2,641 research outputs found

    Relative entropy of entanglement for certain multipartite mixed states

    Full text link
    We prove conjectures on the relative entropy of entanglement (REE) for two families of multipartite qubit states. Thus, analytic expressions of REE for these families of states can be given. The first family of states are composed of mixture of some permutation-invariant multi-qubit states. The results generalized to multi-qudit states are also shown to hold. The second family of states contain D\"ur's bound entangled states. Along the way, we have discussed the relation of REE to two other measures: robustness of entanglement and geometric measure of entanglement, slightly extending previous results.Comment: Single column, 22 pages, 9 figures, comments welcom

    Multipartite quantum and classical correlations in symmetric n-qubit mixed states

    Get PDF
    We discuss how to calculate genuine multipartite quantum and classical correlations in symmetric, spatially invariant, mixed nn-qubit density matrices. We show that the existence of symmetries greatly reduces the amount of free parameters to be optimized in order to find the optimal measurement that minimizes the conditional entropy in the discord calculation. We apply this approach to the states exhibited dynamically during a thermodynamic protocol to extract maximum work. We also apply the symmetry criterion to a wide class of physically relevant cases of spatially homogeneous noise over multipartite entangled states. Exploiting symmetries we are able to calculate the nonlocal and genuine quantum features of these states and note some interesting properties.Comment: Close to published Versio

    Multidimensional quantum entanglement with large-scale integrated optics

    Get PDF
    The ability to control multidimensional quantum systems is key for the investigation of fundamental science and for the development of advanced quantum technologies. Here we demonstrate a multidimensional integrated quantum photonic platform able to robustly generate, control and analyze high-dimensional entanglement. We realize a programmable bipartite entangled system with dimension up to 15Ă—1515 \times 15 on a large-scale silicon-photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality and controllability of our multidimensional technology, and further exploit these abilities to demonstrate key quantum applications experimentally unexplored before, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides a prominent experimental platform for the development of multidimensional quantum technologies.Comment: Science, (2018

    Operational approach to Bell inequalities: applications to qutrits

    Full text link
    Bell inequalities can be studied both as constraints in the space of probability distributions and as expectation values of multipartite operators. The latter approach is particularly useful when considering outcomes as eigenvalues of unitary operators. This brings the possibility of exploiting the complex structure of the coefficients in the Bell operators. We investigate this avenue of though in the known case of two outcomes, and find new Bell inequalities for the cases of three outcomes and n=3,4,5n=3,4,5 and 66 parties. We find their corresponding classical bounds and their maximum violation in the case of qutrits. We further propose a novel way to generate Bell inequalities based on a mapping from maximally entangled states to Bell operators and produce examples for different outcomes and number of parties.Comment: 10 pages, no figures. A sign error in Eq.(10), appearing in the published version, has been correcte

    Measures of entanglement in multipartite bound entangled states

    Full text link
    Bound entangled states are states that are entangled but from which no entanglement can be distilled if all parties are allowed only local operations and classical communication. However, in creating these states one needs nonzero entanglement resources to start with. Here, the entanglement of two distinct multipartite bound entangled states is determined analytically in terms of a geometric measure of entanglement and a related quantity. The results are compared with those for the negativity and the relative entropy of entanglement.Comment: 5 pages, no figure; title change
    • …
    corecore