817 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Collaborative Deep Learning for Recommender Systems

    Full text link
    Collaborative filtering (CF) is a successful approach commonly used by many recommender systems. Conventional CF-based methods use the ratings given to items by users as the sole source of information for learning to make recommendation. However, the ratings are often very sparse in many applications, causing CF-based methods to degrade significantly in their recommendation performance. To address this sparsity problem, auxiliary information such as item content information may be utilized. Collaborative topic regression (CTR) is an appealing recent method taking this approach which tightly couples the two components that learn from two different sources of information. Nevertheless, the latent representation learned by CTR may not be very effective when the auxiliary information is very sparse. To address this problem, we generalize recent advances in deep learning from i.i.d. input to non-i.i.d. (CF-based) input and propose in this paper a hierarchical Bayesian model called collaborative deep learning (CDL), which jointly performs deep representation learning for the content information and collaborative filtering for the ratings (feedback) matrix. Extensive experiments on three real-world datasets from different domains show that CDL can significantly advance the state of the art

    μ-cf2vec:  Representation Learning for Personalized Algorithm Selection in Recommender Systems

    Get PDF
    Neste momento Collaborative filtering é a tecnica que permite alcancar resultados do estado daarte em problemas de sistemas de recomendação. Existem várias implementações desta técnica cada uma com as suas características.Collaborative filtering has becoming standard approach to achieve state of the art results in rec-ommendation systems problems. There are multiples implementations of this technique, each onethem with its own characteristics

    Deep Learning for Recommender Systems

    Get PDF
    The widespread adoption of the Internet has led to an explosion in the number of choices available to consumers. Users begin to expect personalized content in modern E-commerce, entertainment and social media platforms. Recommender Systems (RS) provide a critical solution to this problem by maintaining user engagement and satisfaction with personalized content. Traditional RS techniques are often linear limiting the expressivity required to model complex user-item interactions and require extensive handcrafted features from domain experts. Deep learning demonstrated significant breakthroughs in solving problems that have alluded the artificial intelligence community for many years advancing state-of-the-art results in domains such as computer vision and natural language processing. The recommender domain consists of heterogeneous and semantically rich data such as unstructured text (e.g. product descriptions), categorical attributes (e.g. genre of a movie), and user-item feedback (e.g. purchases). Deep learning can automatically capture the intricate structure of user preferences by encoding learned feature representations from high dimensional data. In this thesis, we explore five novel applications of deep learning-based techniques to address top-n recommendation. First, we propose Collaborative Memory Network, which unifies the strengths of the latent factor model and neighborhood-based methods inspired by Memory Networks to address collaborative filtering with implicit feedback. Second, we propose Neural Semantic Personalized Ranking, a novel probabilistic generative modeling approach to integrate deep neural network with pairwise ranking for the item cold-start problem. Third, we propose Attentive Contextual Denoising Autoencoder augmented with a context-driven attention mechanism to integrate arbitrary user and item attributes. Fourth, we propose a flexible encoder-decoder architecture called Neural Citation Network, embodying a powerful max time delay neural network encoder augmented with an attention mechanism and author networks to address context-aware citation recommendation. Finally, we propose a generic framework to perform conversational movie recommendations which leverages transfer learning to infer user preferences from natural language. Comprehensive experiments validate the effectiveness of all five proposed models against competitive baseline methods and demonstrate the successful adaptation of deep learning-based techniques to the recommendation domain

    Coupled Poisson factorization integrated with user/item metadata for modeling popular and sparse ratings in scalable recommendation

