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Abstract

We introduce a technique for applying quantum expanders in a distributed fashion, and use it to solve
two basic questions: testing whether a bipartite quantum state shared by two parties is the maximally
entangled state and disproving a generalized area law. In the process these two questions which appear
completely unrelated turn out to be two sides of the same coin. Strikingly in both cases a constant amount
of resources are used to verify a global property.

1 Introduction

In this paper we address two basic questions:

1. Can Alice and Bob test whether their joint state is maximally entangled while exchanging only a
constant number of qubits? More precisely, Alice and Bob hold two halves of a quantum state |ψ〉 on
a D2-dimensional space for large D, and would like to check whether |ψ〉 is the maximally entangled
state |φD〉 = 1√

D ∑x |x〉|x〉 or whether it is orthogonal to that state. The first entanglement tester is
the hashing protocol of the influential 1996 paper by Bennett, DiVincenzo, Smolin and Wootters [9];
further results are summarized in table Table 1. Entanglement testing has found various applications,
including entanglement distillation and error correction [9], state authentication [6] and bounding the
communication capacities of bipartite unitary operators [18]. As can be seen from this table, all known
protocols for this task require resources (communication, shared randomness or catalyst) which grow
with D [9, 6, 18].

2. Is there a counterexample to the generalized area law? A sweeping conjecture in condensed matter
physics, and one of the most important open questions in quantum Hamiltonian complexity theory, is
the so called “area law,” which asserts that ground states of quantum many body systems on a lattice
have limited entanglement. Specifically, assume the system is described by a gapped local Hamilto-
nian1 H = H1 + . . . + Hm, where each Hi describes a local interaction between two neighboring
particles of a lattice. The area law conjectures that for every subset S of the particles, the entangle-
ment entropy between S and S̄ for the ground state of H is bounded by a constant times the size of
the boundary of S. The area law, which has been proven for 1-D lattices [19] and is conjectured for
higher degree lattices, is of central importance in condensed matter physics as it provides the basic
reason to hope that ground states of gapped local Hamiltonians on lattices might have a (relatively)
succinct classical description. The generalized area law (a folklore conjecture) transitions from this
physically motivated phenomenon to a very clean and general graph theoretic formulation, where in

1Here and later, by gapped local Hamiltonian we mean a Hamiltonian whose difference between ground energy and next excited
energy is Ω(1).
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reference form of |ψ〉 communication required other resources

[9] n EPR pairs O(n log(1/ε)) consumes only O(log(1/ε)) EPR pairs
[6] n EPR pairs (2 + o(1)) log(n/ε) O(n/ log(n/ε)) bits of shared randomness
[18] n EPR pairs O(log(1/ε)) n/ε EPR pairs
this paper n EPR pairs O(log(1/ε))

Table 1: Comparison of different entanglement-testing protocols. When we say that communication x
is required, this means that we need to consume either x qubits or, alternatively (by teleportation), 2x
classical bits and x EPR pairs. The exception is the first row, which uses classical communication to verify
entanglement, and hence the entanglement cost is lower.

place of edges of the lattice, the terms of the Hamiltonian correspond to edges of an arbitrary graph.
The generalized area law then states that for any subset S of vertices (particles), the entanglement
entropy between S and S̄ for the ground state is bounded by some constant times the cut-set of S (the
number of edges leaving S).

We affirmatively answer both questions, based on a common technique that may be thought of as ap-
plying quantum expanders in a distributed fashion. Indeed these two questions which at first sight seem
completely unrelated turn out to be two sides of the same coin.

1.1 Main idea and results

The main ingredient in both proofs is the notion of quantum expanders, which we discuss further in Sec-
tion 2. A quantum expander can be thought of as a collection of d unitaries U1, . . . , Ud, (think of d as
a constant) each acting on a (possibly large) dimension-D Hilbert space. For any matrix X on the D-
dimensional Hilbert space, the operator associated with the expander, E(X) = 1

d ∑d
i=1 UiXU†

i , has the
unique eigenvalue 1 for the eigenvector X = I and next highest singular value λ < 1. It thus shrinks any
matrix orthogonal to the identity by a constant factor. The key to the results in the paper is an equivalent way
to view quantum expanders, by considering their action on maximally entangled states. It is well known that
for any U, U ⊗U∗ acting on the maximally entangled state |φD〉 = 1√

D ∑D
i=1 |i〉 ⊗ |i〉 leaves it as is. Of

course, this remains true even if U is drawn uniformly at random from the set U1, . . . , Ud of the expander.
Remarkably, even though quantum expanders use only a constant number d of unitaries, they leave intact
only the maximally entangled state, and cause all other states to shrink by at least a constant amount.

For the entanglement-testing problem, we use the above intuition to derive a communication protocol
which uses only a constant number of qubits, and detects a maximally entangled state of arbitrary dimension.
This is described in Section 3. The idea is to determine whether Alice and Bob share a state that is invariant
under Ui ⊗U∗i for i = 1, . . . , d, or far from invariant; i.e. whether the shared state is |φD〉 or something
orthogonal. To achieve this with O(1) communication, suppose Alice and Bob each had access to a joint
register initialized with 1/

√
d ∑d

i=1 |i〉. Each could then apply controlled operators from this register to their
share of the state |ψ〉: Alice would apply a controlled Ui and Bob a controlled U∗i . This “shared register”
model could more naturally be achieved by having Alice create the state and perform her controlled Ui
before sending the state to Bob, who then performs his controlled U∗i . Bob should then test that the control
state remained intact, which happens iff the original state of the D-dimensional registers was indeed the
maximally entangled state. With only a little more algebra, this shows that for any D, ε > 0, there exists
a protocol which uses O(log 1/ε) qubits of communication, after which Bob always accepts if the shared
state is |φD〉. If the shared state is orthogonal to |φD〉, he accepts with probability at most ε. Moreover, if
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Alice and Bob do start with the maximally entangled state |φD〉, the protocol does not damage the state.

