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Abstract

Collaborative Filtering (CF) has become the standard approach to solve recommendation systems
problems. There are multiple CF algorithms, each one of them with its own biases. It is the
Machine Learning practitioner that has to choose the best algorithm for each task beforehand.
However, from the No Free Lunches theorem, we can extrapolate that it is very unlikely that one
single algorithm will be the best for all tasks. In Recommender Systems, different algorithms have
different performance for different users within the same dataset. Meta Learning has been used to
choose the best algorithm for a given problem. MtL can lean from prior experience in such a way
that can be used in other tasks. This dissertation presents a new meta-learning based framework
named µ-cf2vec to select the best algorithm for each user. Meta Learning is usually applied to
select algorithms for a whole dataset. Adapting it to select the to the algorithm for a single user
in a RS involves several challenges. The most important is the design of the metafeatures which,
in typical meta learning, characterize datasets while here, they must characterize a single user.
We propose using Representation Learning techniques to extract the metafeatures. Representation
Learning tries to extract representations that can be reused in other learning tasks. We are going
to compare two different RL techniques to evaluate which one can be more useful to solve this
task. In the meta level, the meta learning model will use the metafeatures to extract knowledge
that will be used to predict the best algorithm for each user. We evaluated an implementation of
this framework using MovieLens 20M dataset. Our implementation achieved consistent gains in
the meta level, however, in the base level we only achieved marginal gains.

i



ii



Resumo

Collaborative Filtering tornou-se a técnica standard usada para resolver problemas de sistemas de
recomendação. Existem várias implementações desta técnica, cada uma com o seu viés. Tem
de ser o Data Scientist a escolher manualmente qual o melhor algoritmo a utilizar. No entanto,
é improvável que apenas um algoritmo tenha o melhor desempenho para todos os problemas.
Esta dissertação apresenta uma framework baseada em técnicas de Meta Learning chamada µ-
cf2vec. A framework é dividida em dois níveis: nível base e nível meta. No nível base, µ-
cf2vec avalia o desempenho de um grupo de base learners que irá ser usado como metatarget.
Este metatarget vai ser utilizado em conjunto com metafeatures para criar um metadataset. As
metafeatures vão ser geradas usando técnicas de Representation Learning. No nível meta o modelo
irá utilizar este metadataset para escolher o melhor algoritmo para cada utilizador. Iremos avaliar
uma implementação desta framework utilizando o dataset MovieLens 20M. Nesta implementação
obtivemos ganhos constantes no nível meta e ganhos marginais no nível base.
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Chapter 1

Introduction

Over the last few years, recommender systems (RS) have been used in many different applica-

tions in our life, such as recommending products that a customer will most likely buy, suggesting

movies [2], videos [3] to watch and many others [4]. Various approaches for recommender systems

have been developed, which are used in many disciplines: machine learning, text mining, artificial

intelligence, network analysis, databases, human computer interaction, and many more [5]. How-

ever, despite many successes, the predictive performance of RS is still not satisfactory in most

applications [6]; Challenges to improve their performance include: better methods for represent-

ing user behavior and the items to be recommended; more advanced recommendation modeling

methods; incorporation of various contextual information into the recommendation process; more

explainable recommendations; and others [4].

Although investigation about recommender systems dates back to earlier work – namely, in

cognitive science [7], approximation theory, information retrieval [8] and others –, recommender

systems emerged as an independent research area when researchers started focusing on recom-

mendation problems by explicitly relying on the ratings structures [4]. There are two common

formulations of this problem. The recommendation problem is reduced to the task of estimating

a rating for items that have not been seen by the user. Once the unknown ratings are estimated

the system will recommend the items with a higher rating for that user, the prediction problem.

Another possible approach is to reduce the recommendation task to the problem of recognizing if

an item is interesting for an user. In this way the system will recommend the top N items of an

user, the item ranking problem [9].

The new ratings formulation of the problem introduced new techniques [10]. From these

different techniques, Collaborative Filtering (CF) has become the standard approach to solve rec-

ommendations problems [11]. CF algorithms are relatively simple to implement while having a

satisfactory performance in many applications, when compared to other algorithms. Different al-

gorithms have different characteristics, and biases. Their performance varies so choosing the right

algorithm is a step towards improving the performance.

We have many algorithms that not only perform differently across different datasets, but also

even for different users of the same dataset. Research in fairness-aware recommender systems has
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2 Introduction

shown that the outputs of recommendations algorithms are, in some cases biased, against specific

groups of users [12] [13]. As a result, discrimination among users will degrade the performance of

our system. Discrimination in recommendations is originated from different sources: underlying

biases in the input data, or the result of recommendation algorithms [13]. Different algorithms

have different impacts on the recommendations for different groups of users.

1.1 Motivation

We expect the performance of the algorithms to vary not only for datasets but even within the

same dataset, for instance, in RS, it is different for different users. Recommender systems aim to

make good recommendations for all users, ideally the biases to groups of users should be removed.

However, the bias is directly linked to the algorithms [13]. Choosing the right algorithm is a step

towards improving the performance of the system. This can be called the algorithm selection

problem.

The challenge of Meta Learning is to learn from prior experience in a systematic, data driven

way [14] and can be used to tackle algorithm selection problem. We need to collect metadata, by

extracting features that describe prior learning tasks. A Meta Learning model will learn from the

metadata to transfer knowledge for future tasks [14]. There are different ways to extract features

from prior tasks: Statistical and Information-Theory Characterization, Model-Based Characteri-

zation, Landmarking [15]. There are many challenges when extracting metafeatures: there are

different metrics to characterize a task and we have to manually select which we should use. Us-

ing Meta Learning to solve the problem of different performance for different users within the

same dataset can be challenging. This challenges arise from the difficulty of developing metafea-

tures for a single user.

Representation Learning shares the same goal of the metafeatures, i.e, learn good represen-

tation about the data. In Representation Learning we try to extract compact representations from

heterogeneous types of data in a numerical representation that can be reused in other learning

tasks. The nature of Representation Learning induces the hypothesis of using these techniques to

retrieve metafeatures about the data. These techniques can be used to learn representations about

the data while keeping as much information as possible [16]. This might indicate that they can be

used to retrieve metafeatures at the user level.

1.1.1 Proposal

We propose a completely new solution to the algorithm selection in recommender systems on

the user level. We aim to solve the problem of different algorithms that have a different bias in

users. To do so, we propose to use Meta Learning. When using Meta Learning we have to extract

features about the task we want to solve. We suggest using Representation Learning techniques

to retrieve these features. To the best of our knowledge, this solution is the first of its kind: using

Representation Learning for Personalized Algorithm Selection in Recommender Systems.
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1.1.2 Research Questions

One approach, that was introduced in this work is to use Representation Learning to retrieve

meta features on the user level. These metafeatures are going to be used by the meta model to

recommend an algorithm for each user. The first research question, Can we use Representation
Learning to obtain useful metafeatures on the User Level?, will help us understand if a meta

learning model trained on metafeatures retrieved by Representation Learning techniques can have

a better performance than a single CF algorithm.

There are many different representation learning techniques each one of them with its biases.

The meta model will be using the representations obtained by these techniques to extract knowl-

edge, that will then be used to select the best algorithm for each user. Which Representation
Learning Technique is the best? is the second research question we aim to solve.

This framework was proposed to reduce the bias of a single Collaborative Filtering algorithm.

All users should have good performance, the ultimate goal of this framework is to improve the

performance on the user level (base level). The third research question What is the impact on the
base level performance achieved by µ-cf2vec? aims to understand the impact of this framework

on the user level.

While developing this framework we encountered a new challenge: there are some users for

which none of the base learners can make good recommendations. To understand the impact of

these users we seek to answer the final research question What is the impact of the zeroes class
on µ-cf2vec?

1.2 Contributions

This work has two main contributions - µ-cf2vec: Representation Learning for Personalized Al-

gorithm Selection in Recommender Systems - which is a framework that uses Representation

Learning techniques to retrieve user embeddings, and will be used by a Meta Learning model to

solve the algorithm selection problem on the user level. The contribution of this framework is to

automatically retrieve metafeatures for the users using RL. Using these techniques we remove the

need to generate handcrafted metafeatures which can be slow and inefficient.

The second contribution is an empirical study of the proposed framework. We implemented a

version of the µ-cf2vec framework. In this implementation we used two Representation Learning

techniques: Variational Auto-encoders and Denoising Auto-encoders for Collaborative Filtering.

We used a group of 5 different base learners and a set of 5 meta learners.

1.3 Organization of the dissertation

The rest of the dissertation is organized into five additional chapters:
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• Chapter 2 discusses the related work to this dissertation. It gives an overview of the fol-

lowing themes: Collaborative Filtering techniques and evaluation metrics, Representation

Learning techniques, and Meta Learning strategies.

• Chapter 3 gives an overview of the framework.

• Chapter 4 puts forward an empirical study where we first present the experimental setup, in

both base level and meta level, and then we describe the experiments made. To close there

are four research questions, which are the core of this work, being discussed in this chapter.

• The final chapter 5 deals with concluding remarks, limitation of this work and proposals for

future work.



Chapter 2

Literature Review

2.1 Collaborative Filtering

Collaborative Filtering (CF) has become the standard approach to address recommender systems

problems. Collaborative Filtering algorithms try to make predictions about interests of a user

by collecting the personal interests from multiple users. In a CF problem, we have a list of m

users and a list of n items, each user has a list of items which he has rated or or the personal

preferences of the user can be implicitly inferred from his behavior. Figure 2.1 presents a diagram

of the Collaborative Filtering processs. The datasets can be explicit if the user gives ratings to the

items. In this case the model will predict the ratings from a user to items and then recommend the

items with the best rating [9]. There is another type of CF datasets: implicit datasets where the

interaction is 1 if the user clicked/purchased the item and 0 otherwise. When faced with this type

of problem the model will only recommend items [9].

Collaborative Filtering refers to making automatic predictions (filtering) about the interests

of a user by collecting preferences or taste information from many users (collaborating) [17].

CF systems suffer from some challenges: Cold Start problem, scalability and they have to deal

with high sparse data. The Sparsity is connected to the high number of users and items. It is

unlikely that each user has clicked on every item available. This challenge is also connected to

the Cold Start problem; this happens when a new user or a new item has just entered the system.

Since these items/users are new and we don’t have any interactions, the system cannot generate

useful recommendations [18]. The recommender systems also need to be scalable. In real world

applications the number of users and items will be very high and will keep increasing [19].