    Full text link
    Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. Modelling sparse and large data sets is highly in demand yet challenging in recommender systems. With the computation only on the non-zero ratings, Poisson Factorization (PF) enabled by variational inference has shown its high efficiency in scalable recommendation, e.g., modeling millions of ratings. However, as PF learns the ratings by individual users on items with the Gamma distribution, it cannot capture the coupling relations between users (items) and the rating popularity (i.e., favorable rating scores that are given to one item) and rating sparsity (i.e., those users (items) with many zero ratings) for one item (user). This work proposes Coupled Poisson Factorization (CPF) to learn the couplings between users (items), and the user/item attributes (i.e., metadata) are integrated into CPF to form the Metadata-integrated CPF (mCPF) to not only handle sparse but also popular ratings in very large-scale data. Our empirical results show that the proposed models significantly outperform PF and address the key limitations in PF for scalable recommendation

    Knowledge-aware Complementary Product Representation Learning

    Full text link
    Learning product representations that reflect complementary relationship plays a central role in e-commerce recommender system. In the absence of the product relationships graph, which existing methods rely on, there is a need to detect the complementary relationships directly from noisy and sparse customer purchase activities. Furthermore, unlike simple relationships such as similarity, complementariness is asymmetric and non-transitive. Standard usage of representation learning emphasizes on only one set of embedding, which is problematic for modelling such properties of complementariness. We propose using knowledge-aware learning with dual product embedding to solve the above challenges. We encode contextual knowledge into product representation by multi-task learning, to alleviate the sparsity issue. By explicitly modelling with user bias terms, we separate the noise of customer-specific preferences from the complementariness. Furthermore, we adopt the dual embedding framework to capture the intrinsic properties of complementariness and provide geometric interpretation motivated by the classic separating hyperplane theory. Finally, we propose a Bayesian network structure that unifies all the components, which also concludes several popular models as special cases. The proposed method compares favourably to state-of-art methods, in downstream classification and recommendation tasks. We also develop an implementation that scales efficiently to a dataset with millions of items and customers

    Recurrent Latent Variable Networks for Session-Based Recommendation

    Full text link
    In this work, we attempt to ameliorate the impact of data sparsity in the context of session-based recommendation. Specifically, we seek to devise a machine learning mechanism capable of extracting subtle and complex underlying temporal dynamics in the observed session data, so as to inform the recommendation algorithm. To this end, we improve upon systems that utilize deep learning techniques with recurrently connected units; we do so by adopting concepts from the field of Bayesian statistics, namely variational inference. Our proposed approach consists in treating the network recurrent units as stochastic latent variables with a prior distribution imposed over them. On this basis, we proceed to infer corresponding posteriors; these can be used for prediction and recommendation generation, in a way that accounts for the uncertainty in the available sparse training data. To allow for our approach to easily scale to large real-world datasets, we perform inference under an approximate amortized variational inference (AVI) setup, whereby the learned posteriors are parameterized via (conventional) neural networks. We perform an extensive experimental evaluation of our approach using challenging benchmark datasets, and illustrate its superiority over existing state-of-the-art techniques

    A Hierarchical Self-Attentive Model for Recommending User-Generated Item Lists

    Full text link
    User-generated item lists are a popular feature of many different platforms. Examples include lists of books on Goodreads, playlists on Spotify and YouTube, collections of images on Pinterest, and lists of answers on question-answer sites like Zhihu. Recommending item lists is critical for increasing user engagement and connecting users to new items, but many approaches are designed for the item-based recommendation, without careful consideration of the complex relationships between items and lists. Hence, in this paper, we propose a novel user-generated list recommendation model called AttList. Two unique features of AttList are careful modeling of (i) hierarchical user preference, which aggregates items to characterize the list that they belong to, and then aggregates these lists to estimate the user preference, naturally fitting into the hierarchical structure of item lists; and (ii) item and list consistency, through a novel self-attentive aggregation layer designed for capturing the consistency of neighboring items and lists to better model user preference. Through experiments over three real-world datasets reflecting different kinds of user-generated item lists, we find that AttList results in significant improvements in NDCG, Precision@k, and Recall@k versus a suite of state-of-the-art baselines. Furthermore, all code and data are available at https://github.com/heyunh2015/AttList.Comment: Accepted by CIKM 201
    corecore