Figure 1: a) A counterexample to the generalized area law, consisting of a chain of complete graphs separated by
the middle edge. The entropy across the cut is shown in Section 5 to grow as Ω (nc), where n is the total number of
particles. b) A four-particle construction, analyzed in Section 4. c) Short-chain framework for proving 1-D area law,
from [4].

For a counterexample to the generalized area law, we use the above intuition to exhibit a gapped local
Hamiltonian acting on the graph featured in Figure 1 a), for which the entanglement entropy of the ground
state across the middle cut is Ω(nc) for some 0 < c < 1 (rather than O(1) as predicted by the generalized
area law). The core step in generating this example is the construction of a simpler system consisting
of four particles on a line in Figure 1 b): two particles of dimension d = 3 (qutrits) in the middle, and
two particles of dimension D at the two ends, with arbitrarily large D. The gapped Hamiltonian is of the
form H = HL + HM + HR, where HL acts between the left particle and the left qutrit, HM between the
two qutrits, and HR between the right qutrit and the right particle. Crucially, the entanglement entropy
of the ground state across the middle cut is Ω(log D), as shown in Section 4. The idea here, like in the
communication protocol, is to use the middle particles to synchronize the application of a quantum expander
on the left and right sides. This requires only a single term of the Hamiltonian, acting on two d-dimensional
particles.

Enforcing a large amount of entanglement (in the ground state) by the single constraint HM acting on a
constant-dimensional system is a surprising quantum phenomenon. In the analogous probabilistic situation,
consider a graph whise vertices are each associated with constant-dimensional variables, and whose edges
are associated with classical constraints. Each constraint forbids some subset of the possible assignments
to the variables at the two ends of the edge. This describes a constraint satisfaction problem (CSP)2. Now
consider the uniform distribution over the set of all possible solutions to this set of constraints, namely all
assignments that violate no constraint. It is easy to see that the middle constraint in the graph in Figure 1 a)
can only enforce a convex combination of a constant number of product distributions 3.

This simple example of a four-particle system is already important within the context of proofs of the
1-D area law and prospects for extending those techniques to higher dimensions. The best current 1-D
area law [4] works within a model very similar to our four-body Hamiltonian, except the middle link in [4]
is extended into a finite chain of s = Ω(log2 d/ε) particles, each of dimension d (see figure 1 c). This

2This analogy between local Hamiltonians and constraint satisfaction problems is commonly used in quantum Hamiltonian
complexity, see e.g., [1].

3This phenomena can be viewed as the zero temprature case; it in fact extends also to the Gibbs distribution at any temprature,
where the two endpoints of a chain are always conditionally independent given the values of the spins in the middle.
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yields an area law bound of S1−D = O(log3(d)/ε) across the middle cut. It was observed in [4] that any
slight improvement in the exponent of log d would imply a non-trivial sub-volume law for 2-D systems.
The crucial parameter in improving the result is the length of the middle chain; Our four-body Hamiltonian
shows that in the extreme case of a length 1 chain, no area law holds. Understanding the intermediate regime
is thus an important open question.

Our four-particle example involves non-physical particles of arbitrarily large dimension. In Section 5 this
example is converted to a counterexample to the generalized area law with bounded dimensional particles
(albeit with unbounded degree of interaction). This is done by applying Kitaev’s circuit-to-Hamiltonian
construction to implement the Ui, followed by an application of the strengthening gadgets of [13] (see
Section 5 for details).

What is the connection between our two results? The above described Hamiltonian constructions are
based on quantum expanders, just like our entanglement testers. In Section 6 we explore a deeper connection
between very efficient communication protocols for EPR testing and violations of generalized area laws. We
show that it is possible to derive a counterexample to the generalized area law, starting from a solution to
the first problem (an EPR testing protocol with limited communication) and converting it using Kitaev’s
circuit-to-Hamiltonian construction into a Hamiltonian violating the generalized area law. This, we believe,
points at a fundamental link between the two seemingly unrelated topics. We discuss this and many other
open questions and related work in Section 7.

Notation: For a matrix X, let X∗ be the entry-wise complex conjugate of X and X† the transpose of X∗.
Define the Frobenius norm |X| :=

√
tr X†X; the operator norm ‖X‖ is the largest singular value of X.

2 Quantum Expanders

The key structural component to our results are quantum expanders. We will only make use here of ex-
panders based on applying one out of d unitaries at random (a more general definition using Kraus operators
exists).

Definition 1. The operator E : L(CD) → L(CD) (here we use L(CD) to denote the set of linear operators
on CD) is termed a (D, d, λ) quantum expander if

• There are d unitaries, U1, U2, ..., Ud, such that E(X) = 1
d ∑d

i=1 UiXU†
i .

• Interpreted as a linear map, E has second-largest singular value ≤ λ.

Just as classical expanders may be thought of as constant-degree approximations to the complete graph,
quantum expanders are constant-degree approximations to the application of unitaries drawn at random from
the Haar measure.