The CF techniques can be classified in different categories such as: Memory-Based Collabo-

rative Filtering, Model-Based Collaborative Filtering and Hybrid Collaborative Filtering [11]. For

the purpose of this work we are only going to focus on the first two categories.

Memory-Based Collaborative Filtering was the first generation of CF systems and uses sim-

ilarity functions to compute the similarity between users or items and making recommendations

based on those similarity values [21]. These systems are easy to implement and can perform well.

However, Memory-Based Collaborative Filtering algorithms face scalability problems due to their

5



6 Literature Review

Figure 2.1: Collaborative Filtering Process [20]

design [22]. Since the algorithms have to compute the similarity between users or items, if we

have high sparse data, the algorithms will underperform. Due to the same reasons, this technique

also does not perform well when faced with the new items or users, i.e. the Cold Start problem.

Item-item Collaborative Filtering is an example of a Memory-Based Collaborative Filtering tech-

nique. Figure 2.2 helps to understand the architecture of the algorithm. In this example: U3 clicks

on Item C, therefore is likely that U3 will also click on an item similar to the Item C. As is the case

here, if item C is similar to item A (a similarity which is measured using similarity function), we

can then infer that U3 may find Item A appealing. Therefore, we are going to recommend Item A

to the U3.

Figure 2.2: Item-based knn

We have multiple similarity functions [20][23]. Cosine similarity function is a standard func-

tion. Here two items are two vectors in the m dimensional user space. The similarity is then

measured by computing the cosine of the angle between these two vectors. In the ratings matrix

in the figure 2.1 the cosine similarity between items i and j is given by (2.1) [20].

sim(i, j) = cos(θ) =
i · j
‖i‖ j‖

(2.1)

Term Frequency times Inverse Document Frequency (TF-IDF) can also be used as a similarity

function for CF techniques[24]. In item-based Collaborative Filtering the items are the documents,
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and the users the terms. TF-IDF is a numerical statistic that can measure how relevant a given item

is. This relevance can be used to correlate the items and can be calculated from equation (2.2),

where t fi, j is the number of occurrences i in j; d fi is the number of documents containing i; and

N is the total number of documents [25].

wi, j = t fi, j× log
(

N
d fi

)
(2.2)

BM25 can also be used as a similarity function in Collaborative Filtering. Similar to TF-IDF,

BM25 ranks a set of documents (items in CF) similar to a query (users). BM25 weight can be in-

stantiated by (2.3). Where wi is the usual RSJ weight, f (t fi)=
(k1+1)t fi

K+t fi
, K = k1

(
(1−b)+b∗ dl

avdl

)
,

dl is the document length; avdl is the average document length; k1 and b are global parameters

which are in general unknown, but may be tuned on the basis of evaluation data [25]. For this

work these three are the more relevant, however there are more similarity functions [26].

BM25 weight wi = f (t fi)∗w(1)
i (2.3)

Model-based Collaborative Filtering algorithms can improve the performance compared to

Memory based CF, and can address the sparsity problem. Since the Netflix Prize [27], Matrix

Factorization algorithms have become very popular to solve CF tasks. These algorithms work by

creating a representation for each user u with a k dimensional vector xu and for each item i with k

dimension vector yi. We can call these vectors factors. The goal is to predict the users u rating for

item i, rui ≈ x>u yi. We can also write this in matrix notation, knowing that x1, . . . ,xn ∈ Rk are the

factors for the users, and y1, . . . ,ym ∈Rκ are the factors for the items. The k×n user matrix X and

the k×m item matrix Y are then defined by:

X =

 | |
x1 · · · xn

| |

 ,Y =

 | |
y1 · · · ym

| |


The target is to complete the ratings matrix R≈XTY . To achieve it we can see this as a problem

in which the goal is to minimize the objective functions and find the optimal X and Y . There are

multiple Matrix Factorization techniques presented in [28]. For this work we are going to focus on

three algorithms: Alternating Least Squares, Bayesian Personalized Ranking, and Logistic Matrix

Factorization.

2.1.1 ALS

Alternating Least Squares [29] [30] [31] is a matrix factorization technique that aims to minimize

the least squares error of the observed ratings (and regularize). Regularization tries to reduce the

variance of the model without a substantial increase in its bias. The parameter λ can be tunned in

regularization techniques by controlling the impact on bias and variance. We can formulate this

problem to minimize the objective function (2.4).



8 Literature Review

min
X ,Y ∑

rui observed

(
rui− x>u yi

)2
+λ

(
∑
u
‖xu‖2 +∑

i
‖yi‖2

)
(2.4)

A common way to optimize the objective function is by using gradient descent [32]. How-

ever, for this case gradient descent turns out to be slow and computationally expensive. Another

technique we can use is to fix a set of variables X as constants, and optimize the function for Y . Af-

terwards we fix Y and then optimize for X . We keep repeating this process until convergence. The

algorithm (1) can help us visualize the procedure. This alternation brings the name Alternating

Least Squares.

Algorithm 1: ALS Matrix Completion

Initialize X , Y ;

repeat
for u = 1 . . .n do

xu =

(
∑

rui∈ru∗

yiy>i +λ Ik

)−1

∑
rui∈ru∗

ruiyi (2.5)

end
for i = 1 . . .m do

yi =

(
∑

rui∈r∗i
xux>u +λ Ik

)−1

∑
rui∈r∗i

ruixu (2.6)

end
until convergence

2.1.2 BPR

Bayesian Personalized Ranking (BPR) [33] is focused on solving the personalized ranking task.

The goal of this algorithm is to provide user u a personalized ranking, denoted by >u. As men-

tioned previously, the usual approach for item recommendation is to predict a personalized score

r̂ui for an item that reflects the user’s preference for that item. However, BPR uses a different ap-

proach. If a user has interacted with item i then we assume that the user prefers this item over all

other non-observed items. The goal of BPR is to recommend the items that the users prefer such as

belong to >u. This method uses a Bayesian approach. Assuming Θ is the parameter of the model

that determines the personalized ranking, BPR’s goal is to maximize the posterior probability [34]:

p(Θ | i >u j) ∝ p(i >u j |Θ) p(Θ) (2.7)

Where p(i >u j |Θ) is the likelihood function that captures the individual probability that a

user really prefers item i over j and is computed in the following way:

p(i >u j |Θ) := σ (x̂ui j(Θ)) (2.8)
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Where σ(x) = 1
1+e−x , and rui j(Θ) captures the relationship between user u, with the items i

and j. The framework delegates the task of modelling the relationship between u, i and, j to

an underlying model class, which is in charge of estimating rui j(Θ). To complete the Bayesian

modelling approach of the personalized ranking task, it is necessary to introduce the general prior

density p(Θ) which is a normal distibution with zero mean and variance-covariance matrix ΣΘ.

The prior density is given by: p(Θ) ∼ N (0,ΣΘ). To reduce the number of unkown hyperparam-

eters ΣΘ = λΘI is set. The maximum posterior estimator can be formuated to derive the generic

optimization criterion for personalized ranking BPR-OPT

BPR−OPT := ln p(Θ |>u)

= ln p(>u|Θ) p(Θ)

= ln ∏
(u,i, j)∈DS

σ (x̂ui j) p(Θ)

= ∑
(u,i, j)∈DS

lnσ (x̂ui j)+ ln p(Θ)

= ∑
(u,i, j)∈DS

lnσ (x̂ui j)−λΘ‖Θ‖2

(2.9)

Where λΘ are model specific regularization parameters. Since the criterion is differentiable, it

is possible to use gradient descent based algorithms for maximization. Limited by the characteris-

tics of the Collaborative Filtering data, the maximization is achieved by using a stochastic gradient

descent technique that chooses the triplets u, i, and j randomly [33].

2.1.3 LMF

Logistic Matrix Factorization (LMF) [35] has a similar approach to ALS by factorizing the ratings

matrix R by 2 lower dimensional matrices Xn× f and Yn× f , where f is the number of latent factors.

Similar to the ALS algorithm, X matrix represents the taste of the users and Y T represents the

items. LMF uses a probabilistic approach, different from ALS. Assuming that lu,i denotes the

event that a user u has chosen to interact with the item i, the probability of this event occurring

can be distributed according to a logistic function. This function is parametrized by the sum of the

inner product of user and item latent factors and user and item biases.

p(lui | xu,yi,βu,βi) =
exp
(
xiyT

i +βu +βi
)

1+ exp
(
xuyT

i +βu +βi
) (2.10)

Where the βu and βi terms represent user and item biases. Some users will tend to interact with a

diverse assortment of items while others will only interact with a small subset. Non zero entries

of the observation matrix represent positive observations and the zero entries represent negative

observations. The "confidence" in the entries of R is given by c = αrui where α is a tuning param-

eter. To achieve the best results α is chosen to balance the positive and negative observations. By

making the assumption that all entries of R are independent, the likelihood of the observations R

is given by the parameters X , Y and β and it is defined by:
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L (R | X ,Y,β ) = ∏
u,i

p(lui | xu,yi,βu,βi)
αrui (1− p(lui | xu,yi,βu,βi)) (2.11)

The goal of the model is to learn X ,Y and β that maximize the log posterior.

argmaxX ,Y,β log p(X ,Y,β | R) (2.12)

A local maximum of the objective defined in equation (2.12) can be found by performing an

alternating gradient ascent procedure. In each iteration, the user vectors X and biases β are fixed

to take a step towards the gradient of the item vectors Y and biases β . Next, the item vectors Y

and biases β are fixed to take a step towards the gradient of the user vectors X and biases β . In

this situation, the number of iterations required for convergence can be reduced dramatically by

choosing the gradient step sizes adaptively [35].

2.2 Evaluation

The evaluation of Collaborative Filtering algorithms is usually performed by procedures that split

the dataset into training and test subsets using sampling strategies. There are different techniques

such as k-fold cross-validation and split the dataset in train validation and test [36]. Figure 2.3

presents a typical Collaborative Filtering problem data partitioning. In CF tasks the users are split

in three groups: train, validation, and test. The training users’ interactions are used to train the

model. The validation users allow for the tunning of the parameters, and the test users are used to

make an unbiased evaluation of the model.

Figure 2.3: CF data splitting

As stated previously, Collaborative Filtering tasks can have two different categories of datasets,

explicit and implicit. Consequently, there are two different ways to estimate the performance of

the model: rating prediction, and item ranking [37]. In rating prediction, our model will try to

estimate the rating rui from a user u to an item i. To measure the performance of our model we can

use metrics like Root Mean Squared Error (RMSE) or Normalized Mean Absolute Error (NMAE).

