represents the neighborhood of 𝑖. The optimal 

weights can be computed by solving a set of constrained least squares problems [253]. 

The idea behind LLE is to preserve these reconstruction weights when going from 

higher dimensional space to lower dimension. Therefore, to find the reduced (𝑑) 

dimensional data representation 𝑌, the following cost function is minimized for each point 

𝑦𝑖: 

𝜙(𝑌) =  ∑‖𝑦𝑖 − ∑ 𝑤𝑖𝑗𝑦𝑗
𝑗∈𝑁(𝑖)

 ‖2 

𝐿

𝑖=1

 

The lower dimensional embedding, 𝑌 is obtained by computing the eigenvectors 

corresponding to the smallest 𝑑 nonzero eigenvalues of the following 𝐸, 𝐸 =
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(𝐼 −𝑊)𝑇 . (𝐼 −𝑊). Here, 𝐼 is the identity matrix and 𝑊 is the weight matrix (𝐿 × 𝑘). The 

major problem with LLE is that it does not work when the manifold has holes.  

d) Laplacian Eigenmaps 

Laplacian Eigenmaps, just like LLE, aim to find a low-dimensional data representation by 

preserving local properties of the manifold [247]. Laplacian Eigenmaps aim to preserve the 

pairwise distance between nearest neighbors. This is done by attaching weights to the cost 

function based on the nearness between the data points. Just like diffusion maps, Laplacian 

Eigenmaps use the Gaussian Kernel to estimate weights (𝐾) of the edges in the graph. The 

cost function in computing low-dimensional representations 𝑦𝑖 is given by the following 

equation. 

𝐸(𝑌) =  ∑(𝑦𝑖 − 𝑦𝑗)
2
𝐾𝑖𝑗

𝑖𝑗

 

The eigenvalues and eigenvectors for the generalized eigenvector problem 𝐿𝑦 =

𝜆𝐷𝑦 are computed to determine the low-dimensional embedding, 𝑌. Here, 𝐷 is the diagonal 

weight matrix formed from row sums of 𝐾, 𝐷𝑗𝑗 = ∑ 𝐾𝑖𝑗𝑖  and 𝐿 =  𝐷 − 𝐾 is the Laplacian 

matrix. The low-dimensional embedding, 𝑌 is obtained by computing the eigenvectors 

corresponding to the d smallest non-zero eigenvalues.  

8.2.2 Complex Network Analysis 

Complex network analysis is the study of complex, irregular and dynamic networks that 

are evolving in time. Complex network analysis has received considerable attention since 

the seminal paper by Erdos and Renyi on random graphs. In the past decade, the papers by 

Watts and Strogatz on small world phenomenon and by Barabasi and Albert on scale free 

property have sparked a great amount of interest in the field of dynamically evolving 

complex social network analysis. Complex network analysis techniques have shown 
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incredible success in the analysis of social networks, world wide web, brain networks, and 

traffic networks [237-244].  The complex network can be probed using a number of 

different metrics that highlight important characteristics of the underlying network. 

a) Graph summary statistics 

The average path length and diameter are the basic statistical metrics computed for any 

complex network. A path is defined as the set of edges connecting any two nodes and the 

sum of weights of these edges represent the path length. Average path length, as the name 

suggests, is the average of the path lengths across all pairs of nodes. Diameter, on the other 

hand, is the maximum value among all the path lengths.  

b) Clustering coefficient 

The clustering coefficient defines the connectedness of the neighborhood of an imaging 

parameter. Clustering coefficient for an imaging parameter ranges from zero to one with 

zero representing completely disconnected neighborhood and one representing completely 

connected neighborhood. Mathematically, clustering coefficient of an imaging parameter, 

I is given by the following equation: 

𝐶𝐶(𝐼) =  
2𝑒𝐼

𝑘𝐼(𝑘𝐼 − 1)
 

Here 𝑒𝑖 is the number of connected edges neighborhood of 𝐼, 𝑘𝐼  is the number of 

nodes in the neighborhood of 𝐼 making 𝑘𝐼(𝑘𝐼−1)
2

 the maximum possible number of edges in 

the neighborhood of 𝐼. 

c) Degree distribution 

The degree distribution is the most fundamental metric calculated for any complex 

network. The analysis of degree distribution enables us to identify whether the network is 

a scale-free network or not. The degree of an imaging parameter is defined as the total 
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number of imaging parameters it is directly connected to. Furthermore, degree distribution, 

𝑃(𝑘) is determined using the following equation 

𝑃(𝑘) =
1

𝑁
∑𝟏{deg(𝐼) = 𝑘}

𝑁

𝐼=1

 ∀𝑘 ∈ {1,2, … ,𝑁 − 1} 

The probability that an imaging parameter can interact with 𝑘 other imaging 

parameters can be determined from the degree distribution. If the degree distribution varies 

as a power law 𝑃(𝑘) ∝ 𝑘−𝛾, the complex network can be considered scale free. One 

important feature of scale free networks is the presence of few highly connected important 

nodes that influence the network properties. Furthermore, the probability of any incoming 

node connecting to these important nodes is significantly higher than connecting to other 

nodes. These important nodes may correspond to the key imaging parameters that guide 

the diagnosis or prognosis of pathology. 

d) Centrality measures 

Centrality measures are calculated to determine the importance of each informatics 

parameter in the complex informatics network. The concept of centrality dates back to 

1950 [254], however, the most widely used measures of centrality are the ones developed 

by Freeman in his seminal papers [255, 256]. In this chapter, I calculated three centrality 

measures, each centrality measure highlighting a different importance property as 

elaborated below. 

Betweenness centrality  

The betweenness centrality of an MRI image (BC) is a measure of its centrality in the 

network [255]. Betweenness centrality quantifies the amount of information that flows 

through a particular MRI image. Betweenness centrality for an MRI image is defined as 
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the number of shortest paths that pass through that MRI image. Betweenness centrality of 

an MRI image, 𝐼 in the contribution scattergram is given by the following equation: 

𝐵(𝐼) =  ∑
𝑁𝑠𝑡(𝐼)

𝑁𝑠𝑡
𝑠≠𝐼≠𝑡      

Here, 𝑁𝑠𝑡 is the total number of shortest paths between the MRI images 𝑠 and 𝑡 and 

𝑁𝑠𝑡(𝐼) is the total number of shortest paths between 𝑠 and 𝑡 that pass through 𝐼. 

Closeness centrality  

Closeness centrality, as defined for each MRI image is the inverse of sum of all geodesic 

distances from that MRI image to all the other MRI images [256]. Closeness centrality of 

an MRI image can be interpreted as the amount of time it would take for information to 

spread to other MRI images from that MRI image. Mathematically, closeness centrality of 

an MRI image, 𝐼 is given by the following equation: 

𝐶(𝐼) =
1

𝑁−1
(

1

∑ 𝐺(𝑠,𝐼)𝑁
𝑠=1
𝑠≠𝐼

)    

Here, 𝑁 is the total number of MRI images in the contribution scattergram and 

𝐺(𝑠, 𝐼) is the geodesic distance between the MRI images 𝑠 and 𝐼. The value of closeness 

centrality, 𝐶 as computed using the above formula may lead to the value 0 when the 

contribution scattergram has disconnected components. For example, if there is no path 

from image, 𝑠 to image, 𝑡, then the geodesic distance, 𝐺(𝑠, 𝑡)  =  ∞ and as a result their 

closeness centrality values will be 0.  

To resolve the problem of zero closeness centrality, the measure of closeness 

centrality can be modified in two ways. 

𝐶(𝐼) =
1

𝑁−1
(

1

∑ 𝐺(𝑠,𝐼)𝑁
𝑠=1
𝑠≠𝐼

𝐺(𝑠,𝐼)≠∞

)    
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𝐻(𝐼) =
1

𝑁−1
∑

1

𝐺(𝑠,𝐼)

𝑁
𝑠=1
𝑠≠𝐼

     

Here, 𝐻(𝐼) is also called the harmonic closeness centrality. I implemented the 

modified closeness centrality for contribution scattergram.  

Degree centrality  

Degree centrality is defined as the total number of MRI images each image is connected to 

in the contribution scattergram. For weighted networks, it is defined as the summation of 

edge weights of all the MRI images, each image is connected to in the contribution 

scattergram. 

8.3 Contribution Scattergram algorithm 

We have developed a multidimensional complex network model called the contribution 

scattergram using manifold learning. A typical contribution scattergram is shown in 

Figure 8.1. The development and analysis of contribution scattergram is primarily 

composed of two steps: Establishing the network topology using manifold learning and 

evaluating contribution scattergrams using graph theoretic techniques. 
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Figure 8.1. (a) An example multiparametric MRI dataset, 𝑋 in a 𝐷-dimensional space. 

Here 𝐷 corresponds to the number of pixels in each MRI image. (b) The manifold learning 

algorithm learns the manifold representation of the 𝐷-dimensional multiparametric MRI 

dataset and represents the learned manifold as a graph called the contribution scattergram. 

The intrinsic dimensionality of the manifold is two in this example.  

 

I implemented the Isomap algorithm for manifold learning of the multiparametric 

MRI dataset as it is a global method and provides a theoretical guarantee for correctness. 

