348 research outputs found

    Local tests of global entanglement and a counterexample to the generalized area law

    Get PDF
    We introduce a technique for applying quantum expanders in a distributed fashion, and use it to solve two basic questions: testing whether a bipartite quantum state shared by two parties is the maximally entangled state and disproving a generalized area law. In the process these two questions which appear completely unrelated turn out to be two sides of the same coin. Strikingly in both cases a constant amount of resources are used to verify a global property.Comment: 21 pages, to appear FOCS 201

    Coarse-grained entropy and causal holographic information in AdS/CFT

    Get PDF
    We propose bulk duals for certain coarse-grained entropies of boundary regions. The `one-point entropy' is defined in the conformal field theory by maximizing the entropy in a domain of dependence while fixing the one-point functions. We conjecture that this is dual to the area of the edge of the region causally accessible to the domain of dependence (i.e. the `causal holographic information' of Hubeny and Rangamani). The `future one-point entropy' is defined by generalizing this conjecture to future domains of dependence and their corresponding bulk regions. We show that the future one-point entropy obeys a nontrivial second law. If our conjecture is true, this answers the question "What is the field theory dual of Hawking's area theorem?"Comment: 43 pages, 9 figures. v3: minor changes suggested by referee v2: added a few additional reference

    Quantum Information Bound on the Energy

    Full text link
    According to the classical Penrose inequality, the mass at spatial infinity is bounded from below by a function of the area of certain trapped surfaces. We exhibit quantum field theory states that violate this relation at the semiclassical level. We formulate a Quantum Penrose Inequality, by replacing the area with the generalized entropy of the lightsheet of an appropriate quantum trapped surface. We perform a number of nontrivial tests of our proposal, and we consider and rule out alternative formulations. We also discuss the relation to weak cosmic censorhip.Comment: 47 pages, 10 figure

    Positivity, entanglement entropy, and minimal surfaces

    Full text link
    The path integral representation for the Renyi entanglement entropies of integer index n implies these information measures define operator correlation functions in QFT. We analyze whether the limit n→1n\rightarrow 1, corresponding to the entanglement entropy, can also be represented in terms of a path integral with insertions on the region's boundary, at first order in n−1n-1. This conjecture has been used in the literature in several occasions, and specially in an attempt to prove the Ryu-Takayanagi holographic entanglement entropy formula. We show it leads to conditional positivity of the entropy correlation matrices, which is equivalent to an infinite series of polynomial inequalities for the entropies in QFT or the areas of minimal surfaces representing the entanglement entropy in the AdS-CFT context. We check these inequalities in several examples. No counterexample is found in the few known exact results for the entanglement entropy in QFT. The inequalities are also remarkable satisfied for several classes of minimal surfaces but we find counterexamples corresponding to more complicated geometries. We develop some analytic tools to test the inequalities, and as a byproduct, we show that positivity for the correlation functions is a local property when supplemented with analyticity. We also review general aspects of positivity for large N theories and Wilson loops in AdS-CFT.Comment: 36 pages, 10 figures. Changes in presentation and discussion of Wilson loops. Conclusions regarding entanglement entropy unchange

    Fluctuations and Entanglement spectrum in quantum Hall states

    Full text link
    The measurement of quantum entanglement in many-body systems remains challenging. One experimentally relevant fact about quantum entanglement is that in systems whose degrees of freedom map to free fermions with conserved total particle number, exact relations hold relating the Full Counting Statistics associated with the bipartite charge fluctuations and the sequence of R\' enyi entropies. We draw a correspondence between the bipartite charge fluctuations and the entanglement spectrum, mediated by the R\' enyi entropies. In the case of the integer quantum Hall effect, we show that it is possible to reproduce the generic features of the entanglement spectrum from a measurement of the second charge cumulant only. Additionally, asking whether it is possible to extend the free fermion result to the Μ=1/3\nu=1/3 fractional quantum Hall case, we provide numerical evidence that the answer is negative in general. We further address the problem of quantum Hall edge states described by a Luttinger liquid, and derive expressions for the spectral functions of the real space entanglement spectrum at a quantum point contact realized in a quantum Hall sample.Comment: Final Version. Invited Article, for Special Issue of JSTAT on "Quantum Entanglement in Condensed Matter Physics