This metrics will try to measure what was the error of our model prediction. In a ranking task,

the model will try to rank the items that the user u is more likely to have an interaction with. To

evaluate the performance of our model we need to use metrics that can measure the ranking of an

item. Normalized Discounted Cumulative Gain (NDCG) can be used for this task. To make use of
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this metric we need to compute the Discounted Cumulative Gain which is given by the equation

(2.13) where reli is the relevance of the result at position i [38].

DCGp =
p

∑
i=1

reli
log2(i+1)

= rel1 +
p

∑
i=2

reli
log2(i+1)

(2.13)

The premise of this metric is: items that are relevant for the user but appear in the last positions

of the recommendation list should be penalized. Therefore the relevance of an item will be affected

if recommended in the latest positions. To normalize this metric in each position we have to

compute the Ideal Discounted Cumulative Gain (IDCG) that is given by the equation (2.14), where

RELp represents the list of relevant documents (ordered by their relevance).

IDCGp =
|RELp|
∑
i=1

2reli−1
log2(i+1)

(2.14)

With this information, we can finally compute the NDCG

nDCGp =
DCGp

IDCGp
(2.15)

Normalized Discounted Cumulative Gain, as stated previously, is a metric that measurs the ranking

of an item. This ranking is only made for the top K results. nDCG can be written nDCG@K, where

K is the number of the top results.

2.3 Representation Learning

Representation Learning (RL) is about acquiring compact representations from heterogeneous

types and different structures of data in a numerical representation that can be reused in other

learning tasks. Representation Learning has become a new research area and there are multiple

different techniques. For the purpose of this work we are only going to cover the deep learn-

ing methods [16]. They learn representations of the data by forming a composition of multiple

non-linear transformations with the goal of yielding more abstract, and ultimately more useful.

Representations can be very interesting because they can express many different details about

the world around us, i.e. they are not task-specific but can be used in many different ways [16]:

Speech Recognition and Signal Processing, Object Recognition, Natural Language Processing,

Multi-Task and Transfer Learning, Domain adaptation and Recommendation Systems.

In Recommender Systems, state of the art results are achieved by using representation learning

techniques [39] [40] [41] [42] [43] [44] [45] [46].

The performance of machine learning methods is critically dependent on the representations

it learns to output. Good representations are expressive, meaning that a reasonably sized learned

representation can learn a huge number of possible input configurations [16]. We can measure the

expressiveness of a model by counting how many parameters it requires compared to the number

of input regions it can distinguish [16]. Deep algorithms promote re-use of features and can lead to
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more abstract features at higher layers of representation. The representations should disentangle

the factors of variation. We want our factors to be as disentangled as possible and to discard

as little information about the data as possible. In classification tasks we have a clear goal (i.e

minimizing the misclassifications). When learning representations the goal is far-removed from

the ultimate objective, which is typically learning a classifier or some other predictor[16]. We

want our representation to be disentangled, however, it is not an easy task to implement that into

the training criteria.

Representation Learning [16] can be used in supervised and unsupervised tasks. There are

multiple techniques that can learn good representations. Principal Component Analysis is one of

the most used and oldest algorithm using representation learning techniques. The idea is to reduce

the dimensionality of the data while preserving as much statistical information as possible [47].

Restricted Boltzmann Machines (RBM) are two-layer neural networks composed of two types of

units, visible and hidden. After successful learning, an RBM provides a closed-form representation

of the distribution underlying the observations [48]. Auto-encoders are simple learning circuits

which aim to transform inputs into outputs with the least possible amount of distortion [49]. Figure

2.4 presents a simplified architecture for easier readability.

Figure 2.4: Auto-encoder architecture

Auto-encoders are obtained by training a neural network to reproduce the input vector in the

output vector using a hidden layer with less neurons than the input layer. For such, the network

learns two functions: an encoding function f and a decoding function g. Since this hidden layer is

able to preserve useful properties of the data, it can represent the input in a latent space [50]. As a

consequence Auto-encoders can reduce the data dimension (compress/encode), and then are able

to reconstruct the data as close as possible to the original input data. Theoretically, auto-encoders

can be used in any machine learning task, from natural language processing to Collaborative Filter-

ing. For the purpose of this work we are going to look in-depth at two auto-encoder architectures

that make auto-encoders the state of the art technique in Collaborative Filtering tasks [44] [45].

An auto-encoder has two components: encoder and decoder. The encoder tries to encode or

compress the input data into a hidden layer that is a low dimension latent-space representation,

the bottleneck. The Decoder is the part of the network which tries to reconstruct the encoded data
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to the original dimension. The decoder data tries to be as close as possible to the original data.

Reconstruction Loss is the method that measures how close the decoder output is to the original

input. Auto-encoders have multiple different configurations. For our purpose we are going to

explore denoising auto-encoders and variational auto-encoders.

2.3.1 Denoising Auto-encoders

Denoising auto-encoders try to solve the problem of corrupted data. This auto encoder randomly

corrupts the inputs by introducing some kind of noise, then the auto-encoder must reconstruct

or denoise the data. This noise can be generated in multiple ways: assign random subset of

inputs with 0, or add Gaussian noise [51][52]. Figure 2.5 presents the denoising auto-encoder

architecture, these auto-encoders are obtained by adding noise to the input layer, after which the

auto-encoder, using the encoder f() and the decoder g(), will try to reconstruct the data as close as

possible to the data without the noise.

Figure 2.5: Denoising Auto-encoder architecture.

This algorithm is also used in Collaborative filtering tasks [44] and can achieve state of the art

results.

2.3.2 Variational Auto-encoders

A Variational Auto-encoder (VAE) provides a probabilistic way of describing an observation in

latent space, such that the encoder describes a probability distribution for each latent attribute.

Figure 2.6 presents the architecture of a VAE. The encoder learns to project the high-dimensional

input to a low-dimensional latent space. The decoder learns to decode a vector in the low-

dimensional latent space to reproduce the high-dimensional input. A VAE is different than the

previous discussed auto-encoders. It is designed in such way that the generated latent factors fol-

low a unit Gaussian distribution [53]. Instead of each latent space having a single value, here

we will have the probability distribution for each latent attribute. To achieve a continuous latent

space vector the encoder, f(), encodes the data to two vectors µ and σ . Then these two vectors

are sampled and the decoder, g(), reconstructs the data. This unique property of the Variational

Auto-encoders makes their latent space designed to be continuous, allowing random sampling.

The latent space will be probabilistic over the latent attributes, creating more information than in
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the previous auto-encoder approaches [54]. This architecture is used in many different areas, in

Collaborative Filtering can achieve state of the art results [45].

Figure 2.6: Variational Auto-encoder architecture.

Another area that will be important for this work is distributed representations. Distributed

representations are an important component in order to achieve good representations. The idea is

to represent each entity by a pattern distributed over many elements, and each element participates

in the representation of many different entities [55]. Distributed representations have been used

in many different problems. Word2vec [56] has become the state of the art Natural Language

Processing technique, and it works by assuming that if two words have similar contexts then they

have similar representations. These representations can describe the context of the words and can

be used to predict the surrounding words given the current word. Representations can be used to

translate a wide variety of different entities. We can use representations to identify similar entities

based on the context that the representations map. These entities can be words [56], image search

queries [57], collaborative filtering algorithms [58].

2.4 Meta Learning

Meta Learning (MtL) is also known as learning how to learn. Meta learning aims to learn from

prior experience in a data driven way to extract knowledge to then use in other tasks [14]. During

base learning, a base learner algorithm solves a task defined by a dataset and objective. During

meta-learning, a meta learner algorithm updates the base learner(s), such that the base level im-

proves the meta level objective [59]. Meta learning can be used in any type of learning based on

previous tasks. The more similar those previous tasks are the more metadata we can leverage [14].

We can learn purely from model evaluations. These techniques can be used to recommend the

best configurations of the model for similar tasks [14]. Our metadataset will be a set of possible

configurations: all known tasks, a set of learning algorithms, the configurations of the algorithms,

hyperparameter settings, etc [14]. The final goal will be to train a meta learner model to predict

the best configurations for a new task[14].
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We can also transfer trained models parameters between tasks inherently similar. Transfer

learning focuses on transferring knowledge across domains [60], is an example of this technique.

Using Transfer Learning, we are going to build a metadataset with the machine learning models

themselves. Our meta learner learns how to train a new base learner for a new task given similar

tasks [14].

Another way to solve meta learning problems is to characterize tasks more explicitly. We

can try to extract task similarity and build metadatasets with the task characterization. The meta-

models will learn relationships between data characteristics. Using these relationships the meta-

models can rank promising configurations, predict the algorithm performance, select the algorithm

and others [14]. For the purpose of this work we will focus on Algorithm Selection that was

firstly conceptualized by Rice’s work in [61]. Figure 2.7 presents a diagram of the conceptualized

framework which defines several search spaces: problem, feature, algorithm and performance by

P, F, A and Y. A problem is described as: for a given problem p ∈ P, with features f (p) ∈ F , find

the mapping S( f (p)) into A, such that the selected algorithm a ∈ A maximizes y(a(p)) ∈ Y [61].

Therefore, algorithm selection can be formulated as a learning task whose goal is to learn a meta

model able to recommend algorithms for a new task.

Figure 2.7: Schematic diagram of Rice’s Algorithm selection conceptual framework [1]

Meta learning can be used to address Algorithm Selection problem. We have different meta-

learning levels. Base level is where the base learners accumulate experience on the learning task.

Meta-level is where meta learners learn about the performance of multiple base-learners in mul-

tiple learning tasks. The metafeatures are used by the meta-learners to extract knowledge about

the task and use this knowledge to select the best algorithm. Therefore it is important that these

metafeatures characterize the data as best as they can. The challenge we face in this approach is

how to get the meta-features. There are different techniques to extract relevant information about

the task under analysis [15]:

• Statistical and Information-Theory Characterization. Characterize the dataset by extracting

statistical and information-theory parameters estimated from the training set. Measures

include the number of classes, number of features, degree of correlation between features,

etc[62].

• Model-Based Characterization. This technique exploits properties of the induced hypoth-

esis as a form of representing the dataset itself. It has several advantages: the dataset is
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summarized into a data structure where the resulting representation can serve as a basis to

explain the reasons behind the performance of the learning algorithm.