By definition, the identity map X = I is the unique fixed point of E . The second condition is equivalent
to saying that for any X with tr(X) = 0

|E(X)| ≤ λ|X|. (1)

This interpretation suggests an alternate formulation where we think of each X ∈ L(CD) as a vector in
CD ⊗ CD and the operator E then gets mapped to the operator Ê = 1

d ∑d
i=1 Ui ⊗ U∗i . Then Ê fixes the

maximally entangled state |φD〉 = 1√
D ∑x∈[D] |x〉|x〉, and has second largest singular value λ.

Quantum expanders were introduced independently in [20] and [7] although many of the relevant ideas
were implicit in [3]. In [21], it was proved that taking Ui for i ∈ {1, ..., d} to be Haar uniform results
in a “Ramanujan” expander with high probability; that is, λ ≈ 1/

√
d. Since random unitaries cannot be

constructed efficiently, other work [8, 17, 15, 24] gave efficient constructions, in which the unitaries can
be applied by polynomial-size quantum circuits. Essentially all of these constructions achieve log(d) =
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O(log 1/λ). For our communication protocols, we will need d to be a variable (since the error depends on
it); whereas for the area law counter example, we will take d to be a small constant. In what follows we will
assume for simplicity of exposition that d = 3 is possible, although the smallest d that has been verified is
d = 8 using [15].

Why are expanders relevant to our results? To understand the gap condition better, let us see why |φD〉,
the maximally entangled state on CD ⊗ CD, is a +1 eigenvector. Observe that for any D × D matrix X,
we have (X ⊗ I)|φD〉 = (I ⊗ XT)|φD〉. Thus 1

d ∑d
i=1(Ui ⊗U∗i )|φD〉 = 1

d ∑d
i=1(UiU†

i ⊗ I)|φD〉 = |φD〉.
Since the second-largest singular value of Ê is λ, then we have∥∥Ê − |φD〉〈φD|

∥∥ = λ. (2)

Thus, Ê gives an approximation of a projector onto |φD〉 up to operator-norm error λ.
In the rest of our paper we will explore two settings in which this allows us to use resources proportional

to d (which we should think of as small) to force a state on CD ⊗CD (with D large) to be close to |φD〉.

• In Section 3 we will show how log(d) qubits of communication can perform the projective measure-
ment {|φD〉〈φD|, I − |φD〉〈φD|} up to error 1/dΩ(1).

• In Section 4 we will show how interactions between a pair of constant-dimensional and a pair of two
D-dimensional particles can have a ground state with maximal entanglement on the D-dimensional
particles and a constant gap.

3 A communication protocol for certifying global entanglement

3.1 The EPR testing problem

As above, set |φD〉 to be the maximally entangled state on CD ⊗CD. The EPR testing problem is to deter-
mine whether a given shared state |ψ〉 ∈ CD ⊗CD is equal to or orthogonal to |φD〉. More precisely, two
parties (Alice and Bob) would like to simulate the joint two-outcome POVM {|φD〉〈φD|, I− |φD〉〈φD|}.

An (D, ε) EPR tester is a communication protocol for performing a two-outcome measurement {M, I−
M} such that ‖M− |φD〉〈φD|‖ ≤ ε.

In general EPR testers may differ in a variety of ways:

• If M ≥ |φD〉〈φD| then we say the EPR tester has perfect completeness.

• The communication requirements and computational efficiency may vary.

• The protocol may be performed with quantum or classical communication. If quantum commu-
nication is used, then it is reasonable to assume that upon input ρ the post-measurement state is
M1/2ρM1/2/ tr[Mρ] or (I − M)1/2ρ(I − M)1/2/ tr[(I − M)ρ], depending on the outcome. If
classical communication is used, we need to also consume some entanglement. We say that the test
consumes k EPR pairs if given an input of n EPR pairs, it outputs at least n− k EPR pairs (up to ε
error) when it reports success. There are no guarantees for orthogonal input states.

We are aware of three previous implementations of EPR testers (previously described in Table 1).
Ref. [9] gave a

(
2n, 2−k) EPR tester with perfect completeness that used a message of O(nk) classical

bits and consumed k EPR pairs. This was improved by [6] to a (2n, 2n
k(2k+1) ) EPR tester that sent 2k classical

bits, consumed k EPR pairs and used ≈ n/k bits of shared randomness. The paper [18] provides a protocol
which uses only log 1/ε communication qubits, but with the assistance of an additional n/ε trusted EPR
pairs. Our protocol achieves a protocol with this amount of communication, without the need for any extra
resources.
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3.2 EPR testing with constant quantum communication

Our main result in this section is an EPR tester using only a constant amount of quantum communication
that is independent of the dimension D.

Theorem 1. For any D and any ε > 0 there exists a (D, ε) EPR tester with perfect completeness using
one-way communication from Alice to Bob. The protocol has several variants:

• Using (2 + o(1)) log(1/ε) qubits sent from Alice to Bob, but poly(D) run-time.

• Using C log(1/ε) qubits sent from Alice to Bob and poly log(D) run-time for some universal con-
stant C > 0.

• Using either (8 + o(1)) log(1/ε) or ≈4C log(1/ε) classical bits sent from Alice to Bob (depending
on whether computational efficiency is needed) and consuming the same number of EPR pairs.

• Using 2 bits of shared randomness and 1 qubit of communication, poly log(D) run-time and achiev-
ing ε = 8+

√
5

16 ≤ 0.64.

We remark that replacing the state |φD〉 in Theorem 1 with a general entangled state can result in a much
larger (and D-dependent) communication cost [18]. Thus we refer to the result as an EPR tester rather than
a general entanglement tester.