Furthermore, the graph theoretic measures of average path length, centrality metrics and 

clustering coefficients are based on the geodesic distances and neighborhood parameters 

as calculated in the Isomap procedure, making Isomap the appropriate choice for manifold 

learning.  The contribution scattergram is characterized by geodesic distances (GD), where 

geodesic distances represent the interpoint distances over the manifold. The GD can be 

estimated using a shortest path algorithm such as Dijkstra's or Floyd's algorithm [250, 251]. 
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These algorithms construct a neighborhood graph, 𝐺 and calculate shortest path distances 

(GD) from every point to every other point on the graph based on the neighborhood 

connectivity. There are two main computationally expensive components of the Isomap 

algorithm – calculation of shortest path distances and classical multidimensional scaling. 

Given a multiparametric MRI dataset of 𝑁 images with 𝐷 voxels each, the computational 

complexity of the Isomap algorithm is 𝑂(𝑁3) when using Floyd’s or Dijkstra’s algorithm 

The graph theoretic analysis of contribution scattergram is based on the geodesic 

distances computed by the shortest path algorithms. The shortest paths along with the final 

geodesic distances between different MRI images on the contribution scattergram are 

evaluated using graph theory to determine the graph metrics described in the previous 

section. The procedure for contribution scattergram is represented as a pseudocode in 

Algorithm 8.1. 

Algorithm 8.1 Contribution Scattergram algorithm 
Inputs: 
𝑋: multiparametric imaging dataset, 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} ∈ 𝑅

𝐷. Here 𝑥𝑖 are the imaging 
parameters and 𝐷 is the number of voxels in each image. 
𝑘: Isomap neighborhood 
Output: Graph metrics and contribution scattergram  
1: Transform 𝑋 to a complex network model 𝐺 =  (𝑉, 𝐸): 
2: //    𝑣𝑖 represent the imaging parameters 
3: //    𝐸𝑖𝑗: Euclidean distance between 𝑣𝑖 and 𝑣𝑗  if they are connected, otherwise infinity 
4: Compute pairwise geodesic distance matrix, 𝐺𝐷 using 𝑘 
5: Run multidimensional scaling on 𝐺𝐷 to compute multiple low-dimensional 

embeddings, 𝑌  
6: Compute residual variance, 𝑅 for each embedding in 𝑌 
7: Calculate the intrinsic dimensionality, 𝑑 using the elbow method  
8: Generate the contribution scattergram using the correct low-dimensional embedding 

from 𝑌 
9: Compute graph metrics using the complex network, 𝐺 and geodesic distances, 𝐺𝐷    
10: return contribution scattergram and graph metrics 
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8.3.1 Estimating the intrinsic dimensionality 

The intrinsic dimensionality of the contribution scattergram is computed by residual 

variance analysis [43]. The residual variance for the Isomap algorithm is given by 

𝑅 =  1 − 𝐶(𝐺𝑋 , 𝐺𝑌) where 𝐶 is the correlation coefficient between the vectors 𝐺𝑋 and 𝐺𝑌, 

𝐺𝑋 represents the vector of all the pairwise geodesic distances in the original 

high-dimensional space (𝐷), 𝐺𝑌 represents the vector of all the pairwise geodesic distances 

in the lower dimensional space (𝑑).  

Using this equation, the residual variance of the contribution scattergram at 𝑑 = 1 

through 𝑑 = 𝐷 is plotted as shown in Figure 8.2. The intrinsic dimensionality of the 

contribution scattergram is estimated by identifying the elbow in the resulting curve. The 

elbow is defined as the value of d at which there is no significant decrease in the curve with 

added dimensions [43]. It can be seen from Figure 8.2 that elbow occurs at 𝑑 = 2.  

 

Figure 8.2 Example plot representing the residual variance analysis procedure for 

estimating the intrinsic dimensionality of the multiparametric MRI manifold 𝑋. It can be 

seen that elbow for the plot occurs at 𝑑 = 2. 
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8.4 Materials and Methods 

8.4.1 Clinical data 

I computed, visualized and analyzed contribution scattergrams corresponding to the 

multiparametric MRI data obtained from one hundred and thirty-nine women (mean age = 

52±11, age range = 24-80). Of the one hundred and thirty-nine, ninety-six patients had 

biopsy proven breast cancer, thirty-nine patients had benign lesions and the remaining four 

patients had no lesion. The methods for MRI Image Processing, registration, segmentation, 

and classification have all been detailed in Chapter 2. 

8.4.2 Statistical analysis 

Student ttest was performed between the graph theoretic metrics corresponding to different 

patient groups (benign and malignant) to determine which MRI parameters were 

significantly different for the two patient groups. Logistic regression was used to determine 

associations between the graph theoretic metrics and the final clinical diagnosis. The ROC 

curve analysis was performed to assess the diagnostic accuracy of each graph theoretic 

metric. The P values ≤ 0.05 were considered significant.  

8.4.3 Multiparametric MRI network analysis using contribution scattergram 

I constructed contribution scattergrams for the multiparametric MRI data corresponding to 

the lesion and glandular tissue of all the patients. Prior to construction of contribution 

scattergram, the intensity values for all the MRI parameters were normalized in the range of 

zero to one. The intensity normalization step allows us to compare the inter-image distances 

with one another and prevents any potential bias in the contribution scattergram representation 

that may occur due to difference in the image intensity ranges. However, the inter-image 

distances in the contribution scattergrams would still need to be scaled based on the tumor 
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size, 𝐷 to enable the comparison of contribution scattergrams between different patients. To 

that effect, the pairwise inter-image distances between different MRI images were normalized 

with the √𝐷, effectively transforming the inter-image distances in the range of zero to one.  

I applied the manifold learning algorithm, Isomap to transform each patient’s 

multiparametric MRI into a low-dimensional manifold representation of its intrinsic 

dimensionality. The graph theoretic metrics of degree centrality and betweenness centrality 

were used to determine the optimal range of the neighborhood parameter, 𝑘. The 

neighborhood connectivity, 𝑘 is a very critical parameter as it determines the structure of 

the contribution scattergram and subsequently affects the graph theoretic metrics. If the 

value of 𝑘 is very small, the resultant contribution scattergram will be a disconnected graph 

containing different clusters and we would not be able to characterize the flow between 

these clusters. On the other hand, if the value of 𝑘 is very large, the Isomap algorithm 

would produce spurious short circuit connections resulting in an incorrect contribution 

scattergram embedding. I computed the optimal range of the neighborhood parameter, k as 

the values of 𝑘 which produced statistically significantly different graph theoretic metrics 

for benign and malignant patients.  

Wilcoxon’s rank sum test was employed to determine if the graph theoretic measures 

of degree and betweenness centrality were significantly different between benign and 

malignant patients. Figures 8.3 (a) and (b) illustrate the identified optimal range of 𝑘 values 

for the average betweenness centrality and the average degree centrality, respectively. The 

value of the neighborhood parameter, 𝑘 was chosen as 8 from the optimal range {6,7,8,10} 

as it was one of the median optimal values. The value of 𝑑 computed using the residual 
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variance procedure was obtained at 𝑑 = 2 corresponding to the neighborhood parameter, 

𝑘 =  8.  

 

Figure 8.3 Plot of statistical significance vs. 𝑘 for different graph centrality measures. The 

statistical significance value was set at one if the Wilcoxon rank sum test between benign 

and malignant sets produced a 𝑝 value ≤ 0.05 and zero otherwise. (a) The plot for average 

betweenness centrality for the CS consisting of all the MR parameters. The notch 

corresponds to 𝑝 =  0.18 (b) The plot for average degree centrality for the CS consisting 

of all the MR parameters (c) The plot for average betweenness centrality for the DCE-MRI 

CS (d) The plot for average degree centrality for the DCE-MRI CS. The notch here 

corresponds to 𝑝 =  0.06.  
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I further computed the inter-image geodesic distances on the contribution scattergram 

to characterize the complex interactions between different MRI images while the 

contributions of each MRI image were characterized using the graph centrality measures 

along with clustering coefficient.  

Additionally, I analyzed two subgraphs corresponding to the functional MRI 

parameters of DCE-MRI and DWI-ADC map. The DCE-MRI CSg included the fifteen high 

temporal resolution DCE images and the DWI-ADC CSg included the two DWI images and 

the ADC map. Figures 8.3(c) and (d) illustrate the identified optimal range of 𝑘 values for 

the average betweenness centrality and degree centrality, respectively for the DCE-MRI 

subgraph. The optimal range of 𝑘 values was determined as 𝐾 ∈ {5,6,7,8,9,10,11}. The 

neighborhood parameter, 𝑘 was again chosen as 8 as it was the median of 𝐾. The graph 

theoretic measures of betweenness centrality, degree centrality, closeness centrality and 

clustering coefficients were computed for the DCE-MRI CSg to identify the contribution of 

the DCE images at different time points after contrast injection as well as how the wash-in 

and wash-out phases clustered within the subgraph. The DWI-ADC subgraph consisted of 

only three images, leaving only one possible value of 𝑘; i.e., 𝑘 =  1. Furthermore, closeness 

centrality alone was used to identify the contribution of the DWI and ADC map in the DWI-

ADC CSg as the DWI-ADC CSg just had three nodes and one path.  

8.4.4 Patient classification  

I implemented patient classification using the hybrid IsoSVM feature transformation and 

classification algorithm based on the Isomap [43] and the Support Vector Machine (SVM) 

algorithms [216] as described in Chapter 6. 
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The imbalance in the number of benign and malignant patients may result in the 

SVM being trained in favor of the dominant group, which in this case was the malignant 

patient group. The penalty for misclassification of benign patients was set higher than the 

penalty for misclassification of malignant patients while training the SVM to avoid training 

bias. Finally, the optimal values of Isomap neighborhood parameter and the 

misclassification penalty ratio (benign : malignant) were estimated using leave-one-out and 

k-fold cross validation (𝑘 = 10).  