• Landmarking. This concept exploits the information obtained from the performance of a set

of simple learners that exhibit significant differences in their learning mechanism[14].

Retrieving expressive metafeatures is a challenging task. As stated previously there are different

techniques to retrieve the metafeatures. For the purpose of this work we are going to focus on

using Representation Learning to extract the metafeatures. Representation Learning was described

in 2.3 and has the goal of learning representations of the data while preserving as much data as

possible. Using Representation Learning to extract metafeatures about the data is not a new idea

[58] [63]. Metafeatures and Representation Learning techniques share the same goal of extracting

the maximum information about the task/data. From the results presented in [58] [63] we can infer

that it is possible to use RL techniques to retrieve metafeatures.

2.5 Related Work

This work uses meta learning techniques to solve the algorithm selection problem on the user level.

The metalearning techniques use metafeatures that were retrieved using Representation Learning

techniques. To the best of our knowledge, there is no existent research on the problem we aim to

solve.

This work proposes to use Representation Learning to extract metafeatures. This idea has

been used in different implementations [58] [63]. However, both of these implementations use

representation learning on the dataset level.

Our work also proposes to solve the metalearning task of algorithm selection problem on the

user level.

There is research in algorithm selection on the user level [64]. This approach uses hand crafted

metafeatures to characterize each user. It also uses a set of base learners, each one of them with

their own bias. The meta-model will then use the performance label and the handcrafted metafea-

tures to predict the performance of each algorithm for a new user.

Research has also been done on meta learning at user level using CTR model [65]. Given a

collection of models, the goal is to select the best model for each user. This work uses: model and

task agnostic techniques to extract meta features. The meta model will output the best base model

for each user by learning the relationships from the metafeatures.
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Approach

This chapter gives an overview of the problem we tried to solve and the we explain the framework

proposed to address this task.

3.1 Problem Definition

Collaborative Filtering is the standard approach to tackle recommendation systems problems. We

expect the performance of CF algorithms to vary not only for datasets, but even within the same

dataset, for instance, it is different for different users. For each user there is an algorithm that

obtains the best performance. The goal is to predict the best algorithm for each user; by doing this

we could reduce the biases of the algorithms against groups of users. As stated in chapter 2 this

can be formulated as an algorithm selection problem in Meta Learning.

From a set of algorithms we expect the performance of the algorithms to vary not only for

datasets but even within the same dataset. Different users have different algorithms performances.

Figure 3.1 presents a traditional Collaborative Filtering dataset with the exception of the last col-

umn. The last column represents a list of algorithms with their performances for each user.

Figure 3.1: Each CF user has a group of algorithms with different performances (Y)

We can use Meta Learning to address the algorithm selection problem. From the performances

of each algorithm we can use MtL to address different issues: label ranking, selecting algorithm,

predicting algorithms performances, selecting hyperparameters and others.

17
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For a given dataset di ∈ D, where D is a set of Collaborative Filtering datasets, we want to

predict the best algorithm for each user. To do so, we have a set of CF algorithms B that have

different performance for each user. The performance os these algorithms can be used as a label

for the MtL task. Let us consider a finite set of labels L= {l1, l2, . . . , lt} , where t is the total number

of labels available. These labels are general and are dependent on the task we aim to solve. They

are related to the algorithms that we want to choose. These can be used as a classification problem,

to predict the base learners errors, ranking the labels and others.

For MtL be able to solve the algorithm selection problem on the user-level, we need to char-

acterize the user. This characterization intends to create representation about the users. The rep-

resentations (metafeatures) will allow the meta models to extract knowledge and recommend the

best algorithm for each user. The representations of the users can be manually created using land-

markers, using information-theoretical measures and others. Metafeatures are obtained by using

a function f : ua→ Rk that, when applied to each user ua in a dataset di, returns a set of k values

that characterize the user.

3.2 Framework Overview

To try to tackle the problems previously addressed we propose a framework named µ-cf2vec:

Representation Learning for Personalized Algorithm Selection in Recommender Systems. This

framework µ-cf2vec proposes using Meta Learning to solve the Personalized Algorithm Selection

in Recommender Systems. This framework proposes the usage of Representation Learning Tech-

niques to automatically retrieve expressive meta features that the meta learning models will use to

solve the algorithm selection problem. Figure 3.2 presents the procedure this framework follows.

Figure 3.2: Overview of the µ-cf2vec procedure
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The procedure presented in figure 3.2 have some resembles to the traditional Meta Learning

procedure. However, if we analyse carefully we can observe major diferences. While the tradi-

tional MtL tasks try to solve the algorithm selection problem on the dataset level, here we propose

to solve on the user level. In traditional MtL procedure we would characterize the dataset, and we

would recommend the best algorithm for each dataset. In this framework we aim to select the best

algorithm for each user. To do so, we have to evaluate the algorithms for each user and charac-

terize the user. The meta learner will then use these information to recommend the best algorithm

for each user.

3.2.1 Metadata Collection

Given a CF dataset di – that has a set of users U , that have interactions with a set of items I – we

can create a metadataset. Figure 3.3 presents the process of collecting the metadata for each user

that is going to be used to create a metadataset. Each row of the metadataset relates to an user

and it is composed by the metafeatures, and the label. The metafeatures are a set of k values that

characterize the user. The metatarget is a label lt that can be chosen according to the task.

Figure 3.3: Procedure overview to collect metadata for each user

Since this framework proposes to solve a meta learning problem, we need to train and evaluate

our models on all users. Figure 3.4 presents the strategy used to split the data. The splitting

strategy is different when comparing with the CF tasks. In this MtL we need to characterize each

user, therefore we need interactions from each user. Instead of dividing all the users in three

groups: train, validation and test; we divide each user’s ratings in train, validation, and test. This

splitting is done by the framework.

Figure 3.4: Splitting Data Strategy
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3.2.1.1 Base Level Evaluation

From a set of base learners B, different users have different performances for different base learn-

ers. The base learners are trained using the training interactions from all users. The validation

interactions are used to tune the parameters and the test interactions are used to make an unbiased

evaluation of the model. There is an evaluation of every base learner for each user.

The evaluation is linked to the metatarget of each user. This evaluation is chosen accordingly

to the task we want to solve. The metatarget represents the meta-variable that the meta learner

wishes to understand or predict i.e. the algorithm with the best performance for a given task.

We can select the metatarget to rank the base learners, select the best base learner, predict the

performance of each base learner and others. This makes the framework flexible. We can select

the meta target to optimize the task we want to solve.

3.2.1.2 Retrieving metafeatures

One of the contributions of this framework is using Representation Learning to retrieve metafea-

tures at the user level. The RL techniques allow us to automatically generate metafeatures for

each user. Using this approach we remove the need of manually creating metafeatures. Therefore,

µ-cf2vec proposes to use Representation Learning techniques to retrieve the metafeatures for each

user.

Representation Learning (RL) is about acquiring compact representations from heterogeneous

types and different structures of data in a numerical representation that can be reused in other

learning tasks. Using these techniques to automatically retrieve metafeatures for each user, is

firstly introduced in this framework. µ-cf2vec creates representations for all users using RL tech-

niques. These representations are created using the train interactions from all users. The metafea-

tures created by applying these RL techniques are going to be used to select the best algorithm

for each user. The metafeatures are a latent representation of each user and (ideally) should allow

the meta models to relate users. The meta models will leverage from these automatically created

metafeatures to select the best algorithm for each user.

3.2.2 Meta Learning

There are a set of M meta learners that are going to be used to solve the MtL task. Meta learning

aims to learn from prior experience in a data driven way to extract knowledge, so that it can be

used in another task.

µ-cf2vec aims to solve the algorithm selection problem on the user level. As stated previously,

the metadataset is built using metafeatures and a meta target for each user. The meta learners will

use the metadataset to extract knowledge about the user. This knowledege aims to create relations

between users with the same label. These relations are then used to recommend the best algorithm

for each user.

There are different evaluations techniques that can be used in meta learning techniques. The

framework defines clearly the metadataset, therefore we can use common techniques such as cross
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validation. The meta learners recommend the best algorithm for each user by learning from the

training data. The training data will be used to train the meta models. The validation interactions

are used to fine tune the hyperparameters, and the test data is used to evaluate the performance

of the model. Since the framework creates a well defined dataset we can choose the evaluation

method more suitable to the task we aim to solve.

3.2.3 Inference

In real world systems, this framework has to be trained before its deployment. The training will

be used to select the best meta learners for the task. During the training process the representation

learning technique is chosen. The evaluations of the multiple base learners are also obtained in

this stage. The training stage will create the metadataset and select the best meta model.

After training the framework, it can be deployed and will automatically update itself. The

framework will retrieve the user embeddings periodically, using the newly collected user-item in-

teractions. These embeddings will be retrieved using the best RL technique found on the training

step. The meta learner will then extract knowledge which will provide the ability to make person-

alized algorithm recommendations. For the new users or existing users, for which the system is

not able to compute embeddings, the framework will use a naive strategy by recommending the

Most Popular algorithm.

3.3 Summary

In summary this framework tries to make personalized algorithm recommendations. It is improb-

able that one single Collaborative Filtering algorithm has the best performance for all the users.

µ-cf2vec proposes using Meta Learning to select the best algorithm for each user. It leverages the

usage of Representation Learning techniques to retrieve metafeatures, removing the need of man-

ually choosing metafeatures while capturing characteristics of the data. The framework generates

the metadataset using the metafeatures extracted with RL techniques and the metatarget based on

the performance of the base learners. The meta learner uses the metadataset to extract knowledge

and predict the best CF algorithm for each user. This framework can be used in real world systems

by re-running the RL techniques for the users together with the meta learner.



22 Approach



Chapter 4

Empirical Study

This chapter gives an overview of a implementation of the proposed meta-learning framework.

4.1 Base-level Experimental Setup

4.1.1 Dataset

Collaborative Filtering needs a big amount of data. We had many different possibilities to choose

from the set D, however, we decided to use the MovieLens 20M Dataset [66] due to its up-to-

dateness and the fact that it contains more than 20 millions user-item interactions. The user-

item interactions of this dataset are ratings between 1-5, 1 being the worst and 5 the best. We

transformed it into an implicit dataset by setting a threshold for ratings greater than 3.5. There is

a positive interaction when the rating given by a user to an item is greater that 3.5.