One application of this result relates to the open question of whether entanglement helps quantum com-
munication complexity. Classically, shared randomness does not significantly reduce communication com-
plexity because large random strings can be replaced by pseudo-random strings that fool protocols[33]. This
is called a blackbox reduction because it replaces the random input but does not change the protocol. Quan-
tumly such blackbox reductions are ruled out by efficient entanglement-testing protocols, since they cannot
be fooled by any low-entanglement state. A similar result is in [27] but their construction does not yield an
EPR tester. See also [34] for a non-blackbox entanglement reduction that increases the communication cost
by an exponential amount.

Proof of Theorem 1. The main idea is to interpret the results of Section 2 as a way to test maximally
entangled states. By Section 2 it suffices for Alice and Bob to implement a two-outcome measurement
{M, I−M} on their shared state with M = Ê for E a (D, k,

√
ε) expander. However, it is not immediately

clear how to implement this measurement. To do this, we will use a trick that has been used in a variety of
contexts (e.g. [5], [18] and Section 2.2.2 of [31]) and can be thought of as a variant of phase estimation. The
protocol (depicted in Figure 3a) is as follows.

1. Alice and Bob initially share a state in registers L, R.

2. Alice prepares the log(d)-qubit state 1√
d ∑d

i=1 |i〉 in register a.

3. She performs W = ∑d
i=1 |i〉〈i| ⊗Ui on a, L.

4. She sends system a to Bob.

5. Bob performs W∗ = ∑d
i=1 |i〉〈i| ⊗U∗i on a, R.

6. Bob does a two-outcome measurement on a, with the accept outcome corresponding to the state
1√
d ∑d

i=1 |i〉 and the “reject” outcome corresponding to the orthogonal subspace.

6



If Alice and Bob start with the shared state |ψ〉, then step 5, their state is

1√
d

d

∑
i=1
|i〉a ⊗ (Ui ⊗U∗i )|ψ〉LR. (3)

Step 6 then accepts with probability equal to the norm squared of 1
d ∑d

i=1(Ui ⊗U∗i )|ψ〉 =: M|ψ〉 where we
have defined

M =
1
d

d

∑
i=1

Ui ⊗U∗i . (4)

This results in the two-outcome measurement {M† M, I − M† M}. By Eq. (2), M† M is ε close to the
desired measurement operator |φD〉〈φD|.

The communication cost is log(d). If we do not care about computational efficiency, we can obtain
ε ≈ 1/

√
d using random unitaries [21]. For a poly log(d, D) run-time, we can iterate an efficient expander;

e.g. applying the construction of [15] k times yields d = 8k and ε ≤ (2
√

5/8)k. To use classical bits instead,
we first use the construction of [6] which uses O(log 1/ε) classical bits to verify O(log 1/ε) EPR pairs.
Those EPR pairs are then used to teleport the qubits in the above protocol, which can therefore be applied
to verify the rest of the EPR pairs.

For the last construction that uses two rbits and one qubit, we start with the quantum Margulis ex-
pander [15]. This consists of unitaries U1, . . . , U4, U5 = U†

1 , . . . , U8 = U†
4 . The modified protocol is as

follows. Let r ∈ {1, 2, 3, 4} be the value of the shared randomness. Run the above protocol with the pair
of unitaries {I, Ur}. The resulting measurement operator, conditioned on r, is Mr =

I+Ur⊗U∗r
2 . Averaging

over r we obtain

M† M :=
1
4

4

∑
r=1

M†
r Mr =

I + 1
8 ∑8

i=1 Ui ⊗U∗i
2

.

From the expansion properties proved in [15], we have that ‖M† M− |φD〉〈φD|‖ ≤ 1
2 (1 +

2
√

5
8 ) = 8+

√
5

16 .
�

To help prepare for the next sections, it is useful to view this test also in matrix form, as follows. If the
initial state of the left/right registers was |x〉L|y〉R, after Alice’s operation, the state has to have the form

1√
d

d

∑
i=1
|i〉(Ui|x〉L)|y〉R. (5)

After Bob gets the ancilla and performs his operation W∗, the state has to have the form

1√
d

d

∑
i=1
|i〉 (Ui|x〉L) (U∗i |y〉R) . (6)

Let us represent the initial state |ψ〉AB = ∑k,` xk,`|k, `〉 by a matrix X, such that Xk,` = xk,`. We now
rewrite the final state as a matrix with components β(a,L),R:

β =
1√
d


U1XU†

1

U2XU†
2

...

 . (7)

Passing the final test now means that

UiXU†
i = UjXU†

j , ∀i, j, (8)

which is possible (if we have a quantum expander) only for X = I. This means the initial state was
|ψ〉LR = |φD〉, and that the final state is

(
1√
d ∑d

i=1 |i〉a
)
⊗ |φD〉.

7



4 A counterexample to the generalized area law

In this Section we present our second result: a Hamiltonian with a small bridge term connecting two large
halves of a system. Strikingly, this single-link bridge of constant dimensions has a large influence on the
entanglement entropy between the two parts of the system, in the ground state.

ΣL σ1 σ2 ΣRL M R

Figure 2: A single-link chain with side operators L and R.

4.1 Background about local Hamiltonians

We consider Hamiltonians on finite-size spin systems, where each term in the Hamiltonian is a bounded-
strength interaction between a bounded number of spins; in fact our constructions will involve only pairwise
interactions. Unlike many physical systems, we do not require spatial locality but allow interactions between
any pair of spins. We will also consider systems in which individual spin dimension di can be large.