8.4.5 K-fold Cross validation 

The benign and the malignant patients were individually separated into ten randomly 

sampled subsets as the number of patients in the two groups were highly unbalanced. The 

ten patient subsets were then formed by combining the ten subsets from the two groups. 

Consequently, the ratio between the number of benign and malignant patients was 

maintained in each of the ten subsets used for ten-fold cross validation. Finally, the 

procedure for ten-fold cross validation was repeated a hundred times to overcome any bias 

occurring due to specific data partitions. 

8.5 Results 

8.5.1 Experimental Summary 

The contribution scattergrams were computed and analyzed for one hundred and thirty-nine 

women that underwent multiparametric MRI scan. The mean age of the patients was 52 

years (range: 24-80 years). Ninety- six women (69%) had malignant lesions, thirty-nine 

women (28%) had benign lesions and four patients had no lesion (3%). The average 

contribution scattergrams for the benign, malignant and normal patient groups are 

illustrated in Figure 8.4  
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Figure 8.4 Visualization of the average contribution scattergrams obtained for (a) Normal 

(b) Benign and (c) Malignant patients. There are significant structural differences in the 

three contribution scattergrams. For example, the degree distribution across different MRI 

parameters is significantly different between normal, benign and malignant patients 

(p<0.05). Moreover, the sub graphs for DWI and DCE-MRI are also significantly different 

(p<0.05) as elaborated in the chapter. 

 

The contribution scattergrams corresponding to benign and malignant lesions 

demonstrated significantly different average degree centrality (DC) (Benign DC: 

10.55±0.08; Malignant DC: 10.82±0.05; p=0.004) while the glandular tissue contribution 

scattergrams exhibited no significant difference in the average degree centrality between 

the normal, benign and malignant patients (Normal DC: 11.17±0.17; Benign DC: 

11.17±0.09; Malignant DC: 11.13±0.05; p=0.71). Similar trend was observed in average 

betweenness centrality metric as shown in Table 8.1. 
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Furthermore, the average path length (APL) and the diameter of the lesion 

contribution scattergrams were significantly different from the glandular tissue 

contribution scattergrams indicating a different structural contribution scattergram 

representation for normal and abnormal tissue types (Lesion APL: 0.21±0.003, Glandular 

APL: 0.14±0.003, p<0.0001; Lesion diameter: 0.63±0.01, Glandular diameter: 0.48±0.01, 

p<0.0001). The difference in the graph theoretic metrics between benign lesions, malignant 

lesions, and the glandular tissue have been encapsulated in Table 8.1.  

Table 8.1. Graph summary statistics corresponding to the benign, malignant and glandular 

contribution scattergrams. 

Graph metric Benign Malignant Glandular 

p value 

(Benign vs. 

Malignant) 

p value 

(Lesion vs. 

Glandular) 

Average path 

length 
0.20±0.007 0.21±0.004 0.14±0.003 0.44 <0.00001 

Diameter 0.64±0.02 0.63±0.01 0.48±0.01 0.71 <0.00001 

Average 

degree 

centrality 

10.55±0.08 10.82±0.05 11.14±0.04 0.004 <0.00001 

Average 

betweenness 

centrality 

7.98±0.18 7.46±0.10 6.62±0.07 0.02 <0.00001 

Average 

degree weight 
1.19±0.04 1.24±0.02 0.96±0.02 0.2 <0.00001 
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8.5.2 Correlation between breast tissue biology and contribution scattergram 

a) DCE-MRI CSg analysis 

The DCE-MRI CSg was analyzed using the neighborhood parameter, 𝑘 =  8. The average 

path length (APL) between the pre-contrast DCE and the post-contrast wash-in phase DCE 

images was significantly (p=0.0001) higher for malignant (0.18±0.01) than for benign 

(0.13±0.01) patients. Furthermore, the percentage difference between the APL-wash-in 

(APL: DCE-pre to wash-in DCE images) and the APL-wash-out (DCE-pre to the wash-out 

DCE images) was significantly higher (p=0.001) for benign (96.69±12.6) than malignant 

patients (43.60±4.00), as also evident in Figure 8.4. The results from different graph 

theoretic measures have been summarized in Table 8.2 and elaborated in the following 

subsections. 

Betweenness Centrality 

I first computed betweenness centrality (BC) of the subgraph to analyze the network flow 

within the DCE-MRI CSg. As illustrated in Figure 8.5(a), the betweenness centrality 

across the DCE images followed a similar trend for both benign and malignant patients 

with post contrast DCE image six and seven having a significantly higher value of 

betweenness centrality than the other DCE images (DCE post 6-7 BC: 5.19±0.39; DCE 

pre, post 1-5,8-14 BC: 1.46±0.05; p<0.0001); i.e., maximum number of paths flow through 

these images. The post contrast DCE images six and seven are the final images obtained 

during the contrast wash-in phase. However, the malignant patients had significantly 

(p<0.05) lower number of paths (BC: 3.36±0.58) passing through the post contrast DCE 

image seven than benign patients (Betweenness centrality: 9.077±1.41). On the other hand, 
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the number of paths flowing through the last post contrast images (DCE-14) were 

significantly higher for malignant (BC: 1.55±0.35) than benign patients (BC: 0.26±0.16). 

This result indicates that the paths linking the images formed during the wash-out phase 

are different for benign and malignant patients. This is consistent with the known behavior 

of kinetic curves following different wash-out trajectories for benign and malignant 

lesions. 

In summary, the average betweenness centrality of the malignant and benign 

lesions was significantly different (Benign BC: 2.09±0.03; Malignant BC: 1.91±0.02; 

p=0.00001).  

Degree centrality 

The degree centrality (DC) exhibited a similar trend to betweenness centrality as shown in 

Figure 8.5(b) indicating the post contrast DCE images six and seven have a significantly 

higher degree or number of connections than the rest of the DCE images (DCE 6-7 DC: 

13.19±0.11; DCE pre,1-5,8-14 DC: 9.62±0.04; p<0.0001). There were significant 

differences (p<0.05) in the degree distributions of both the wash-in and wash-out DCE 

images as presented in Figure 8.5(b). In addition, the average degree centrality was 

significantly different between benign and malignant lesions (Benign DC: 9.83±0.07; 

Malignant DC: 10.21±0.03; p=0.00001). 

Closeness centrality 

Closeness centrality curves corresponding to benign and malignant lesions are displayed 

in Figure 8.5(c). The closeness centralities for the pre and first post contrast DCE-MRI 

were much higher for benign lesions than malignant lesions. Closeness centrality reveals 

the nearness of a DCE-MRI image to the rest of the network, which implies that the 
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pre-contrast and the first post-contrast images are significantly closer to the rest of the 

network for benign than malignant patients (Pre Benign CCt: 7.05±0.59 Malignant CCt: 

5.18±0.24, p=0.02; First Post Benign CCt: 7.41±0.66 Malignant CCt: 5.46±0.29, p=0.03).  

Clustering coefficient 

The clustering coefficient (CC) metric indicated that the images on either side of post 

contrast DCE images six and seven formed separate clusters exhibiting the wash-in and 

wash-out DCE clusters as illustrated in Figure 8.5(d). Consequently, the clustering 

coefficient of the DCE images six and seven is significantly lower than the rest of the DCE 

images (DCE post 6-7 CC: 0.71±0.01; DCE pre, post 1-5,8-14 CC: 0.88±0.004; p<0.0001). 

Furthermore, the clustering coefficients of the wash-in and wash-out DCE images were 

also significantly different between benign and malignant lesions as illustrated in 

Figure 8.5(d). 

To summarize, the post contrast DCE images obtained at the end of the wash-in 

phase were identified as the most important using all the graph theoretic measures. 

Furthermore, the graph theoretic measures also highlighted the differences in the wash-in 

and wash-out characteristics of the benign and malignant lesions concurring with the 

known biological knowledge of the DCE-MRI characteristics. 
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Figure 8.5 The results from different centrality measures and the clustering coefficient 

have been illustrated here. The DCE images 6 and 7 were identified as the most central 

images. Furthermore, there were significant differences in the centrality values of the 

wash-in and wash-out images between benign patients and malignant patients. (a) The plot 

of betweenness centrality values for all the high temporal resolution DCE images. (b) The 

plot of degree centrality values for all the high temporal resolution DCE images. (c) The 

plot of closeness centrality values for all the high temporal resolution DCE images. (d) The 

plot of clustering coefficients for all the high temporal resolution DCE images. The DCE 

images formed two clusters on either side of DCE images 6 and 7 depicting the wash-in 

and wash-out clusters.  
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Table 8.2. (a) Betweenness centrality metrics corresponding to the benign and malignant 

DCE contribution scattergrams. 

DCE images Betweenness centrality 

 Benign Malignant P value 

0 0.00±0.00 0.02±0.01 0.158 

1 0.18±0.18 0.09±0.04 0.644 

2 0.23±0.16 0.61±0.14 0.081 

3 0.64±0.27 1.24±0.20 0.082 

4 1.00±0.31 1.04±0.15 0.907 

5 2.51±0.74 1.43±0.28 0.179 

6 7.44±1.29 4.52±0.58 0.047 

7 9.08±1.41 3.36±0.58 0.001 

8 2.72±0.76 2.52±0.51 0.832 

9 2.85±1.10 3.48±0.60 0.621 

10 1.44±0.64 3.00±0.53 0.065 

11 1.36±0.75 2.71±0.57 0.159 

12 1.15±0.50 1.21±0.33 0.929 

13 0.56±0.46 1.81±0.43 0.052 

14 0.26±0.16 1.55±0.35 0.001 
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Table 8.2. (b) Degree centrality metrics corresponding to the benign and malignant DCE 

contribution scattergrams. 