With our dataset chosen, we need to clean our data. For this study we are not going to consider

the Cold Start Problem. For this reason we will remove all users and items with less than 10

interactions. This is one of the limitations of this implementation but there are multiple techniques

to address the Cold Start Problem [67]. We could try to use them in future work.

Before cleaning the users and items with less than 10 interactions, we had 9 995 410 inter-

actions from 138287 users to 20720 items. Figure 4.1 presents a cumulative distribution of the

number of clicks per user. We can observe that 10% of the users have between 1 and 12 interac-

tions, and 90% of the users have less than 170 interactions. The maximum number of interactions

that a user has is 3177 interactions.

After cleaning the users and items with less than 10 interactions, we have 9 911 968 interac-

tions from 129 757 users to 11 518 items. We can observe in figure 4.1 that 10% of the users are

now between 10 and 14 interactions and 90% of the users have less than 176 interactions. The

maximum interactions one user has is 3122.

After cleaning our data we have to select the best splitting strategy to tackle this problem.

There are multiple different strategies to split the data. This is a metalearning task, hence we

want the meta model to be trained on all users. Figure 4.2a presents the common partitions to the

Collaborative Filtering task. Figure 4.2b presents the splitting strategy we are going to use. When
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(a) Raw Data (b) Removed users and items with less 10 interactions

Figure 4.1: Cumulative Distribution Clicks over Interactions

comparing both figures we can identify some aspects. In CF tasks (figure 4.2a) we split the users

into three groups: training, validation and test. The model is trained with the first group. The

validation group is used to tune the hyperparameters. The final group is used to do an unbiased

evaluation of the performance of the model. The meta learning tasks (figure 4.2b) require all the

users to train the model. Each users’ ratings are divided in the same three groups. In meta learning

tasks it is relevant to define the different percentages of each group. These are selected according

to the problem we want to solve. For that reason, in this work we are going to explore the different

percentages in order to select the best proportions. In the meta level we only use the training

ratings. The other two groups are only used in the base level.

(a) CF task (b) MtL task

Figure 4.2: Splitting strategies in different tasks

4.1.2 Base Learners

Collaborative Filtering has many different algorithms, each one with its own biases. To benefit

from different algorithms’ biases we have to use a wide variety of algorithms. To do this, we are

going to use the Fast Python Collaborative Filtering Framework [68] from which we are going to

use the following algorithms:

• Alternating Least Squares (ALS)
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• Bayesian Personalized Ranking (BPR)

• Logistic Matrix Factorization (LMF)

• Item-Item Nearest Neighbour models using Cosine, TFIDF or BM25 as a distance metric

• Most popular (to be used as baseline)

Using these algorithms we can capture different biases. We have model-based and memory-

based Collaborative Filtering techniques. The first three base learners are matrix factorization

techniques. They have a parameter that is the number of latent factors to be computed by each

model. Once we decided on the splitting strategy and the base learners we would use, we then

needed to understand the performance of the base learners to decide upon the split data percent-

ages.

4.1.3 Data Partitioning

Before choosing the splitting proportions, we have to analyze the base learners’ performance.

We have chosen implicit datasets, therefore we have to choose an appropriate evaluation method.

We have to select a metric that was designed for item ranking and not rating prediction. There

are many different choices; our choice was to use the Normalized Discounted Cumulative Gain

(NDCG). This metric measures the relevancy for the top K items. Using this evaluation metric,

we will analyze the best proportions to divide the users’ ratings in our dataset in train, validation

and test. The NDCG evaluation will allow us to understand the proportions of each class. The

proportions are related to the number of users belonging to each class. Each class has a percent-

age of occurrences. The Train dataset will be used to train the base learners and to retrieve the

metafeatures. The validation set will be used to tune the base learners’ hyperparameters. The test

set will be used to evaluate the performance of the base learners after being tuned.

We are going to use NDCG@K to analyze the performance of our base learners. However, we

have to be careful with the proportions of our split. We have 7 different algorithms and we still

may face the problem that in some users none of the algorithms will have a good performance.

There may exist a group of users, for which all of the base learners have a NDCG of 0. We are

going to call this class of users zeroes. To test different data splits we are going to run the base

learners and retrieve the NDCG of all models for each user. In the table 4.1 we can compare

different algorithms percentages when using different splitting proportions and different values of

K.

As stated previously we aim to solve a MtL task. The interactions of each user are going to

be splitted in three groups: training, validation and test. This partition is required since we need

to to have interactions for all users. We tested three splitting proportions: 80-10-10, 70-15-15 and

70-10-20. Together with three values of K: 10, 20, 100. From table 4.1 we can already tell that

the class zeroes will have an impact in our framework, since the results for lower values of K have

a high percentage of zeroes.This issue may impact in our meta model performance. In order to
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80-10-10 70-15-15 70-10-20
K=10 K=20 K=100 K=10 K=20 K=100 K=10 K=20 K=100

ALS 10,40 14,10 18,60 11,10 20,30 18,40 19,30 22,90 19,10
BPR 9 11,70 16,50 9,40 15,70 15,70 14,80 17,30 15,90
KNN_BM25 11 13,40 17,80 11,80 5,90 17,30 6,60 7,10 17,20
KNN_COS 4,40 5,30 8,30 5,60 2,50 9,50 2,90 3,10 10,50
KNN_TFIDF 8,90 9,50 8,60 9,80 3,50 8,70 3,50 3,90 9,20
LMF 7,40 9,90 12,40 8,70 12,50 12,20 12,20 13,60 11,30
MOST POP 8,80 10,40 12,50 11,10 17,30 14,70 17,90 19,50 14,90
ZEROES 40,11 25,80 5,50 32,60 22,30 3,40 22,80 12,70 1,70

Table 4.1: Different Algorithm percentages for different Splitting proportions. Values in %.

choose the percentages of our data, we have to find a balance between the value K and the class

distribution.

After analyzing the distribution of the classes, we can observe that the matrix factorization

performs better than the more simple nearest neighbours algorithms. This happens specially in

the proportions of 70-10-20 which is the one with a balance between the number of zeroes and

the value of K. We were expecting this behaviour, since matrix factorization became the standard

approach to solve CF problems. For this reason we decided to remove the KNN algorithms. Table

4.2 presents the new proportions of each algorithm for the different splitting proportions.

80-10-10 70-15-15 70-10-20
K=10 K=20 K=100 K=10 K=20 K=100 K=10 K=20 K=100

ALS 16,40% 22% 31,50% 18,10% 23,50% 31,60% 21,50% 26,40% 33,10%
BPR 12,9% 16,90% 23,70% 13,80% 18,00% 23,30% 16,5% 20,00% 24,10%
LMF 9,60% 12,90% 17,00% 11,50% 13,70% 16,90% 12,90% 14,80% 16,00%
Most Pop 13,40% 16,60% 20,80% 16,90% 20,00% 23,70% 19,80% 22,40% 24,40%
ZEROES 47,70% 31,60% 7,00% 39,70% 24,80% 4,40% 29,20% 16,40% 2,30%

Table 4.2: Different Algorithm proportions for different Splitting proportion without KNN algo-
rithms

In real world applications it is unrealistic to choose a K as high as 100. It is very unlikely

that a user chooses an item from the top 100 recommendations. However, higher K makes the

zeroes class less abundant. We have to choose a K that has a balance between the amount of

recommendations the system makes and the percentage of the zeroes class. For the previously

stated reasons, we decided to choose the K = 20 and split 70% for train, 10% for validation, and

20% for test. As we can observe in table 4.2, 16,4% belongs to the class zeroes. This choice of

splitting proportions allows for a balance between the number of users that are labeled as zeroes

and the number of top K recommendations.

Using these splitting proportions and K = 20 we tuned the hyper parameters for each base

learner with the validation set. Table 4.3 presents the factors for each algorithm. The most popular

algorithm (baseline) does not have any hyper parameters.
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Algorithms Factors
ALS 50
BPR 50
LMF 20

Table 4.3: Hyper parameters used in base learners

We have our dataset ready to start solving the problem. Table 4.4 presents the percentages of

each class in the first 4 stands. This analysis was made to understand how the algorithms were

distributed in different standings.

Algorithms First Second Third Fourth
ALS 26,4% 21,3% 10,1% 2,4%
BPR 20% 16,0% 9,2% 31,1%
LMF 14,8% 11,9% 31,8% 26,4%
Most Popular 22,4% 29% 23,2% 23,7%
Zeroes 16,4% 21,9% 24,6% 23,7%
Table 4.4: Algorithm percentage in the first 4 stands

4.1.4 Obtaining User-level metafeatures based on embeddings

In this work we are going to use state of the art techniques in Representation Learning: Denoising

Auto-Encoders for Top-N Recommender Systems [44] and Variational Autoencoders for Collabo-

rative Filtering [45]. Both of these architectures are the state of the art in Representation Learning

in Collaborative Filtering tasks as stated in 2. Each architecture has its own biases.

For the Variational Auto-encoders (VAE) we are going to use the code from [69]. Since this

model is designed for Collaborative Filtering it splits all the users in Train (80%), Validation

(10%) and Test (10%). In our approach, as it is a Meta Learning task, we use all the users in

every step and in each user we split the user ratings in Train (70%), Validation (10%) and Test

(20%). The splitting strategy of the [69] is integrated with the model, however, we need to obtain

the metafeatures for all users. To retrieve the embeddings we fed the model [69] with all of our

training data. We let the model train and split the data in its own partitions. After the model

was trained we obtained the embeddings for all the users. The model creates a representation of

size 200 for each user. Figure 4.3 presents this procedure. All the users training interaction enter

the VAE. These users are automatically splitted in 80% for training, 10% for validation and 10%

for test. The training users are used to train the models and the parameters are tuned with the

validation users. After the model is trained we retrieve the embeddings for all the users.

For the Collaborative Denoising Auto-Encoders (CDAE) we are going to use the DRECPY

[70] library. In the original paper of this model the author facilitated the retrieval of the factors

for each user. The attribute V has the user embeddings. This attribute has a dimension of UxK,

U being the number of users and K the hidden factors. We are going to use two different hidden

factors: 50 because it is the number of hidden factors used by the Author, and 200 hidden factors.
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Figure 4.3: VAE model procedure

We retrieve the embeddings of size 200 to make a fair comparison with the Variational Auto-

encoders which have size 200. On the figure 4.4 we can see the loss evolution over epoch.