A quantum state on n particles, of dimensions d1, .., dn respectively, is a unit vector in H := Cd1 ⊗
. . .⊗ Cdn . A Hamiltonian H is a Hermitian matrix acting on H. A k-local Hamiltonian can be written as
H = ∑m

i=1 Hi where each Hi acts nontrivially on at most k particles. Conventionally, each ‖Hi‖ ≤ 1. If the
Hi’s are all diagonal, H is equivalent to a classical constraint satisfaction problem; in general the Hi may
not always be diagonal or even commute. The eigenvector of H with the smallest eigenvalue is called the
ground state. We say that a Hamiltonian is frustration free if the ground state of H is also the eigenvector
with lowest eigenvalue for each Hi; otherwise we call H frustrated.

If the eigenvalues of H are E0 ≤ E1 ≤ · · · ≤ ED−1 then the gap of H is defined to be E1 − E0. When
H belongs to a family of Hamiltonians indexed by n, we say this family is gapped if the gap of each H
is lower-bounded by a constant independent of n. (Otherwise the family is said to be gapless.) Often we
identify H with the family of Hamiltonians, and simply say that H itself is gapped or gapless.

4.2 Construction of the Hamiltonian

Let the system W consist of two qutrits (σ1 and σ2) and two high dimensional systems (ΣL and ΣR):

W = ΣL ⊗ σ1 ⊗ σ2 ⊗ ΣR = CD ⊗ C3 ⊗ C3 ⊗ CD.

We design a gapped Hamiltonian H = HL + HM + HR, where HL (left) HM (middle) and HR (right)
are projectors acting on ΣL ⊗ σ1, σ1 ⊗ σ2 and σ2 ⊗ ΣR, respectively, that defies the area law through the cut
ΣL ⊗ σ1 | σ2 ⊗ ΣR. For convenience we write all elements of W in the form

∑
i,j∈[3]

|ψi,j〉|i〉|j〉,

where ψi,j ∈ ΣL ⊗ ΣR, and ∑i,j∈[3] |ψi,j|2 = 1. If we fix a basis in ΣL and ΣR, respectively, we can think of
ψi,j for every i, j ∈ [3] as D× D matrices. Our construction will rely on quantum expanders using D× D
unitary matrices with U1 = I, and U2 and U3 such that for any D×D matrix X with |X|2 = tr(XX†) = 1,
tr(X) = 0 we have:

|E(X)| = 1
3
|X + U2XU†

2 + U3XU†
3 | ≤ (1− c), (9)

8



where c := 1− λ > 0 is a fixed constant, independent of D. Equation (9) and the triangle inequality imply
that for any D× D matrix X with |X| = 1, tr(X) = 0:

|U2XU†
2 − X|+ |U3XU†

3 − X| ≥ 3c (10)

We now define projectors HL, HR and HM via their zero subspaces L, R andM. We describe these
subspaces by writing states of W in the block matrix form ψ1,1 ψ1,2 ψ1,3

ψ2,1 ψ2,2 ψ2,3

ψ3,1 ψ3,2 ψ3,3

 .

Note that our way to present a (pure) state of W is unlike the density matrix presentation, and it is only
meaningful, because W is a tensor product of four components. The above matrix form (of a vector) is
simply a convenient way of rendering the (3D)2 coordinates of a state in W. In this presentation L, R and
M have convenient expressions. L is the set of states of the form ψ1,1 ψ1,2 ψ1,3

U2ψ1,1 U2ψ1,2 U2ψ1,3

U3ψ1,1 U3ψ1,2 U3ψ1,3

 ,

where ψ1,1, ψ1,2 and ψ1,3 are arbitrary. R is the set of states of the form ψ1,1 ψ1,1U2 ψ1,1U3

ψ2,1 ψ2,1U2 ψ2,1U3

ψ3,1 ψ3,1U2 ψ3,1U3

 ,

where ψ1,1, ψ2,1 and ψ3,1 are arbitrary.M is the set of states of the form ψ1,1 X Y
X ψ2,2 ψ2,3

Y ψ3,2 ψ3,3

 ,

where X, Y and the remaining ψi,j’s are arbitrary. It is easy to check that HL, HM, HR are indeed local. For
instanceM is a tensor product of ΣL ⊗ ΣR with the subspace S of σ1 ⊗ σ2 that equates the coefficients of
|1〉|2〉 and |2〉|1〉 and also the coefficients of |1〉|3〉 and |3〉|1〉. Explicitly

HL := I− 1
3

3

∑
i,i′=1

UiU†
i′ ⊗ |i〉〈i|′, (11a)

HR := I− 1
3

3

∑
j,j′=1
|j〉〈j|′ ⊗

(
UjU†

j′

)T
, (11b)

HM :=
(|12〉 − |21〉)(〈12| − 〈21|)

2
+

(|13〉 − |31〉)(〈13| − 〈31|)
2

. (11c)
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4.3 The ground state is highly entangled

Lemma 2. The unique normalized ground state |G〉 of H = HL + HR + HM = (I−ΠL) + (I−ΠR) +
(I−ΠM) written out as a matrix is

G =
1

3
√

D

 I U2 U3

U2 U2
2 U2U3

U3 U3U2 U2
3

 .

It satisfies H|G〉 = HL|G〉 = HM|G〉 = HR|G〉 = 0.