DCE images Degree Centrality 

 Benign Malignant p value 

0 8.10±0.08 8.00±0.00 0.2100 

1 8.15±0.15 8.02±0.01 0.3947 

2 8.28±0.11 8.83±0.10 0.0003 

3 8.97±0.19 9.86±0.11 0.0002 

4 9.69±0.23 10.26±0.11 0.0289 

5 10.54±0.28 10.84±0.14 0.3455 

6 13.08±0.29 13.18±0.15 0.7650 

7 13.38±0.24 13.18±0.15 0.4734 

8 10.95±0.36 11.08±0.20 0.7461 

9 10.51±0.36 10.70±0.22 0.6630 

10 9.77±0.32 10.72±0.21 0.0155 

11 9.23±0.30 10.09±0.21 0.0215 

12 9.18±0.27 9.31±0.18 0.6823 

13 8.67±0.26 9.42±0.20 0.0244 

14 8.87±0.28 9.58±0.19 0.0430 
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Table 8.2. (c) Closeness centrality metrics corresponding to the benign and malignant DCE 

contribution scattergrams. 

DCE images Closeness centrality 

 Benign Malignant p value 

0 7.05±0.59 5.18±0.24 0.02 

1 7.41±0.66 5.46±0.29 0.03 

2 9.46±0.70 8.74±0.38 0.45 

3 11.80±0.80 11.28±0.44 0.64 

4 12.97±0.90 12.16±0.45 0.51 

5 13.59±0.95 12.60±0.45 0.44 

6 13.91±0.99 13.08±0.47 0.53 

7 14.36±1.04 13.01±0.46 0.34 

8 13.22±0.99 12.59±0.47 0.64 

9 13.19±0.88 12.64±0.48 0.65 

10 12.68±0.87 12.62±0.47 0.96 

11 12.80±0.90 12.41±0.45 0.75 

12 12.51±0.94 12.09±0.43 0.74 

13 12.00±0.81 12.06±0.43 0.96 

14 12.09±0.88 11.97±0.48 0.92 
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Table 8.2. (d) Clustering coefficient metrics corresponding to the benign and malignant 

DCE contribution scattergrams. 

DCE images Clustering coefficient 

 Benign Malignant p value 

0 0.97±0.01 0.94±0.01 0.028 

1 0.98±0.01 0.94±0.01 0.010 

2 0.97±0.01 0.92±0.01 0.002 

3 0.92±0.01 0.86±0.01 0.001 

4 0.88±0.01 0.84±0.01 0.011 

5 0.81±0.02 0.81±0.01 0.837 

6 0.69±0.01 0.72±0.01 0.123 

7 0.68±0.01 0.72±0.01 0.002 

8 0.80±0.02 0.81±0.01 0.551 

9 0.83±0.02 0.84±0.01 0.637 

10 0.88±0.02 0.84±0.01 0.093 

11 0.91±0.02 0.87±0.01 0.043 

12 0.92±0.02 0.91±0.01 0.570 

13 0.95±0.02 0.90±0.01 0.011 

14 0.94±0.02 0.89±0.01 0.023 

 



Chapter 8. Contribution Scattergram 

 207   
 

b) DWI-ADC CSg 

The DWI-ADC CSg consisted of DWI-b0, DWI-b600, and the corresponding ADC map. 

The closeness centrality (CCt) of DWI-b0 was significantly higher than the DWI-b600 and 

ADC map (DWI-b0 CCt: 7.14±0.37; DWI-b600, ADC map CCt: 5.30±0.24; p<0.0001) 

across all the patients as displayed in Figure 8.6. Furthermore, the closeness centralities of 

both the DWI b values were significantly higher for malignant than benign lesions 

(DWI-b0: Benign CCt: 5.10±0.46 Malignant CCt: 7.69±0.43, p=0.0001; DWI-b600 

Benign CCt: 4.24±0.38 Malignant CCt: 5.63±0.27, p=0.005). Closeness centrality is an 

indication of the speed with which information travels from a given node to the rest of the 

network. Here, the meaning of closeness centrality can be translated to water diffusion in 

the region of interest. Moreover, the APL for the benign DWI-ADC CSg (0.26±0.08) was 

significantly higher (0.0007) than the APL for the malignant CSg (0.20±0.08) which again 

agrees with the biological knowledge that water molecules diffuse a larger distance for 

benign than malignant lesions. The results are summarized in Table 8.3. 
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Figure 8.6 Plot of closeness centrality values for all the DWI images and ADC map. The 

closeness centrality values were significantly higher (𝑝 < 0.05) for benign patients than 

for malignant patients across all the images. 
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Table 8.3. Graph centrality metrics and summary statistics corresponding to the benign 

and malignant DWI-ADC contribution scattergrams. 

  Closeness centrality 

 
 

Average 

path 

length 

Diameter 

  b0 b600 ADC     

Benign 5.29±0.37 4.36±0.38 4.48±0.55 0.26±0.02 0.39±0.02 

Malignant 7.69±0.43 5.63±0.27 5.48±0.30 0.20±0.01 0.29±0.01 

p value 0.0001 0.009 0.115 0.0001 0.0001 

 

8.5.3 Breast Cancer Diagnosis 

The IsoSVM model was trained using ten graph theoretic metrics to establish the usefulness 

of CSg representations in classifying malignant from benign breast tumors. The ten features 

were based on APLs from the DCE-MRI and DWI-ADC CSg in addition to betweenness 

and degree centralities from DCE-MRI CSg and closeness centrality from DWI-ADC CSg. 

The IsoSVM model trained using leave-one-out cross validation resulted in sensitivity and 

specificity of 89% and 82% respectively with an AUC of 0.87 in classifying benign from 

malignant lesions. The optimal IsoSVM parameters obtained were d=9, k=85, and 

misclassification penalty ratio = 2.25:1 (benign: malignant) corresponding to the maximum 

performance of the IsoSVM algorithm. Moreover, the ten-fold cross validation performed 

across 100 trials yielded an AUC of 0.86. Table 8.4 shows a comparison of the 

performance of the IsoSVM with other linear and nonlinear kernels used with the SVM 

algorithm using leave one out cross validation. The ROC curves from all the SVM kernels 
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and TOC curve for the IsoSVM kernel are illustrated in Figure 8.7 and Figure 8.8, 

respectively. 

 

Figure 8.7 The receiver operating characteristic curves corresponding to the hybrid 

IsoSVM kernel classification (black), radial basis function (RBF) kernel SVM (blue), 

linear kernel SVM (red), quadratic kernel SVM (dashed green), and the cubic kernel SVM 

kernel (dotted black) evaluated using leave one out cross validation. The area under the 

ROC were obtained at 0.87, 0.81, 0.80, 0.76, and 0.70 for IsoSVM, RBF, linear, quadratic, 

and cubic kernel SVMs, respectively.  
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Figure 8.8 The total operating characteristic (TOC) curve for the IsoSVM classifier. The 

true positives (TP), false negatives (FN), true negatives (TN), and false positives (FP) for 

the optimal IsoSVM hyperplane were 85, 11, 32, and 7, respectively. 
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Table 8.4. Summary of sensitivity, specificity, and area under the receiver operating 

characteristic (ROC) curve (AUC) for the hybrid IsoSVM kernel and various linear and 

nonlinear SVM kernels. The optimal input parameters obtained for each classifier are also 

mentioned. The Isomap neighborhood parameter and the dimensionality of the transformed 

low-dimensional embedding are indicated by 𝑘 and 𝑑, respectively. Finally, the sigma used 

for the radial basis kernel is denoted as sigma. 

 

 

 

 

 

 

 

 

Kernel 

Misclassification 

penalty 

(Benign:Malignant) 

Classification 

parameters 
Sensitivity Specificity AUC 

RBF 3:1 sigma = 3.2 82 77 0.81 

Linear 2:1   88 69 0.80 

Quadratic 1:1   83 62 0.76 

Cubic 3.5:1   81 54 0.70 

IsoSVM 2.25:1 k=85, d=9 89 82 0.87 
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8.6 Discussion 

We have demonstrated that the novel manifold-based representation of contribution 

scattergram for visualization and analysis of multiparametric MRI produced excellent 

network representations that were correlated to breast tissue biology and patient diagnosis. 

The graph summary statistics of average path length and diameter distinctly distinguished 

lesion tissue (benign or malignant) from normal tissue (glandular tissue). Furthermore, the 

complex network analysis of contribution scattergrams demonstrated excellent sensitivity 

and specificity in classifying benign from malignant lesions as compared to the 

state-of-the-art methods.  

The major motivation behind the development of contribution scattergrams was its 

potential application to the field of precision medicine where the goal is to understand 

individual properties of each patient and treat them accordingly. The contribution 

scattergram visualizes and identifies the organizational principles of the multiparametric 

MRI image space corresponding to different patients and pathologies, bringing a new 

perspective to radiological diagnosis. Furthermore, the organizational principles of 

multiparametric MRI image space can be established at the level of individual patients, 

providing an opportunity for clinicians to identify graphical properties specific to each 

contribution scattergram and use these properties to produce a personalized diagnosis and 

treatment options for patients.  