(a) CDAE50 loss per epoch (b) CDAE200 loss per epoch

Figure 4.4: Loss per epoch

We are going to have three metadatasets: VAE, CDAE50, and CDAE200. Each one of them is

built using the metafeatures obtained by RL techniques with the same name, e.g., the VAE dataset

is built using metafeatures retrieved with the Variational Auto-Encoder and with the metatarget

that is the name of the base learner with the best performance.

4.2 Meta-level Experimental Setup

These metadatasets are going to be used to solve the meta-level problem. We are going to build

meta models which will leverage these metadatasets to select the best algorithm for each user. To
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achieve this, we are going to implement and evaluate a wide variety of models. We will then select

the most suitable for our problem. The meta learners we are going to use are the following:

• Logistic Regression [71]

• Multi Layer Perceptron[72]

• Support Vector Machine [73]

• Random Forest [74]

• Light GBM [75]

These algorithms have different characteristics and different biases. Logistic Regression is an

algorithm that tries to fit a logistic regression into the data with the goal of creating a decision

boundary. Since this problem is a multiclass problem, we are going to use the one vs all approach.

Multilayer perceptron (MLP) is a feed forward artificial neural network. It is composed of a

sequence of neurons connected that have an activation function. The activation function maps the

weighted inputs to the output of each neuron. This architecture will learn information that will

be able to distinguish non-linearly separable data. Support Vector Machine (SVM) tries to find

an hyperplane in an N-dimensional space that classifies the data points. The random forest is a

supervised learning algorithm that randomly creates and merges multiple decision trees into one

forest [76]. Each tree makes a classification and the class with more votes is the prediction. Light

GBM is a gradient boosting framework that makes the use of tree based algorithms. Light GBM

grows trees vertically while other algorithm grows trees horizontally. Light GBM has a leaf-wise

growth, meaning that new trees will grow from a leaf. Other Boosting algorithms have a level-wise

growth, the tree will grow in currrent level. The metadatasets are going to be normalized using a

z-score normalization. We are going to perform a grid search of every different algorithm in every

metadataset. Table 4.5 presents the parameters used by all algorihtms in the different datasets,

both normalized and non normalized.

We use Cross Validation with 5 Folds, since this technique allows a deeper look into the model

performance. Comparing with the traditional train-test split, this approach reduces the variance.

4.3 Exploratory Metadata Analysis

Our metadataset is composed by the metafeatures and the label of the best algorithm for each user.

We are going to use techniques to visualize the metadataset. PCA and T-SNE [77] are well-suited

dimensionality reduction techniques for vizualizing high-dimensional data in a low-dimensional

space. We are going to use both of these techniques to visualize our three metadatasets normalized

and non normalized. In figure 4.5 we can observe the different metadatasets visualizations. In both

CDAE datasets the low dimension visualization is identical. In comparison with the VAE dataset

the CDAE metafeatures are more concentrated in one place. If this problem was trivial to solve

we could group the points with the same label. This would mean that it would be relatively easy
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Metadataset Algorithms Logistic Regression MLP Light GBM SVM Random Forest

Norm
C’: 316.23,
’penalty’: ’l2’
’solver’: ’lbfgs’

{’activation’: ’relu’,
’alpha’: 0.05,
’hidden_layer_sizes’: (50, 50, 50),
’learning_rate’: ’constant’,
’solver’: ’sgd’}

{’colsample_bytree’: 0.4,
’learning_rate’: 0.05,
’num_leaves’: 200,
’reg_alpha’: 0.25,
’reg_lambda’: 0.25}

{’C’: 1,
’loss’: ’squared_hinge’}

{’max_features’: ’auto’,
’n_estimators’: 1000,
’bootstrap’: True,
’max_depth’: 150}

VAE
No Norm

C’: 100000.0
’penalty’: ’l2’
’solver’: ’liblinear’

{’activation’: ’tanh’,
’alpha’: 0.05,
’hidden_layer_sizes’: (50, 50, 50),
’learning_rate’: ’constant’,
’solver’: ’sgd’}

{’colsample_bytree’: 0.4,
’learning_rate’: 0.05,
’num_leaves’: 200,
’reg_alpha’: 0.15,
’reg_lambda’: 0.15}

{’C’: 1,
’loss’: ’squared_hinge’}

{max_features=auto,
n_estimators=1000,
bootstrap=True,
max_depth=75,

Norm
C’: 1.0
’penalty’: ’l2’
’solver’: ’newton-cg’

{’activation’: ’tanh’,
’alpha’: 0.05,
’hidden_layer_sizes’: (100,),
’learning_rate’: ’adaptive’,
’solver’: ’sgd’}

{’colsample_bytree’: 0.25,
’learning_rate’: 0.05,
’num_leaves’: 5,
’reg_alpha’: 0.25,
’reg_lambda’: 0.25}

{’C’: 1,
’loss’: ’squared_hinge’}

{’max_features’: ’auto’,
’n_estimators’: 100,
’bootstrap’: True,
’max_depth’: 75}

CDAE 200
No Norm

C’: 1e-05
’penalty’: ’l2’
’solver’: ’newton-cg’

{’activation’: ’tanh’,
’alpha’: 0.0001,
’hidden_layer_sizes’: (50, 50, 50),
’learning_rate’: ’constant’,
’solver’: ’sgd’}

{’colsample_bytree’: 0.4,
’learning_rate’: 0.05,
’num_leaves’: 5,
’reg_alpha’: 0.25,
’reg_lambda’: 0.25}

{’C’: 0.1,
’loss’: ’hinge’}

{’max_features’: ’log2’,
’n_estimators’: 250,
’bootstrap’: True,
’max_depth’: 10}

Norm
C’: 1.0
’penalty’: ’l2’
’solver’: ’liblinear’

{’activation’: ’tanh’,
’alpha’: 0.05,
’hidden_layer_sizes’: (100,),
’learning_rate’: ’adaptive’,
’solver’: ’sgd’}

{’colsample_bytree’: 0.15,
’learning_rate’: 0.001,
’num_leaves’: 5,
’reg_alpha’: 0.15,
’reg_lambda’: 0.15}

{’C’: 10,
’loss’: ’squared_hinge’}

{’bootstrap’: True,
’max_depth’: 10,
’max_features’: ’auto’,
’n_estimators’: 250}

CDAE 50
No Norm

C’: 316.22776601683796
’penalty’: ’l2’
’solver’: ’newton-cg’

{’activation’: ’tanh’,
’alpha’: 0.0001,
’hidden_layer_sizes’: (50, 50, 50),
’learning_rate’: ’constant’,
’solver’: ’sgd’}

{’colsample_bytree’: 0.25,
’learning_rate’: 0.01,
’num_leaves’: 100,
’reg_alpha’: 0.25,
’reg_lambda’: 0.25}

{’C’: 0.1,
’loss’: ’squared_hinge’}

{’max_features’: ’auto’,
’n_estimators’: 100,
’bootstrap’: True,
’max_depth’: 150}

Table 4.5: Meta Models Hyper parameters

to identify the users with the same label. After analyzing figure 4.5 we understood hat this task

was not going to be an easy one to solve.

4.3.1 Meta-level evaluation

We are going to evaluate the tuned meta models using cross validation with 5 folds and a different

variety of metrics: accuracy, precision, recall and all their averages. These metrics are acquired

in the meta level and provide analysis for the performance of the meta models in each class. To

evaluate the performance of the meta models in the base level, we are going to understand the

impact of the meta models’ predictions in the base level performance. The impact in base level

performance will be in terms of NDCG and the intuition behind it is the following: assume for

user ui ALS has a NDCG of 0.4, BPR a NDCG of 0.35, and Most popular a NDCG 0.2. The

best algorithm might be the ALS but if our meta model selects BPR, the overall performance for

that user would be similar to the correct label ALS. Nevertheless, if the meta model selects Most

Popular, the performance on that user will be affected.

The upper bound, the meta-level oracle, of the model is called perfect NDCG. This hypothet-

ical meta model would always select the best algorithm for each user. This measure is an upper

bound for our model, we have to be as close as possible to the oracle. Table 4.6 presents the differ-

ent proportions of each algorithm, and the NDCG if the meta model only selected that algorithm.

Using table 4.7 we can observe the impact of the perfect model in the base level. If the meta model

has a perfect score, we would improve the performance by 71% in comparison with the single best

algorithm (ALS).

Figure 4.6 shows the meta level accuracy results, i.e. proportion of users for whom the best al-

gorithm is recommended by the meta learners, using all the algorithms in all normalized datasets.
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(a) CDAE 50 (b) CDAE 200

(c) VAE

Figure 4.5: Vizualization embeddings using PCA. Points with same label have the same color
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Algorithms # users Percentage
ALS 34215 26,37
Most Popular 29088 22,42
BPR 25925 19,98
Zeroes 21277 16,40
LMF 19252 14,84
Total 129757 100

Table 4.6: Proportions of each class

Algorithms NDCG Evaluation
Perfect NDCG 0,46
choosing only ALS 0,27
choosing only BPR 0,21
choosing only LMF 0,17
choosing only Most Popular 0,21

Table 4.7: Base level performance in terms of
NDCG.

We can observe in figure 4.6 that all algorithms using the VAE dataset have the best overall per-

formance. Table 4.8 presents a classification report of the best two overall models on the nor-

malized VAE dataset. Both CDAE metadatasets have similar results in every algorithm. Table

4.11 presents the confusion matrix for the logistic regression meta model when using normalized

CDAE50. From this table we can understand that the model predicts that every user should use

the ALS algorithm. The results in the other algorithms are similar.

Figure 4.6: Meta Level Accuracy score on
normalized datasets

Figure 4.7: Base Level Performance on
normalized datasets

Figure 4.7 presents the impact in base level of the different algorithms on normalized data.

In this figure we can only detect marginal gains in the Random Forest and in the Light GBM

models. For both CDAE metadasets we can observe that the impact in the base level performance

is the same as if we only have the ALS algorithm. To evaluate the impact of the zeroes class

we are going to remove all these users and analyze the performance of the meta models. By

removing these users the distributions of classes will change when comparing to table 4.6. Table

4.12 presents the updated distribution of the the classes. Table 4.13 present the new base level
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Table 4.8: Different meta models classification report on normalized VAE

Precision Recall F1
ALS 0.31 0.55 0.40
BPR 0.31 0.21 0.25
LMF 0.23 0.02 0.04
MostPopular 0.32 0.31 0.31
Zeroes 0.40 0.40 0.40

– – – –
Macro avg 0.31 0.30 0.28
Weighted avg 0.32 0.32 0.30

Table 4.9: Light GBM

Precision Recall F1
ALS 0.30 0.75 0.42
BPR 0.36 0.13 0.19
LMF 0.40 0.0014 0.0028
MostPopular 0.34 0.21 0.26
Zeroes 0.40 0.30 0.34

– – – –
Macro avg 0.36 0.28 0.24
Weighted avg 0.35 0.32 0.26

Table 4.10: Random Forest

ALS BPR LMF MostPopular Zeroes
ALS 6837 0 0 4 2
BPR 5182 0 0 1 1
LMF 3847 0 0 2 1
MostPopular 5812 0 0 3 3
Zeroes 4249 0 0 3 4

Table 4.11: Logistic Regression meta model confusion matrix for the normalized CDAE50 dataset.

performances after removing the zeroes users.