Proof. Equation (10) guarantees that I is the only D×D matrix that commutes with both U2 and U3. From
this together with the above forms of L,R andM, it follows that |G〉 is the only normalized state vector in
L ∩R∩M. �

Lemma 3. The entanglement entropy of |G〉 along the ΣL ⊗ σ1 | σ2 ⊗ ΣR cut is log2 D.

Proof. Let |Z〉 be any state on our-four particle system, and let Z be its matrix notation. By a direct calcula-
tion, the reduced density matrix of |Z〉 on the ΣL⊗σ1 systems is exactly ZZ†. Since G = 1

3
√

D ∑3
i,j=1 UiUj⊗

|i〉〈j| (letting U1 := I), we have that for the ground state |G〉 the reduced density matrix

GG† =
1

3D

3

∑
i,i′=1

UiU†
i′ ⊗ |i〉〈i′|. (12)

To diagonalize GG†, let W := ∑3
i=1 Ui ⊗ |i〉〈i|. Then

W†(GG†)W =
I

D
⊗ 1

3

3

∑
i,i′=1
|i〉〈i′|, (13)

which has D eigenvalues equal to 1/D. �

4.4 The Hamiltonian is gapped

Lemma 4. Denote the energy gap above the ground space for the Hamiltonian H = HL + HM + HR by
∆. Then ∆ ≥ c/4 with c defined in (9).

First we state a Lemma about the spectrum of the sum of two projectors.

Lemma 5. Let P1, P2 be projectors onto subspaces V1, V2. Let

µ := min{〈ψ|P2|ψ〉 : |ψ〉 ∈ V1, 〈ψ|ψ〉 = 1} = λmin(P1P2P1). (14)

Then the minimum eigenvalue of I− P1 + P2 is 1−
√

1− µ ≥ µ/2.

Proof. By Jordan’s Lemma [28], it suffices to consider the case when

P1 =

(
1 0
0 0

)
and P2 =

(
µ

√
µ(1− µ)√

µ(1− µ) 1− µ

)
(15)

In this case P1 + P2 = I − (1− µ)σz +
√

µ(1− µ)σx which has eigenvalues 1±
√

1− µ. �
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Proof of Lemma 4. Let VLR be the ground space of HL + HR and let ṼLR be the subspace of VLR that is
orthogonal to |G〉. Let PLR, P̃LR be the corresponding projectors and observe that

HL + HR ≥ I− PLR and HL + HR + |G〉〈G| ≥ I− P̃LR. (16)

Let |ψ〉 ∈ ṼLR be a unit vector. Since |ψ〉 ∈ VLR, we can write it in matrix form as

|ψ〉 =

 X XU2 XU3

U2X U2XU2 U2XU3

U3X U3XU2 U3XU3

 . (17)

Since 〈G|ψ〉 = 0 we additionally have tr[X] = 0. From normalization we have |X| = 1/3. Now we
calculate

µ := 〈ψ|HM|ψ〉 =
|XU2 −U2X|+ |XU3 −U3X|

2

(10)
≥ |X|

2
3c =

c
2

(18)

Setting P1 = P̃LR and P2 = HM we can now apply Lemma 5 and find that the minimum eigenvalue of
(I− P̃LR) + HM is ≥ c/4. Finally, the second-smallest eigenvalue of HL + HM + HR is the minimum of
〈ψ|HL + HM + HR|ψ〉 over all unit vectors |ψ〉 satisfying 〈ψ|G〉 = 0. For such a vector we have

〈ψ|HL + HM + HR|ψ〉 = 〈ψ|(HL + HM + HR + |G〉〈G|)|ψ〉 ≥ 〈ψ|I− P̃LR + HM|ψ〉 ≥
c
4

(19)

Combined with Lemma 2 this shows that the gap is ≥ c/4. �

5 The abstract Hamiltonian can be implemented locally

The Hamiltonian construction in Section 4 has very interesting properties (a unique, very entangled ground
state and a constant gap), but the HL and HR terms act on particles of arbitrary dimension. Alternatively, we
can think of them as being nonlocal Hamiltonians for a system of qubits. We now wish to decompose them
into local terms, acting on particles of dimension O(1), while retaining their desirable properties. This is
done in two steps: we first construct a Hamiltonian H′LMR with the desired properties except the interactions
are of polynomial strength, and then we correct this unphysical assumption and derive our final Hamiltonian
Hgadget

LMR .
We start by showing in Subsection 5.1 that HL can be made local. We do this using Kitaev’s circuit-

to-Hamiltonian construction applied to the circuit computing the application of the expander, padded with
polynomially many identity gates at the end of the computation. This derives a local Hamiltonian HKit

L with
ground states very close to the ground states of HL in Section 4, tensored with some state in an additional
ancilla register. The price we pay in this construction is an inverse polynomial gap instead of a constant one
since Kitaev’s construction has an inverse polynomial gap. To avoid this, we multiply the local interaction
terms in HKit

L by a polynomial prefactor and arrive at a Hamiltonian H′L with a constant gap, as stated in
Claim 6. However, its terms have polynomially large, unphysical norms.

Next, in Subsection 5.2, we show in Theorem 7 that by using the above local construction on both sides
of the 4-particle chain of Section 4, without changing the middle interactions, we arrive at a Hamiltonian
whose strength of the middle interaction remains O(1), while its unique ground state retains all the desired
properties of of the four-particle Hamiltonian H from Section 4. Note that the interaction terms which are not
in the middle are still of polynomial strength. This gives us a local Hamiltonian H′LMR = H′L + H′R + HM
with a constant gap, and a unique, entangled ground state, just as we had for H. We now wish to make the
strength of the interactions on both sides bounded as well.