A large number of studies spanning different fields of applications such as gene 

co-expression networks, traffic networks, brain networks, and social networks have 

demonstrated the efficacy of complex network analysis in finding the most contributing 

parameters in the network known as the network hubs [237-244]. Here, I extended the 
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concept of complex network analysis to multiparametric MRI networks and identified the 

contribution of different MRI parameters to the network representation. The most 

important images in the DCE network were identified as the final images during the 

wash-in phase of the DCE-MRI which concur with the most important image in the 

DCE-MRI as recognized by the radiologists. Moreover, the complex network analysis of 

each individual patient networks allowed us to identify how the contributions of different 

MRI images varied from patient to patient.  

The DCE-CSg can be considered as a multidimensional integrated kinetic curve 

corresponding to a hypervoxel comprising all the voxels in a region of interest (lesion or 

glandular tissue). The complex network analysis of the DCE-CSg provides us with an 

opportunity to study the complete tumor as a whole and understand the complex 

interactions between the tumor representations at different time points post contrast 

injection. In addition, kinetic curve analysis can also be done on the DCE-CSg 

representation to produce the integrated metrics of wash-in rate, wash-out rate, kinetic 

curve type corresponding to the tumor sized hypervoxel.  

The DWI-ADC CSg quantified the relationships between the different diffusion 

weighted images of b0 and b600. The average path length and closeness centrality metrics 

extracted from the DWI-ADC CSg were significantly different between benign and 

malignant patients suggesting their utility as potential integrated DWI biomarkers for the 

complete tumor.  

I used the geodesic distance to model the network connections in the contribution 

scattergram. However, other similarity and dissimilarity metrics such as normalized mutual 

information, correlation coefficient, and angular distance can also be used to model 
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network connections in the contribution scattergram. Furthermore, the Isomap algorithm 

was used to visualize the contribution scattergram in the lower dimensional space. There 

are many different dimensionality reduction algorithms such as diffusion map, LLE, and 

force atlas that can also be used to visualize the contribution scattergram [41, 253, 257]. 

The effects of visualization and analysis of contribution scattergrams using different 

proximity measures and different manifold learning algorithms would be an interesting 

direction for future work. 

In conclusion, I proposed a novel complex network model approach for learning 

intrinsic manifold representations in multiparametric imaging data called the contribution 

scattergram. Furthermore, a graph theoretic framework was implemented for the extraction 

of intrinsic properties of individual contribution scattergrams for clinical diagnosis. The 

IsoSVM model trained on the extracted graph theoretic metric achieved excellent 

sensitivity and specificity as compared to the state of the art even with huge difference in 

the number of benign and malignant patients. Moreover, the correlation between the 

biological knowledge about the breast tissue and contribution scattergram was established 

in this chapter. In the future, I plan to extend the contribution scattergram to multimodal 

imaging settings. The value of the neighborhood parameter, 𝑘 along with the types of 

subgraphs being analyzed would have to be adjusted depending on the organ being imaged, 

imaging modality and the diagnostic application. In conclusion, the contribution 

scattergram provides a powerful tool for visualization and complex interaction analysis of 

multiparametric radiological images with broad future applicability. 
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Part III: Feature Modeling 

Chapter 9: IRIS: Integration of radiological, clinical and 

histopathological parameters into a personalized 

decision support framework. 

9.1 Introduction 

The previous chapters have laid the foundation for extracting useful information from 

high-dimensional multiparametric imaging data. The complete set of features that extracted 

from radiological images include biological features such as cellularity and vascularity 

obtained from functional imaging, radiomic features such as texture and shape of the tissue 

of interest and finally, the contribution scattergram features that highlight the complex 

interactions between different imaging parameters. Furthermore, these features can be 

combined with clinical and histopathological parameters that are acquired during the 

clinical work up.  

The advancement in computational sciences in recent years, more specifically in 

areas of high-performance computing and memory management has given rise to an era of 

“big data” in medicine. The high dimensionality of the dataset obtained by integrating 

different information sources as well as the complexity within the data presents significant 

challenges for statistical data analysis. Conventional machine learning algorithms such as 

support vector machines and discriminant analysis concatenate all the different parameters 

from disparate sources into a single vector for analysis which can lead to overfitting and 

does not provide any biological meaning since each information source has an intrinsic 
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property. Furthermore, the features acquired from different information sources could be 

entangled in a highly correlated complex network, making it desirable to understand the 

complex interactions between the informatics parameters as well as identifying the 

importance of each of the parameters for the task at hand. The challenge here is to combine 

both mpMR images with clinicopathologic parameters to stratify patients and provide 

personalized clinical decision support. 

To answer this challenge, I have developed a new machine-learning informatic 

method termed Integrated Radiomic Information System (IRIS) that integrates clinical 

parameters, radiological parameters, morphological parameters, and patient information 

(age, sex) to build a clinical decision support model. Herein, I will call this complete set of 

parameters as informatics parameters. The technique of nonlinear dimensionality reduction 

(NLDR) makes up the backbone of IRIS. By definition, dimensionality reduction (DR) is 

a mathematical mapping that transforms the high-dimensional data into a meaningful 

representation of its intrinsic dimensionality (lower dimensional representation). The 

intrinsic dimensionality refers to a lower number of variables that can represent the 

underlying true structure of the data.  

The purpose of this chapter is to integrate all the features developed in this thesis 

with the quantitative features manually extracted from imaging and clinical workup into a 

multiview clinical decision support system for predicting breast cancer recurrence and 

compare with the OncotypeDX 21-gene array assay.  Oncotype DX is based on the mRNA 

expression by RT-PCR for estrogen receptor (ER) positive disease without the human 

growth factor receptor 2 (HER2-nu) overexpression and is tested with biopsy or surgical 

samples [258].  Oncotype DX has been validated in prospective-retrospective studies as a 



Chapter 9. IRIS 

 218   
 

prognostic tool in ER-positive patients treated with tamoxifen. The Oncotype DX score 

stratifies the patients into three risk groups: low, medium, and high-risk.  The Oncotype 

DX score has been shown to identify patients most likely to benefit from the addition of 

adjuvant chemotherapy to endocrine therapy [258, 259]. For example, the side effects of 

undergoing chemotherapy outweigh its benefits for patients with low risk.  

The major disadvantage of the OncotpyeDX test is its cost, which is $4000 per test. 

However, if we can accurately predict the Oncotype DX score with high confidence using 

the routinely acquired clinical, radiological, and pathological features, the clinician could 

opt to forego ordering the OnctoypeDX text. The Oncotype DX test will only need to be 

ordered in cases when the model predicts the outcome with a low confidence score. To that 

end, I developed the IRIS technique and applied it to the prediction of breast cancer 

recurrence risk score using all the information available from routinely acquired data.  

The remainder of the chapter is organized as follows: Section 9.2 establishes the 

theory for clinical decision support heatmap. A brief overview of image acquisition, 

analysis different feature extraction methods used in this study constitute Section 9.3, 

followed by application of IRIS for prediction of breast cancer recurrence risk in 

Section 9.4. This chapter concludes with a discussion on the advantages and disadvantages 

of IRIS for application to precision medicine. 

Publication from this work and author contributions 

Publication 

M. A. Jacobs, V. Parekh, C. Umbricht, K. J. Macura, R. EI-Khouli, S. Harvey, I. Kamel, 

A. C. Wolff, "Novel advanced machine learning informatics modeling using clinical and 

radiological imaging metrics for characterizing breast tumor characteristics with the 

OncotypeDX gene array," Ready for Submission, 2018 
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 Author contributions 

I wrote the complete chapter. Dr. Jacobs reviewed it and helped with the editing. 

I developed the Informatics Radiomics Integration System (IRIS) and did the entire 

implementation. The data obtained from radiological imaging (ADC map and PK-DCE) 

and histological phenotyping (Ki-67) was analyzed by 

Dr. Jacobs (Sections 9.3.1 (a) and 9.3.2 (a-c)). I analyzed the features extracted from 

radiomics and contribution scattergram. I integrated all the data for visualization and 

patient classification.  

The clinical data was acquired by Dr. Umbricht, Dr. Macura, Dr. EI-Khouli, 

Dr. Harvey, Dr. Kamel, Dr. Wolff, and Dr. Jacobs. This included patient recruitment, 

scanning, and radiological reporting (Section 9.3.1).  

9.2 Information Radiomics Integration system (IRIS) 

The goal of the IRIS clinical decision support system is to transform the patient space, 

represented as 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} ⊂ 𝑅𝐷 where, 𝑥𝑖 represents the 𝑖𝑡ℎ patient, 𝑛 represents 

the number of patients and 𝐷 represents the number of informatics parameters, into an 

integrated heatmap as shown in Figure 9.1 using the following procedure.  

In the first step, the 𝐷-dimensional patient space is distributed into 𝑁 subspaces 

where each subspace corresponds to a data view e.g. clinical, histopathological, radiomics, 

and contribution scattergram. The second step involves transformation of each subspace, 

𝑆𝑖 = {𝑥1, 𝑥2, … , 𝑥𝑛} ∈ 𝑅
𝑑𝑖  ∀𝑖 ∈ {1,2, … ,𝑁} into a risk score, 𝑌𝑖 = {𝑥1, 𝑥2, … , 𝑥𝑛} ∈

𝑅1 ∀𝑖 ∈ {1,2, … ,𝑁} using a nonlinear dimensionality reduction algorithm such as Isomap, 

Diffusion map and locally linear embedding) [41-43, 247, 248]. The risk score embedding 

from each subspace is concatenated in the third step to produce the IRIS decision support 
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heatmap representation as shown in Figure 9.1. The columns of IRIS correspond to 

different patients while the rows correspond to different feature subspaces. Each cell is 

color coded to represent the risk predicted by the corresponding feature subspace for that 

patient. The color coding is based on the jet color scale (blue–red) where in blue represent 

low risk and red represents high risk. In the fourth step, support vector machine 

(SVM) [216] classifier is trained on the 𝑁-dimensional transformed space, 𝑌 to produce 

patient prognosis.  