Algorithms # users Percentage
ALS 34215 31,54
Most Popular 29088 26,81
BPR 25925 23,90
LMF 19252 17,75
Total 108480 100
Table 4.12: Proportions of each class

Algorithms NDCG Evaluation
Perfect NDCG 0,55
choosing only ALS 0,32
choosing only BPR 0,25
choosing only LMF 0,20
choosing only Most Popular 0,26

Table 4.13: Base level performance in terms of
NDCG.

Table 4.14: Classes percentages and NDCG evaluation after removing class zeroes

Figures 4.8 and 4.9 present the results for the accuracy and the base level performance for all

algorithms in all embeddings techniques when removing the users with class zeroes. The results

in these figures povide similar conclusions to the ones with the users zeroes. In the meta level

accuracy all meta models using the VAE dataset achieved the best results. In the base level we

only have marginal gains from the same two meta models: Light GBM and Random Forest.

After analyzing the previous results we decided to use a technique to balance the labels. We

used the SMOTE technique [78], that uses interpolation to create synthetic data. SMOTE tries

to address imbalanced datasets by generating synthetic data. Figures 4.10 and 4.11 present the

results of the the different meta models when using all normalized datasets with syntethic data

created by SMOTE. At the meta level, the VAE metadataset still has the best accuracy for all

algorithms. However, both CDAE datasets have decreased their performance when comparing to
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Figure 4.8: Accuracy score on
normalized datasets, without zeroes

Figure 4.9: Base Level Performance on
normalized datasets, without zeroes

the previous results. On the base level results presented in figure 4.11 we achieved a significant

decrease in performance. When using SMOTE the results are, once again, consistent over all

metadatasets, normalized or non normalized, and with or without zeroes. We are still running the

SVM evaluation, although we expect the results to follow the other algorithms’ results.

Figure 4.10: Accuracy score on
normalized datasets,with SMOTE

Figure 4.11: Base Level Performance on
normalized datasets,with SMOTE

4.4 RQ1: Can we use Representation Learning to obtain useful metafea-
tures on the User Level?

This project addresses several new challenges. It is the first, to the best of our knowledge, that

uses meta learning together with Representation Learning in order to solve the algorithm selec-

tion problem on user level. Using Representation Learning techniques to automatically retrieve

metafeatures for each user, was firstly introduced in this work. This RQ will answer the question

whether it is possible to retrieve expressive metafeatures about the users.

Figure 4.5 was obtained by using a dimension reduction technique which allowed the plotting

of the dataset in another dimension space. These techniques reduced the metafeatures into three

dimensions. If this task was trivial to solve, we could group the datapoints with the same label

(same color). None of the figures present the points grouped by the label. When using the T-SNE
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technique, the results are similar for all the datasets. However, for the PCA technique, the images

are very different. Figure 4.5 presents a distinction between the metafeatures obtained from the

three datasets. The visualization of both CDAE datasets are similar. The points are more focused

on two points. In the VAE visualization the points are more disperse. This may indicate that the

VAE metafeatures are more expressive (have more information about the data) than the CDAE.

We know that we have five classes, so we can assume that a completely random model would

have an accuracy of 20%. Table 4.6 presents the distribution of the classes, where ALS is the

biggest with a value of 26,37%. For our model to have an impact on solving this problem, we

have to be better than a random model (that has an accuracy of 20%) and have to improve the

result of only recommending one class (better than 26,37%). µ-cf2vec proposes to remove the

biases presented in CF algorithms, hence the meta models have to predict more than one class.

Figure 4.6, which presents the accuracy for the models with normalization, can help us answer

this question.

In the CDAE datasets the models achieved an accuracy lower or equal to 26,37%. Table

4.11 presents the confusion matrix for the Logistic Regression model for the normalized CDAE50

dataset. The confusion matrix indicates that the model only recommends one class, ALS. The

recall of this class is 1, while in the other classes it is around 0. The accuracy of the models using

both CDAE metadatasets is the same as the percentage that the ALS class presents in table 4.6.

The results of the other meta models are similar.

When using the models on the VAE metadataset, every meta model improves the accuracy

score of 26,37%. The best model is the Light GBM with normalized data, achieving an accuracy

of 32,48%. When analyzing the results in table 4.9 we can identify some aspects. The LMF class

is the one with the worst overall score, which can be due to the low proportion of the class as

stated in the table 4.6. This model has a best overall score in the class zeroes, even though it is

the fourth in amount of appearances. The precision score and the F1 score for this class are the

best in comparison with the other classes. In the metric recall it is in second place, just behind the

most common class ALS. These results indicate that the zeroes class affect the performance of the

model. Since ideally we would want to recommend different algorithms, i.e. it would be better

if the the meta models have better performance in other classes instead of the zeroes class. There

is another model in this same dataset that has almost the same accuracy but its recommendations

spectrum is different.

The Random Forest meta model has an accuracy of 31,85%. While analyzing the results in the

table 4.10 we have a new scenario in comparison with the previous meta model. Random Forest

model has a better score when predicting the class ALS. The metrics F1 and Recall on the class

ALS are the overall best. The overall performance of this model has improved in comparison with

Light GBM.

In table 4.6 we can observe that the classes are not evenly distributed. To overcome this

problem, we used the SMOTE technique to create synthetic data. Although we expected to achieve

better results with the use of this technique, the results presented in figure 4.10 do not indicate that.

In both figures 4.10 and 4.11 the performance is consistently worst when compared to the figure
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4.6 and 4.7, both of them without the synthetic created data.

Based on these results we can deduce that on the meta level we can achieve an improvement

in the performance. It is possible to use Representation Learning techniques to make personalized

algorithm selection in recommender systems. From these results we can infer some points: the

best overall meta model is the Light GBM (it has the best accuracy and the best performance for

the zeroes class), although the Random Forest has its own advantages (it has a good performance

for the ALS class). Through Light GBM, we can infer that, although class zeroes is the fourth most

common class, it has the best performance for this model. That shows how this class can mislead

the results.

4.5 RQ2: Which Representation Learning Technique is the best?

As stated previously this project introduces a completely new approach to the algorithm selection

problem on the user level. We proposed to use meta learning combined with Representation Learn-

ing, in order to retrieve meta features. Later, these meta features will be used by the meta model to

try to predict the best algorithm for each user. There are many different Representation Learning

techniques as we stated in chapter 2. For this project we have chosen two techniques: Variational

Auto-encoders and Denoising Auto-encoders. Even though both share the same foundation, the

auto-encoders, these two techniques are different as we discussed in chapter 2.

From these two techniques we have three experimental setups as stated in chapter 3. The VAE

metadaset used the user embeddings retrieved with the Variational Auto-encoder and has a size

of 200. The CDAE dataset is created with users representations acquired by the Denoising Auto-

encoders. We have two different datasets from these techniques: CDAE50 and CDAE200. The

original paper of this implementation found out that the optimal number of factors is 50, therefore

we started by obtaining the results with 50 factors. However, the VAE dataset is composed by

representations with size 200. To have an head-to-head comparison between the two techniques

we retrieved the CDAE representations with size 200.

To identify which of the techniques is more suitable to solve this problem, we have to un-

derstand what their performance is. We have different techniques as stated previously: VAE and

CDAE. From the figures presented before (4.6 and 4.7) the VAE metadataset achieves better re-

sults in every single meta model. These results are consistent in all metadatasets: normalized or

non normalized, with or without zeroes and with or without the SMOTE technique. The results

presented indicate that the Variational Auto-encoder is the better implementation in this situation.

4.6 RQ3: What is the impact on the base level performance achieved
by µ-cf2vec?

µ-cf2vec is a framework which aims to improve the recommendations’ performance of every user.

As stated previously, the meta is able to predict the best algorithm for each user with an accuracy
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higher than the baselines. However, we need to look deeper into the performance affected by the

users, in order to understand whether the model can improve the performance for the users or not.

In table 4.7 we have the upper and lower bounds for our model. The Perfect NDCG is the

upper bound of our model. This value is the average of NDCG of the best algorithm (with higher

NDCG) for each user. The other rows represent the value of the NDCG of a meta model that

has only selected one single algorithm (ALS, BPR, etc). One thing we have to revisit is that the

class zeroes has zero NDCG in every algorithm. As stated in chapter 3 µ-cf2vec will recommend

the Most Popular algorithm to users identified as zeroes. This is the policy of the framework to

address users that we don’t have enough information to make good recommendations. Thus, the

goal of our meta model is to improve the value of 0,27 presented in table 4.7. If we improve this

score, we can infer that the performance is better than if we only used the ALS.

From figure 4.7 we can observe some interesting aspects. At the meta level the VAE dataset

was always the best. However, at the base level, only Light GBM and Random Forest achieved

better results with VAE. For the other algorithms the CDAE datasets achieved a better perfromance

when comparing to the VAE performance.

When using the VAE dataset, which can be more expressive as stated previously, the meta

models have a wide spectrum of recommendations. While in the meta level we could have im-

provements by using the VAE and recommending different algorithms, in the base level it can be

worse. For instance, the MLP meta model has an accuracy of around 30% using the VAE dataset

compared to an accuracy of around 26% for both CDAE datasets. From this result we could expect

that in the base level the performance would also be better when using the VAE dataset. However,

the figure 4.7 indicates the opposite: the base level performance in MLP using the VAE is worse

than both CDAE. While using the VAE dataset the MLP is recommending different algorithms, in

the CDAE datasets it is only recommending ALS. In this case it achieves a better performance.

When inspecting figure 4.7, we can observe two models where the base level performance is

better than if we only used ALS. The Random Forest and the Light GBM models both achieve

marginal gains over recommending the best single class.