11



In Theorem 12, we decompose each high-norm local interaction term in H′L and H′R into many local,
constant-norm terms, using the strengthening gadgets of [13]. Thus, we end up with a local Hamiltonian
Hgadget

LMR with all the desired properties of HLMR from Section 4. We note that once again a price is to be
paid: in our final local, bounded-interactions Hamiltonian, each particle is involved in polynomially many
2-body interactions. It remains open to make the degree of interaction bounded.

5.1 Evaluating a quantum expander locally (3 computations in parallel)

Let us translate the Hamiltonian from Section 4 into a local one. We start by mimicking HL by a sum of
local terms. The Hamiltonian HL acts on a space of dimension 3D, and its ground states have form

|Φx〉 =
1√
3

3

∑
i=1
|i〉 ⊗Ui|x〉. (20)

We will now enlarge our system and find a local Hamiltonian H′L, whose ground state will be close to

|Φx〉 ⊗ |w〉, (21)

with |w〉 some state of an extra register.

Claim 6. There exists a frustration-free local Hamiltonian with a constant spectral gap, set on a chain of
2N + 2 constant-dimensional qudits, such that all ground states are ε-close to the form (21), with ε inverse
polynomial in N. The local terms of the Hamiltonian are of norm bounded by O(poly(N)).

We prove Claim 6 with N′ = poly(n) qubits and 5-local interactions (in general geometry). This
construction can then be recast on a chain of 2N + 2 = poly(n) qudits using [2] or [16]. There, the
clock/data registers (with N particles each) can be seen as sitting on top of each other, and pair clock/data
particles into larger qudits. These will then sit on a chain bN-· · · -b1-σ1-σ2-b′1-· · · -b′N , with qutrits σ1, σ2 in
the middle.

We construct the Hamiltonian of Claim 6 following Kitaev’s Circuit-to-Hamiltonian construction [29]. It
allows us to write down a Hamiltonian whose ground states are the history states of a quantum computation
V, i.e. states of the form

|ψhist
y 〉 =

1√
T

T

∑
t=0
|t〉k ⊗Vt . . . V1

(
|y〉 ⊗ |0〉q

)
, (22)

where k is an extra “clock” register, q is an ancilla register, |y〉 is some initial state of a data register and
Vt are the gates of some circuit V, acting on the data register. Our data register will contain n data qubits
(for simplicity, set 2n = D) and a “control” qutrit a. We want to get the history state of the circuit V with
unitaries

Vt =
3

∑
i=1
|i〉〈i|a ⊗Ui,t, (23)

for t = 1, . . . , τ. Here Ui,1, . . . , Ui,τ are the gates that together implement Ui from the quantum expander,
including uncomputing any changes to the ancilla register q at the end. On top of this, we pad the circuit
V with many identity gates Vt = I for τ < t ≤ T, for some T � τ, setting ε = τ

T = 1
poly(n) . We also

require an extra clock register k capable of locally implementing a clock with T + 1 clock states, as well as
an ancilla scratch register q. The ground states (history states of V) for the new Hamiltonian H′L have form

|Ψx〉 =
1√

T + 1

T

∑
t=0
|t〉k ⊗Vt . . . V1

(
1√
3

3

∑
i=1
|i〉a|x〉d|0 · · · 0〉q

)
. (24)
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We will build HKit
L = Hinit + Hprop from two parts. First, propagation-checking:

Hprop =
1
2

T

∑
t=1

(|t− 1〉〈t− 1|k + |t〉〈t|k)−
1
2

T

∑
t=1

(
|t− 1〉〈t|k ⊗V†

t + |t〉〈t− 1|k ⊗Vt

)
. (25)

Second, we need to ensure proper initialization by adding a projector that prefers a uniform superposition on
the control qutrit when the clock register is |0〉k (we want all three computations to run on the same input).
Adding standard ancilla initialization-checking, we get

Hinit = |0〉〈0|k ⊗
[

I− |α3〉〈α3|a +
s

∑
i=1
|1〉〈1|qi

]
,

with |α3〉 = 1√
3
(|1〉+ |2〉+ |3〉). We can now implement the clock register and the corresponding projec-

tors by a a 5-local, unary clock with T + 1 qubits [29]. The Hamiltonian HKit
L is positive-semidefinite, and

frustration-free. It has a zero-energy state of the form (24) for any basis state |x〉 of the n working qubits.
Furthermore, the energy gap of HKit

L to eigenstates with nonzero energy is ∆Kit
L = Θ

(
T−2) [29]. Using the

1-D construction for a line of constant (8-dimensional) qudits from [16] based on [2], which also has a gap
that scales as an inverse polynomial in T, this results in a 1-D Hamiltonian with the properties we want.

Let us consider the ground states more closely. For t ≥ τ, the data register is in the desired state |Φx〉
(20), the ancilla register is uncomputed, and it is only the clock register that changes. Recalling T � τ, we
realize that each |Ψx〉 can be rewritten as

|Ψx〉 =
1√
T

τ

∑
t=1
|ϕx,t〉+ |Φx〉cd ⊗

1√
T

(
T

∑
t=τ+1

|t〉k

)
⊗ |0 · · · 0〉q

=
√

ε |vx〉+
√

1− ε |Φx〉cd ⊗ |w〉, (26)

with some normalized vectors |vx〉 and |w〉. Each ground state is thus as close to |Φx〉|w〉 (21) as we want,
because we are free to choose T as large a polynomial as we want, making ε = τ/T an inverse polynomial
as small as we want.