 

Figure 9.1 Illustration of the IRIS clinical decision support system. The high-dimensional 

patient space consisting of different patients and their corresponding informatics parameter 

subspaces (left) are transformed into an integrated informatics decision support system, 

IRIS (right). The IRIS is represented using a heatmap where the color-scale (blue–red) 

indicates risk as identified by each embedding (low, intermediate, and high-risk clusters). 

 9.3 Materials and methods 

The clinical data was acquired by Dr. Umbricht, Dr. Macura, Dr. EI-Khouli, Dr. Harvey, 

Dr. Kamel, Dr. Wolff, and Dr. Jacobs (Section 9.3.1). The data obtained from radiological 

imaging (ADC map and PK-DCE) and histological phenotyping (Ki-67) was analyzed by 

Dr. Jacobs (Sections 9.3.1 (a) and 9.3.2 (a-c)). 
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9.3.1 Clinical Subjects  

All studies were performed in accordance with the institutional guidelines for clinical 

research under a protocol approved by the Institutional Review Board (IRB) and all HIPAA 

agreements were followed, no consent was signed.  Seventy patients were analyzed as part 

of a retrospective breast research study at our institution.  

a) Histological Phenotyping  

Breast lesions were categorized by histological phenotyping based upon hormonal 

markers: Estrogen and progesterone receptors (ER and PR), HER2-Nu by FISH, and Ki-67 

proliferation index (%).   Histopathological data was obtained from the clinical reports. 

Moreover, the patients were matched to the clinical criteria for the Oncotype DX test (ER 

positive).    

b) Multiparametric Breast Imaging 

Patients were scanned on a 3T MRI system (3T Achieva, Philips Medical Systems, Best, 

The Netherlands) using a bilateral, dedicated four-channel, phased array breast coil 

(InVivo, Orlando, FL) with the patient in the prone position. Multiparametric breast 

imaging for all the three risk groups as defined by OncotypeDX have been illustrated in 

Figure 9.2. The multiparametric MRI imaging protocol and the algorithms for registration, 

tissue signature generation, and image segmentation have been previously detailed in 

Chapter 2. 
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Figure 9.2 Demonstration of multiparametric MRI imaging of each risk group defined 

by the Oncotype DX.  Left) typical imaging of the low-risk group. Middle) typical 

imaging of the medium-risk group, and Right) typical imaging of the high-risk group.  

Note, the PK-DCE all demonstrate malignant phenotype, however, by integrating all the 

data using IRIS, I was able to separate each group.  

 

9.3.2 MRI data analysis 

a) Clinical breast lesion classification methods  

Breast lesions were identified by the radiologist on the breast MRI who was blinded to 

pathological results defined by the BIRADS lexicon [260]. Breast density was defined as 

markedly or heterogeneously dense, moderately glandular, or fatty. Lesions were classified 
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into mass or non-mass like enhancement (NMLE). Morphologic assessment was defined 

for masses, margins (1=smooth/focal, 2=lobulated/regional, 3=irregular, or 

4=spiculated/ductal/segmental) and enhancement patterns (1=homogenous, 

2=heterogeneous/stippled/reticular, or 3=rim/clumped). For NMLE, distribution 

(1=diffuse/focal, 2=regional, 3=ductal, 4=reticular, and 5=segmental) and enhancement 

pattern (homogenous, heterogeneous/stippled/reticular, or clumped) were recorded.  The 

lesion morphology was defined into seven classes (1=focal NMLE, 2=regional NMLE, 

3=ductal or segmental NMLE, 4=smooth mass, 5=lobulated mass, 6=irregular mass, or 

7=spiculated mass).  

b) Pharmacokinetic Contrast Enhancement Metrics  

Pharmacokinetic kinetic DCE MRI provides quantitative metrics of the volume transfer 

constant (Ktrans (min-1)) which characterize uptake of the contrast agent, the leakage within 

the extracellular extravascular space (ve (%)), and the transfer rate constant (kep (min-1)). 

Post-processing of the DCE exam was performed by a combined Brix and Tofts 

model [213, 214, 261-263] using DynaCad (InVivo, FL) software from the identified breast 

lesions.   

c) ADC Mapping  

Regions of Interest (ROI) were drawn on normal appearing glandular tissue and breast 

lesions defined by DCE MRI.  Means and standard deviations were calculated for both 

tissue types.  Ratios of lesion ADC to glandular tissue ADC (L/GT) were calculated from 

the following equation on lesion and glandular tissue [59].   

ADC Ratio =  
ADC value of Lesion

ADC value of glandular tissue
 

 



Chapter 9. IRIS 

 224   
 

d) Radiomics  

I extracted 51 radiomic features each from T1, T2, DWI and DCE imaging sequences, 

divided into five categories - First Order Statistics (14 features), Gray Level Co-occurrence 

Matrix (GLCM, 18 features), Gray Level Run Length Matrix (GLRLM, 11 features), 

Neighborhood Gray Tone Difference Matrix (NGTDM, 5 features), fractal dimension 

features (2 features) and convexity. In broad terms, first order features describe the 

statistics of voxel intensity distributions within the ROI while second order features such 

as GLCM, GLRLM, and NGTDM seek to quantify textural features. GLCM and GLRLM 

were evaluated in four directions (0°, 45°, 90°,135°) with values averaged to achieve 

rotational invariance, and the GLCM parameter, d, was set to one voxel in all directions. I 

used 64 equally sized bins for First Order Statistics, and gray levels were quantized into 64 

levels for GLCM, GLRLM and NGTDM calculations. Both binning and gray levels were 

systematically varied between 8 to 512 (specifically 8, 16, 32, 64, 128, 256, 512), and 64 

was empirically chosen in each case. 

e) Contribution Scattergram Analysis  

I constructed contribution scattergrams for the multiparametric MRI data corresponding to 

the lesion. The neighborhood parameter, 𝑘 was set to 7 as empirically chosen in Chapter 8. 

Furthermore, the sub-graphs of PK-DCE and DWI-ADC were evaluated for sub-graph 

analysis with neighborhood parameter, 𝑘 set at 7 and 1 for PK-DCE and DWI-ADC 

sub-graphs, respectively.    
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9.4 Results 

9.4.1 Clinical Demographics  

The IRIS model was tested on a breast cancer patient cohort of 70 patients who had both 

multiparametric MRI imaging and Oncotype assay.  Of the 70 patients, there were 19 

(27%) patients with low risk (0-17), 42 (60%) patients with intermediate risk (18-31), and 

9 (13%) patients with high risk (>31).  There was no age difference (51-56y/o) between 

the patients.   

9.4.2 Radiological Findings 

The high-risk group had the largest tumor size (7.6 ± 5.8𝑐𝑚2), followed by the low-risk 

group tumor size (5.8 ± 9.0𝑐𝑚2) and the intermediate-risk group (4.6 ± 5.4𝑐𝑚2).  For 

advanced MRI parameters, there were clear differences in each parameter and Oncotype 

risk groups. The PK-DCE parameters (Ktrans, EVF). The Ktrans values for the high- and 

intermediate-risk groups were higher (0.28 𝑎𝑛𝑑 0.41 (1/𝑚𝑖𝑛)) compared to the low-risk 

group (0.16(1/𝑚𝑖𝑛)).  Similar results were noted for the other PK-DCE parameters. The 

maximum contrast enhancement was largest for the high-risk group (523 ± 145𝑠), 

compared to the intermediate-risk (434 ± 138𝑠), and low-risk groups (489 ± 139𝑠).  

Similarly, the ADC map values from the high- and intermediate-risk patients in the lesion 

tissue were significantly lower (𝑝 < 0.05) than those for the low-risk patients 

(1.11 𝑣𝑠 1.49𝑥10−3𝑚𝑚2/𝑠) as summarized in Table 9.1. However, the ADC map values 

in glandular tissue remained constant across all groups (2.14 ± 0.03𝑥10−3 𝑚𝑚2/𝑠). The 

bar graphs are shown in Figure 9.3. 
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9.4.3 Contribution Scattergram 

Figure 9.4 illustrates the average contribution scattergram for low-risk group and 

medium/high-risk group. The contribution scattergrams were further analyzed using sub 

graph analysis of DWI-ADC CSg and DCE-MRI CSg.  

 

Figure 9.3. Bar graphs of quantitative multiparametric MRI parameters from the IRIS 

model demonstrating significant differences between low, medium and high-risk patient 

groups. 
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Figure 9.4 Visualization of the average contribution scattergrams obtained for (a) 

Low-Risk (b) Medium and High-Risk Patients. There are significant structural differences 

in the two contribution scattergrams (𝑝 < 0.05) as elaborated in this chapter. 

 

a) DWI-ADC CSg 

The average closeness centrality of the DWI-ADC subgraph for low-risk patients 

(5.15 ±  0.30) was significantly (𝑝 = 0.01) lower than that of medium and high-risk 

patients (6.31 ± 0.31). The closeness centrality for all the three images is shown in 

Figure 9.5. Similarly, the average path length between the high diffusion b value (DWI 

b600) and ADC map was significantly (𝑝 < 0.05) higher for low-risk patients (0.31 ±

0.02) than for medium and high-risk patients (0.31 ± 0.02). These results indicate that 

water diffuses for a larger distance in low-risk patients than for high-risk patients. 
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Figure 9.5 Closeness centrality values for all the DWI images and the ADC map. The 

closeness centrality values were found to be significantly higher (𝑝 < 0.05) for medium 

and high-risk patients as compared to low-risk patients. 