    Entropic Steering Criteria: Applications to Bipartite and Tripartite Systems

    Full text link
    The effect of quantum steering describes a possible action at a distance via local measurements. Whereas many attempts on characterizing steerability have been pursued, answering the question as to whether a given state is steerable or not remains a difficult task. Here, we investigate the applicability of a recently proposed method for building steering criteria from generalized entropic uncertainty relations. This method works for any entropy which satisfy the properties of (i) (pseudo-) additivity for independent distributions; (ii) state independent entropic uncertainty relation (EUR); and (iii) joint convexity of a corresponding relative entropy. Our study extends the former analysis to Tsallis and R\'enyi entropies on bipartite and tripartite systems. As examples, we investigate the steerability of the three-qubit GHZ and W states.Comment: 27 pages, 8 figures. Published version. Title change

    Entanglement subvolume law for 2D frustration-free spin systems

    Full text link
    Let HH be a frustration-free Hamiltonian describing a 2D grid of qudits with local interactions, a unique ground state, and local spectral gap lower bounded by a positive constant. For any bipartition defined by a vertical cut of length LL running from top to bottom of the grid, we prove that the corresponding entanglement entropy of the ground state of HH is upper bounded by O~(L5/3)\tilde{O}(L^{5/3}). For the special case of a 1D chain, our result provides a new area law which improves upon prior work, in terms of the scaling with qudit dimension and spectral gap. In addition, for any bipartition of the grid into a rectangular region AA and its complement, we show that the entanglement entropy is upper bounded as O~(∣∂A∣5/3)\tilde{O}(|\partial A|^{5/3}) where ∂A\partial A is the boundary of AA. This represents the first subvolume bound on entanglement in frustration-free 2D systems. In contrast with previous work, our bounds depend on the local (rather than global) spectral gap of the Hamiltonian. We prove our results using a known method which bounds the entanglement entropy of the ground state in terms of certain properties of an approximate ground state projector (AGSP). To this end, we construct a new AGSP which is based on a robust polynomial approximation of the AND function and we show that it achieves an improved trade-off between approximation error and entanglement

    From communication complexity to an entanglement spread area law in the ground state of gapped local Hamiltonians

    Full text link
    In this work, we make a connection between two seemingly different problems. The first problem involves characterizing the properties of entanglement in the ground state of gapped local Hamiltonians, which is a central topic in quantum many-body physics. The second problem is on the quantum communication complexity of testing bipartite states with EPR assistance, a well-known question in quantum information theory. We construct a communication protocol for testing (or measuring) the ground state and use its communication complexity to reveal a new structural property for the ground state entanglement. This property, known as the entanglement spread, roughly measures the ratio between the largest and the smallest Schmidt coefficients across a cut in the ground state. Our main result shows that gapped ground states possess limited entanglement spread across any cut, exhibiting an "area law" behavior. Our result quite generally applies to any interaction graph with an improved bound for the special case of lattices. This entanglement spread area law includes interaction graphs constructed in [Aharonov et al., FOCS'14] that violate a generalized area law for the entanglement entropy. Our construction also provides evidence for a conjecture in physics by Li and Haldane on the entanglement spectrum of lattice Hamiltonians [Li and Haldane, PRL'08]. On the technical side, we use recent advances in Hamiltonian simulation algorithms along with quantum phase estimation to give a new construction for an approximate ground space projector (AGSP) over arbitrary interaction graphs.Comment: 29 pages, 1 figur

    Quantum Hamiltonian Complexity

    Full text link
    Constraint satisfaction problems are a central pillar of modern computational complexity theory. This survey provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. Over the past decade and a half, this field has witnessed fundamental breakthroughs, ranging from the establishment of a "Quantum Cook-Levin Theorem" to deep insights into the structure of 1D low-temperature quantum systems via so-called area laws. Our aim here is to provide a computer science-oriented introduction to the subject in order to help bridge the language barrier between computer scientists and physicists in the field. As such, we include the following in this survey: (1) The motivations and history of the field, (2) a glossary of condensed matter physics terms explained in computer-science friendly language, (3) overviews of central ideas from condensed matter physics, such as indistinguishable particles, mean field theory, tensor networks, and area laws, and (4) brief expositions of selected computer science-based results in the area. For example, as part of the latter, we provide a novel information theoretic presentation of Bravyi's polynomial time algorithm for Quantum 2-SAT.Comment: v4: published version, 127 pages, introduction expanded to include brief introduction to quantum information, brief list of some recent developments added, minor changes throughou
    • 

    corecore