From these results we only achieved marginal gains in the base level performance. Even

though the VAE dataset achieved the best meta level performance, this was not true on the base

level. In fact, in the base level (in some cases) it is better to use the CDAE datasets. Sometimes

it is better to select one single algorithm to achieve the best performance, than selecting multiple

algorithms.

4.7 RQ4: What is the impact of the zeroes class on µ-cf2vec?

As expected, there are some users for which none of the algorithms considered provide any useful

recommendation. These users belong to the class zeroes, since the maximum NDCG that all base

learners algorithms’ could achieve was zero.The users with this class are a group of users that we

do not have enough information on to solve their problem. This can be related to the Cold Start

Problem.
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In research question 4.4 we presented that even though the zeroes’ class is in fourth place, in

terms of occurrences, most of the models could detect this class more easily than the BPR and

Most Popular (although both are more frequent). These results might indicate that these users

are misleading the models performance. µ-cf2vec aims to recommend the best algorithm for each

user. Since the zeroes users do not have good performance in any algorithm, we decided to remove

them. This will allow us to understand their impact on the meta models performance. Table 4.12

presents the proportions of data after we removed all the users that belong to the class of zeroes.

This analysis was made to understand the impact of the class zeroes.

Figures 4.8 and 4.9 present the accuracy and base level performance for each algorithm in

all metadatasets without users belonging to class zeroes. Since we removed the users labeled as

zeroes, the distribution of the classes has changed, as we can see in table 4.12. When comparing

to the distribution with all users (table 4.6) we can highlight some points. The perfect meta model

would increase the NDCG evaluation by 20%. The base level lower bound is the most common

class and it still is ALS with a percentage of 31,54%. The overall improvement in the base level

performance was around 20%. These values by themselves show the impact of the users in the

overall metrics. These are the reference results we have to use when analyzing the ones without

the users labeled as zeroes.

The meta level accuracy scores are similar to the results with all users. The VAE dataset still

has the best overall performance when comparing to the CDAE. The best models are the Light

GBM and the Random Forest achieving an accuracy of around 35%. This accuracy showed some

improvements, however, we have to recall that the new percentage of the most common algorithm

ALS is 31,54%. From these results the improvement is not significant. For the CDAE datasets the

results are similar, and the meta models only recommend the most common class, achieving an

accuracy of around 31,54%.

The base level performance results in figure 4.9 are similar to the results with all users (shown

by figure 4.7). The only two models that improved the base level performance are the Random

Forest and the Light GBM, when comparing to the ones that only used the most common class.

These marginal gains where achieved by using VAE dataset, which reinforces the hypothesis that

the VAE technique is able to achieve better results. One aspect where the results in figure 4.9

differ from the ones in figure 4.7 is the fact that the Logistic Regression and the MLP are closer to

the lower boundary. This is explained by the fact that False zeroes users identified before are now

being identified as ALS. The CDAE dataset has similar results when using all users. All the models

are recommending the ALS class, hence the base level performance will be around the same as the

ALS class.

We can conclude, from these results and the ones in the research question 4.4, that this or-

ganically created class can bring problems to this framework. There are different ways to try to

minimize the effects of this class. They will be discussed in the future work.
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4.8 Summary

This chapter presented an implementation of the proposed framework µ-cf2vec. This implemen-

tation used a set of different base learners and meta learners. We used two RL techniques to au-

tomatically retrieve the users’ metafeatures: Variational Auto-encoders and the Denoising Auto-

encoders. We answered four research questions in order to understand the performance of this

implementation. As stated previously, we can achieve consistent gains in the meta level by using

the metafeatures acquired by RL techniques. From the two RL techniques, the VAE was the one

with better performance. The gains in the base level are marginal. The class zeroes may have a

negative impact on the performance of the meta models.
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Chapter 5

Final Remarks

This dissertation presents a new framework to tackle the meta learning Algorithm Selection on

user-level and an empirical study of it. The proposed framework is the first of its kind. µ-cf2vec

proposes to use Representation Learning techniques to automatically generate user representation

that will be used as metafeatures. This approach removes the need of manually choosing the

metafeatures. This work also presents an implementation of the framework previously introduced.

µ-cf2vec proposes to solve the algorithm selection on the user level. To do so, it uses a Meta

Learning approach by learning from prior experience. The meta learners leveraged from a dataset

which is built with the users metafeatures and the user label. The metafeatures are automatically

retrieved by using Representation Learning techniques. Using these techniques we removed the

need of manually selecting the metafeatures, a process that can be slow and inefficient. The meta

target is related to the algorithms we want to recommend. The meta models use the metafeatures

to recommend the best algorithm for each user.

This implementation of the framework generated metafeatures from two Representation Learn-

ing techniques: Variational Auto-encoders and Denoising Auto-encoders. In this implementation

the metatarget is obtained by selecting the name of the algorithm that achieved the best perfor-

mance for each user. We used a set of 5 meta models to try to solve the algorithm selection

problem on the user level. In every meta model the dataset with metafeatures obtained using Vari-

ational Auto-encoders achieved the best meta level results. From this study we can conclude that

we are able to achieve meta level improvements by using Representation Learning (using VAE).

The meta models Light GBM and Random Forest are the ones with the best overall performance.

In the base level we only achieved marginal gains. The organically created zeroes class has a neg-

ative impact on the meta models performance. We can relate this class to the cold start problem.

This implementation is the first of its kind when addressing Personalized Algorithm Selection in

Recommender Systems.

41
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5.1 Limitations and Future Work

µ-cf2vec proposes an innovative approach to solve Personalized Algorithm Selection in Recom-

mender Systems. This implementation of the framework has some limitations that can lead to

future work:

• In the implementation of the µ-cf2vec framework we only used a single dataset. To validate

this framework, we have to test it in more datasets.

• We only used two Representation Learning techniques. However, as stated in chapter 2

there are many different techniques. The choice of these techniques and its results may have

an impact on the performance. The techniques we used achieve state of the art results in

Collaborative Filtering tasks. However, they are not designed for meta learning tasks. This

limitation is reinforced by the results presented in the low-space visualization and when

using the SMOTE technique. Using these results we can understand that the metafeatures

cannot extract a meaningful information about the task. In future work we should use dif-

ferent RL techniques.

• We did a grid search to find the best parameters, however there is a chance that the hyperpa-

rameters we have chosen aren’t the best for the task we aim to solve. Not having the optimal

parameters for a meta model can have a negative impact on the performance.

• The base learners selected are a limitation of this work. The framework µ-cf2vec wants

to remove the bias of the CF algorithms. We have to choose a variety of base learners

to leverage different biases. In this implementation we use four different base learners,

however, there are some users that are affected by the biases in the algorithms. To address

this limitation we should have a more diverse group of base learners.

• The metatarget selection is another limitation. The framework µ-cf2vec wants to remove

the bias of the CF algorithms. In this implementation we decided to define the metatarget as

the name of the base learner with the best performance for each user. However, this decision

might not have been the optimal one. We can try different metatargets definitions.

• The evaluation technique is another aspect on which we should focus. We have used the

common 5-fold cross validation technique, however, it might not be the one more suitable

to use for the characteristics of the data.

On the general framework we will focus on addressing the zeroes problem in more depth. We

can address the class zeroes in a multi level problem. Instead of our meta model selecting the best

algorithm, in the first level the meta model can be used to distinguish if a user belongs to the class

zeroes or not. On the second level the meta model will predict the best algorithm for the users that

the system did not identify as zeroes.



Appendix A

Results

A.1 Embeddings Visualizations

In figure A.1 we can observe different visualizations for the data obtained with CDAE with 50

factors. The visualization is similar for both normalization and no normalization. If the task was

trivial to solve we would see the points grouped by its label (same color).

(a) PCA with normalization (b) PCA without normalization

(c) T-SNE with normalization. Iteration 5. (d) T-SNE without normalization

Figure A.1: Vizualization of the meta dataset built with CDAE 50 factors using PCA and T-SNE.
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Figure A.2 presents a visualization for the metadataset with 200 factors obtained with the

CDAE. These results are similar to the ones in figure A.1. We cannot see any clustering of the

points by its label.

(a) PCA with normalization (b) PCA without normalization

(c) T-SNE with normalization. Iteration 5. (d) T-SNE without normalization

Figure A.2: Vizualization of the meta dataset built with CDAE 200 factors using PCA and T-SNE.

Figure A.3 presents the visualization of the VAE metadataset, the last dataset obtained in this

implementation. Once again the results are consistent with the ones obtained previously. Using

the the T-SNE technique the results are similar in all the three datasets. The PCA visualization

is diferent on the VAE dataset. In this dataset the PCA visualization represents the points more

dispersed, while in both CDAE dataset the points are more focused in two points. After analysing

these figures we might infer that the VAE dataset can retrieve better metafeatures when comparing

with both CDAE metafeatures.
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(a) PCA with normalization (b) PCA without normalization

(c) T-SNE with normalization. Iteration 5. (d) T-SNE without normalization

Figure A.3: Vizualization of the meta dataset built with VAE with 200 factors using PCA and
T-SNE.
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A.2 Meta Models evaluations

Figure A.4 presents the results for all non normalized datasets. These results are similar with the

ones in chaper 4. The VAE metadaset achives the best results. These results shows that we can

achieve gains in the meta level.

The impact on the base level performance present in figure A.4 are similar to the ones in the

previous chapters. We can only achieve marginal gains. The best meta model is once again the

random forest.

Figure A.4: Accuracy score on non
normalized datasets

Figure A.5: Base Level Performance on non
normalized datasets

After analysing the previous results we decided to the SMOTE technique, that can create syn-

thetic data. When analysing figure A.6 we can once again understand that the VAE dataset is

the one with better performance. For all meta learners the VAE dataset can achieve better accu-

racy than if only choosing the ALS algorithm. However, for the others datasets the accuracy has

decreased significantly. This may indicicate that the metafeatures cannot create a clear represen-

tation about the user. If we could easily relate the metafeatures, then the SMOTE technique would

generate an improvement on the results.

Figure A.7 presents the results for the impact on the base level performance. Using this tech-

nique to generate synthetic data, decreased the performance in almost every meta learner. Even

the CDAE datasets which previously only predicted the ALS class, in this new scenario they tried

to select more than one class. With these results we can conclude that sometimes may be better to

just select one algorithm instead of trying to select different ones.
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Figure A.6: Accuracy score on non
normalized datasets, with smote

Figure A.7: Base Level Performance on non
normalized datasets, with smote
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