 

b) DCE-MRI CSg 

The sub-graph analysis of DCE-MRI revealed significant differences in the wash-out 

characteristics of patients belonging to different groups. The average path length for the 

wash-out sub-graph of DCE-MRI was significantly higher for medium and high-risk 

patients (0.03 ± 0.002) than that of low-risk patients (0.02 ± 0.002). Similarly, degree 

centrality revealed significant differences between the low-risk and medium/high-risk 

patients during the washout phase as shown in Figure 9.6 
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Figure 9.6 Degree centrality values across the complete DCE temporal evolution. The 

degree centrality of the images in the wash-out phase was significantly different between 

low-risk and medium/high-risk patients.  

 

9.4.4 Radiomics 

The ADC map and DCE-MRI produced the top radiomic features for distinguishing 

between low, medium, and high-risk patients, while the radiomic features derived from T1 

and T2 weighted imaging failed to significantly differentiate between the three groups. The 

top DCE features obtained were gray-level run length matrix features of short run emphasis 

(SRE), short run low gray level emphasis (SRLGE) and short run high gray level emphasis 

(SRHGE) as illustrated in Figure 9.7. For ADC radiomics, top features were obtained to 

be first order statistical features of root mean square and skewness in addition to gray level 

co-occurrence matrix (GLCM) features of autocorrelation, sum average and variance as 

illustrated in Figure 9.8 and tabulated in Table 9.1. 
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Figure 9.7 Illustration of the top DCE radiomic features for distinguishing between low, 

medium, and high-risk patient groups. Here SRE refers to short run emphasis, SRLGE 

refers to short run low gray level emphasis, and SRHGE refers to short run high gray 

level emphasis. 

 

Figure 9.8 Illustration of the top ADC radiomic features for distinguishing between low, 

medium, and high-risk patient groups. 
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Table 9.1 Top features from each feature group for classification of low, medium and 

high-risk breast cancer recurrence patients. 

Features Low Risk Medium Risk High Risk p value 

ADC 
Radiomics 

Root mean square 1539.45±57.71 1260.75±36.89 1145.79±57.67 0.0004 

Skewness -0.40±0.10 0.01±0.09 -0.11±0.25 0.006 

Autocorrelation 585.12±42.80 393.95±22.38 335.37±48.11 0.001 

Sum average 45.93±1.58 36.10±1.21 32.91±2.31 p<0.0001 

Variance 593.79±43.22 401.60±22.48 341.44±48.80 0.001 
      

Contribution 
Scattergram 

APL Washout DCE 0.02±0.00 0.03±0.00 0.03±0.01 0.009 

Average degree (6-7) 
DCE 11.82±0.13 11.24±0.17 10.61±0.48 0.010 

APL b600-ADC 0.31±0.02 0.23±0.01 0.21±0.02 0.001 

Closeness centrality 
ADC 4.31±0.29 5.64±0.28 6.38±0.67 0.003 

Average closeness 
centrality 
(b600-ADC) 

4.49±0.24 5.66±0.25 6.50±0.66 0.002 

      

PK-DCE 
Features 

Ktrans 0.16±0.02 0.30±0.03 0.41±0.07 p<0.0001 

EVF 0.19±0.02 0.29±0.02 0.32±0.05 0.001 
      

Quantitative 
DWI 

Lesion ADC 1.49±0.04 1.11±0.03 1.01±0.06 p<0.0001 
Glandular tissue 
ADC 2.17±0.06 2.13±0.04 2.14±0.04 0.622 

ADC Ratio 0.69±0.02 0.53±0.02 0.47±0.03 p<0.0001 
      
 Ki-67 6.83±1.04 20.04±2.13 30.00±5.21 p<0.0001 

ADC: Apparent Diffusion Coefficient 
DCE: Dynamic Contrast Enhancement 
APL: Average Path length 
PK: Pharmacokinetics  
Ktrans: volume transfer constant 
EVF: Extracellular extravascular fraction 
ADCL: Mean Apparent Diffusion Coefficient of the lesion 
ADCG: Mean Apparent Diffusion Coefficient of the glandular tissue 
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9.4.3 IRIS Model 

The IRIS heatmap demonstrating the risk profile of each patient is shown in Figure 9.9. 

The top five feature embeddings included Radiomic features, Contribution Scattergram 

features, PK-DCE metrics, ADC metrics, and Ki-67. The IRIS heatmap visualizes the 

individual contribution of each informatic parameter subspace using a color scale 

(low-risk: blue to high-risk: red). As shown in Figure 9.9, the intermediate and high-risk 

patients demonstrated significantly higher risk predictions as compared to low-risk 

patients. The SVM applied to this five-dimensional embedding produced a sensitivity and 

specificity of 89.47% and 84.31% respectively with an AUC of 0.93 using leave-one-out 

cross validation. The ROC and TOC curves for the analysis are shown in Figure 9.10 and 

Figure 9.11, respectively. 
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Figure 9.9 The IRIS clinical decision support system for breast cancer prognosis. The IRIS 

heatmap here comprises of five feature subspaces – radiomics, contribution scattergram, 

PK-DCE metrics, ADC metrics, and Ki-67. The IRIS is represented using a heatmap where 

the color-scale (blue–red) indicates risk as identified by each embedding (low, 

intermediate, and high-risk clusters). 
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Figure 9.10 The receiver operating characteristic (ROC) curve of the five-dimensional 

multiview feature embedding. The sensitivity was 89.47% and specificity was 84.31% with 

an AUC of 0.93 
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Figure 9.11 The total operating characteristic (TOC) curve of the five-dimensional 

multiview feature embedding. The true positives (TP), false negatives (FN), true negatives 

(TN), and false positives (FP) for the optimal IsoSVM hyperplane were 17, 2, 43, and 8, 

respectively. 

 

9.5 Discussion  

I have introduced and demonstrated an advanced multiview feature embedding and 

visualization model to visualize and analyze the relationships and interactions between 

mpMRI parameters, clinical, and histological variables compared with OncotypeDX assay.  

The IRIS model was able to group patients into the three different groups from integration 
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of the data. More importantly, I defined important radiological and clinical variables for 

tumor recurrence and visualized the interaction between each variable with the 

OncotypeDX, which could lead to a non-invasive test for recurrence.  These radiological 

variables provide a unique window into the pathophysiology of these tumors and concrete 

measures of comprehensive tumor characteristics.  For example, the parameters of 

radiomics, contribution scattergram, ADC map values, PK-DCE metrics, and Ki-67, which 

reflect the cellularity, vascularity and proliferation index of the tumor in addition to their 

intrinsic textural heterogeneity and relationships between these parameters. This integrated 

model of radiological, clinical, and histological data will be useful in determining 

personalized characteristics of patients. The ability to combine these quantitative measures 

would be an important step in ensuring that “the right patient receives the right treatment”.    

 I developed and implemented an integrated informatics decision support system 

(IRIS) for the purpose of diagnosis or prognosis. Furthermore, the IRIS heatmap provides 

a visualization of relationship between different patients along with quantifiable 

embedding metrics. Using the IRIS heatmap, we would be able to identify a patient or a 

group of patients with the most similar embedding metrics to a new patient with an 

unknown risk of recurrence.  Understanding these complex relationships between different 

embeddings can provide an insight on how these embeddings are related at biological level 

for predicting recurrence of breast cancer.  

 In conclusion, these initial studies provide insight into the molecular 

underpinning of the surrogate radiologic features and provide the foundation to relate these 

changes to the OncotypeDX score, and eventually, apply these methods to the assessment 

of treatment response for improved personalized medicine. 
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Chapter 10: Thesis Summary and future work 

10.1 Thesis Summary 

This thesis presents the integrated graph theoretic, radiomics, and deep learning (I-GRAD) 

framework, which is an end-to-end system for modeling the structural and biological 

composition of different pathologies and the complex interactions between different 

features and integrating them into a personalized clinical decision support system. There 

were three major challenges in developing an end-to-end personalized clinical decision 

support framework. 

1. Develop an algorithm for automatic segmentation and classification of different 

tissue types in the radiological imaging dataset. 

My first goal was to develop a supervised approach for segmentation of 

different tissue from radiological imaging datasets. However, my training 

dataset consisting of labeled voxels corresponding to different tissue types 

across all the patients was sparse and under-sampled due to high cost and time 

required to manually create segmentation masks. I overcame this issue by 

implementing stacked sparse autoencoders (SSAE). The SSAE is a deep neural 

network that can be pre-trained in an unsupervised fashion by using all the input 

data (labeled and unlabeled) to learn an intrinsic representation of the input and 

encode it within its architecture. The pre-trained SSAE can then be fine-tuned 

using the labeled data to accurately segment different tissue types. The 

multiparametric deep learning (MPDL) model based on SSAE accurately 

segmented lesion, glandular, and fatty tissue from 192 breast cancer patients. 

The average dice similarity between eigen-filter segmented lesions and MPDL 
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segmented lesions was 0.87 ± 0.05 for malignant patients and 0.84 ± 0.07 for 

benign patients. Of the 192 patients, 142 patients were imaged at 3T and in axial 

plane while the remaining 50 were imaged in sagittal plane at 1.5T. The MPDL 

was optimized on 3T data using two-fold cross validation and was tested on the 

1.5T data. My results demonstrated the robustness of the MPDL model to 

imaging orientation, MRI parameters acquired, and magnetic field strength.  

 The MPDL model resolved the problem of tissue segmentation from 

multiparametric breast MRI using a sparsely labeled dataset. Next, I analyzed 

how the MPDL model encoded the multiparametric breast MRI datasets. This 

is important because this would help us predict when the network will fail. 

Moreover, we can compare how the intrinsic representations learnt by MPDL 

relate to the intrinsic representations learnt by humans. For this purpose, I 

visualized the weights connecting different layers and reconstructed inputs 

from different layer encodings. The encodings learnt by the MPDL model were 

very similar to how humans encode different relationships in their brain, e.g. 

Tumors are brighter on post-contrast DCE as compared to pre-contrast DCE, 

Fat is bright on T1WI and dark on T2WI. Furthermore, the SAE correlation 

reduction algorithm was able to extract DCE kinetic curve patterns from breast 

dataset concurrent with the established literature on DCE-MRI. 

 The inter-parametric relationships encoded by the MPDL are consistent 

irrespective of the underlying application (organ or pathology). As a result, the 

intrinsic representations learnt for one application could be used for another 

application. As my final contribution to segmentation of multiparametric 
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radiological imaging datasets, I evaluated the robustness of the intrinsic 

relationships encoded by MPDL when applied to segmentation of datasets 

acquired for different organs with different pathology. This study produced 

encouraging results on test datasets of brain tumor mpMRI and brain stroke 

mpMRI opening up the possibility of a universal deep learning framework for 

segmentation of different tissue types across multiple organs. 

2. Extract the texture, shape and inter-parameter complex interactions from the tissue 

of interest segmented from the radiological images. 

I developed the techniques of radiomic feature mapping (RFM) and 

contribution scattergram (CSg) to model the spatial appearance and 

inter-parameter relationships corresponding to a tissue of interest (TOI) 

segmented from multiparametric radiological images. The radiomic feature 

mapping (RFM) algorithm was discussed in the sixth chapter. The current 

methods in radiomics are not standardized. In fact, radiomic features extracted 

for the same application (e.g. breast diagnosis) have been found to be different 

across different groups, as discussed in Chapter 5. To that end, I developed 

standardized features for characterizing the cellular and vascular heterogeneity 

of the TOI. The vascular heterogeneity was computed by analyzing the time 

evolution of texture with contrast enhancement in DCE-MRI. The radiomic 

features were normalized to negate the effect of size on the textural evolution 

curves. Similarly, I developed a textural evolution metric (TEM) for 

characterizing the evolution of texture with increasing 𝑏 values. In addition, the 

RFM features were correlated with tissue biology quantitative metrics of ADC 
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and PK-DCE. The RFM features modeled the underlying cellular and vascular 

heterogeneity in the breast cancer dataset of one hundred and twenty-four 

patients for classification between benign and malignant tumors. The RFM 

features produced excellent classification accuracy with sensitivity and 

specificity of 93% and 85% respectively with an AUC of 0.91.  

The RFM features were based on texture analysis of single radiological 

images, which resulted in hundreds of texture features creating a huge dataset 

across all images for analysis. These radiomic features do not reflect the true 

underlying tissue contrast, heterogeneity, or homogeneity and only provide 

limited information corresponding to the physical modeling of each imaging 

parameter. As a result, I extended the RFM method to develop multiparametric 

radiomics (MPRAD) to characterize the texture of the complete 

multiparametric imaging datasets. The MPRAD framework modeled the “true” 

texture of the underlying tissue by combining the multiview information 

obtained from different imaging parameters. In addition, the MPRAD 

framework also extracted features based on the complex interactions between 

different imaging parameters, consequently opening up a completely new 

source of information that did not exist with conventional radiomic features.  

My final contribution to the field of feature extraction from multiparametric 

radiological images was the technique of contribution scattergram (CSg). The 

CSg modeled the inter-parametric relationships between different imaging 

parameters as a complex network model. The CSg was distinct from previously 

developed methods for extraction of inter-parametric relationships, in that, the 
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CSg modeled the complete network structure governing the inter-parametric 

relationships as opposed to modeling a specific biological characteristic (e.g. 

pharmaco-kinetic modeling for DCE).  

The contribution scattergram algorithm is based on manifold learning and 

complex network analysis for visualization and evaluation of the graphical 

network formed by the inter-parameter interactions, respectively. I developed 

CSg metrics based on graph theoretic analysis centrality measures to capture 

the vascularity (PK-DCE) and cellularity (DWI) of the tumor as a whole in 

contrast to single voxel measurements evaluated using conventional methods. 

The CSg was applied to model the inter-parameter relationships in a breast 

cancer patient cohort of one hundred and thirty-nine patients. The CSg 

classified the benign lesions from malignant lesions with excellent sensitivity 

and specificity of 89% and 82% respectively with an AUC of 0.87.  

3. Model the extracted information into an intrinsic representation that would be 

useful for identifying the most similar patients as well as classifying the patients 

based on predefined classes. 

My final contribution to this thesis entails development of the multiview feature 

integration model, IRIS for end-to-end clinical decision support. The IRIS was 

tested on a breast mpMRI dataset for prediction of breast cancer recurrence risk. 

The breast cancer recurrence risk is traditionally measured using Oncotype DX 

score, which costs around $4000. The goal of this work was to develop and 

implement IRIS on features extracted from data that is routinely collected and 

accurately predict breast cancer recurrence risk. Specifically, I wanted to model 
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the radiomics, contribution scattergram, clinical, and pathological features 

(extracted routinely in clinical practice) into an end-to-end clinical decision 

support system.  

The IRIS transforms each subspace formed by a feature group such as 

radiomics and contributions scattergram into a risk score that can be evaluated 

for final decision support. The IRIS system visualized each embedding on a 

heatmap where the risk scores are color-coded from blue (low-risk) to red 

(high-risk). Using the IRIS heatmap, most similar patients as well as an overall 

risk score were obtained. The IRIS system demonstrated excellent accuracy in 

prediction of breast cancer recurrence risk in a cohort of 70 patients with 

sensitivity and specificity of 89.47% and 90.20% respectively with an AUC of 

0.93. 

Apart from a high accuracy in predicting breast cancer recurrence risk score, 

IRIS could potentially be used to predict “true” risk score for patients with 

intermediate risk score. The intermediate-risk patients are the patients for which 

we do not know the true risk group (low vs. high). Using IRIS, we can identify 

similar patients from history as well evaluate risk score corresponding to 

individual biomarkers to compute the true risk score for the patient in question.  

In summary, the I-GRAD framework presented in this thesis can be used to model 

any pathology using radiological imaging data or in combination with clinical and 

histopathological data and produce a personalized patient diagnosis, prognosis, or 

treatment plan. 
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10.2 Future Work 

1. Universal Organ Invariant Tissue Segmentation 

In this thesis, the multiparametric deep learning tissue signature model was 

developed to automatically segment different breast tissue types. In addition, 

detailed inspection of each layer of the MPDL trained for breast tissue segmentation 

revealed that it was able to learn the basic features of imaging physics such as “fluid 

in bright on T2 and dark on T1”. These features are universally present for the same 

set of imaging parameters for any organ, which was reasserted by my work in 

Chapter 4. In the future, my aim is to develop a universal organ invariant tissue 

signature segmentation database that can potentially segment any tissue type from 

any MRI dataset.  

2. Unsupervised tissue segmentation 

I plan to develop a completely unsupervised counterpart of the multiparametric 

deep learning (MPDL) tissue signature model which can be used to segment any 

multiparametric imaging dataset without prior training dataset. This is especially 

useful in radiological applications as it is difficult to have a training dataset where 

all kinds of possible tissue types can be pre-labeled.  

3. Radiomic and Contribution Scattergram synthesis using deep learning 

Both the textural features and the inter-parameter relationships can be captured by 

a single 3D convolutional neural network (CNN) model, provided we gather 

enough training data. The 3D CNN can capture the 2D texture information in the 

initial layers of the neural network in addition to capturing the inter-parameter 

relationships across the third dimension. However, such a neural network model 
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would require a huge training dataset owing to the large number of trainable 

parameters. This is one direction that I plan to extend my work into as it would 

enable to develop a single model to extract all the information present in a 

radiological dataset.   

4. Precision Radiology Applications 

I plan to implement and validate the I-GRAD framework for precision radiology 

across multiple different applications enlisted below: 

• Breast cancer treatment response assessment to neoadjuvant therapy 

• Distinguishing true progression from radiation necrosis after stereotactic 

radiotherapy for brain metastasis 

• Distinguishing true progression from pseudo progression in WHO Grade 

IV glioblastoma patients 

• Characterization of prostate lesions with histopathology 
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CODE BASE 

I have wrapped all the algorithms developed in this thesis into a graphical user interface 

(GUI) using MATLAB. The GUI serves as a user-friendly interface for physicians, 

radiologists and medical students who are interested in running complex data analysis (e.g. 

radiomics, contribution scattergram, deep learning) on their data, but do not have an 

expertise in programming. However, the computational radiology GUI still requires users 

to have a thorough understanding of the various algorithms for generation of meaningful 

results. The computational radiology software can be found on 

https://github.com/vishwaparekh/Computational_Radiology.git. Drop me an email at 

vishwaparekh@jhu.edu if you would like to get access to the source code or contribute to 

the project. 
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