The gap of the Hamiltonian HKit
L is however not constant. We rescale the interaction strengths of all

terms in HKit
L by T2 (or by a higher polynomial in T for the 1-D construction), and look at H′L = poly(T) ·

HKit
L . This new H′L satisfies the requirements of Claim 6.

5.2 A local Hamiltonian with an entangled ground state

We now take two copies of the system from the previous Subsection, and construct a Hamiltonian H′LMR =
H′L + H′R + HM. We keep the same two-qutrit middle term HM from Eq. (11c) in Section 4, but will replace
the left and right terms HL, HR with the construction from Subsection 5.1.

Theorem 7. The 1-D qudit Hamiltonian H′LMR = H′L + H′R + HM with terms of norm poly(n) has a
unique ground state, whose entanglement accross the middle cut is at least Ω(log(D)), and a constant
energy gap.

Unlike in Section 4, this Hamiltonian is no longer frustration free. However, a qualitatively similar
version of the argument from that section will work. One change is that we will work with an approximate
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ground state. Define

|G′〉 :=
1√
D

D

∑
x=1
|Φx〉|Φx〉|w〉|w〉 (27)

=
1

3
√

D

 I U2 U3

U2 U2
2 U2U3

U3 U3U2 U2
3

⊗ |w〉 ⊗ |w〉 = |G〉|w〉|w〉,
with |Φx〉 from (20), |G〉 from Lemma 2, and |w〉 a state of an ancilla register. Thus the state |G′〉 is exactly
the ground state we have in Section 4.3, with ancilla states added. It is not the ground state of H′LMR, nor
can we even prove that it has low energy. However, we will later construct a state |G′ε〉 that both has low
enough energy to be close to the true ground state, and is close enough to |G′〉 to have large entanglement.

The rest of our argument breaks up into the following subsidiary claims.

Claim 8. 〈G′ε|H′LMR|G′ε〉 ≤ 1/ poly(n) (with |G′ε〉 defined later).

Claim 9. The second-smallest eigenvalue of H′LMR is ≥ Ω(1), implying that the gap is large.

Claim 10. The ground state of H′LMR has large overlap with |G′〉, and therefore high entanglement.

We begin by showing a precise sense in which H′L, H′R give an approximation of HL, HR. Define H′LR :=
H′L + H′R to be the Hamiltonian acting on the two sides of the chain without interaction. The ground space
of H′LR is spanned by basis states of the form

|Ψx〉|Ψy〉 =
√

ε(2− ε) |zε
xy〉+ (1− ε)|Φx〉|Φy〉|w〉⊗2, (28)

where |Ψx〉 and likewise |Ψy〉 are given by (26), and ε = τ
T is an inverse polynomial which we can make

as small as we want by increasing T to a large polynomial in n.

Definition 2. S0, Sε: Define S0 to be the space spanned by states of the form |Φx〉 ⊗ |Φy〉, where |Φx〉
(and likewise |Φy〉) are defined in (20). Define Sε to be the space spanned by all states of the form with
|Ψx〉 ⊗ |Ψy〉, defined in (26). Define the corresponding projectors to be P0, Pε.

Claim 11. Let |sε〉 be any state in Sε; then there exists a state |s0〉 ∈ S0 such that

|sε〉 =
√

1− ε′2|s0〉|w〉|w〉+ ε′|ε〉, (29)

for ε′ ≤ 2ε, and |ε〉 orthogonal to |s0〉|w〉|w〉. As a result

1
2
‖|s0〉〈s0| − |sε〉〈sε|‖1 ≤ 2ε. (30)

Proof. The proof follows by direct calculation, using Definition 2 of S0 and Sε and the observation that the
normalized error vectors |zε

xy〉 from (26) are all orthogonal for different pairs of x, y. This follows from
their definition as history states of different initial vectors, as seen in (26). �

As a direct consequence of Claim 11 we establish Claim 8. Indeed, |G′〉 ∈ S0 ⊗ |w〉 ⊗ |w〉 and by
Claim 11 there exists an ε-close state |G′ε〉 ∈ Sε in the ground space of H′LR. Thus

〈G′ε|H′L + HM + H′R|G′ε〉 = 〈G′ε|HM|G′ε〉 ≤ 2ε ≤ 1/ poly(n), (31)

where in the last step we have used (30) and 0 ≤ HM ≤ I.
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Now we consider gap. The Hamiltonians H′L and H′R act on independent subspaces, while both Hamilto-
nians have a constant energy gap above the ground state subspace as we proved in Claim 6. Therefore, H′LR
has constant gap. Let us denote this gap by ∆′LR, so that (using also the fact that H′LR has lowest eigenvalue
0) we have the operator inequality

H′LR ≥ ∆′LR(I− Pε). (32)

Continuing along the lines of the proof of Lemma 4, define P̃ε := Pε − |G′ε〉〈G′ε|, P̃0 = P0 − |G〉〈G| and
define S̃ε, S̃0 to be their supports. Now calculate

µ := min{〈ψ|HM|ψ〉 : |ψ〉 ∈ S̃ε, 〈ψ|ψ〉 = 1} (33a)
(30)
≥ min{〈ψ|HM|ψ〉 : |ψ〉 ∈ S̃0 ⊗ |w〉 ⊗ |w〉, 〈ψ|ψ〉 = 1} − 2ε (33b)
(18)
≥ c

2
− 2ε (33c)

Denote the second-smallest eigenvalue of a Hermitian matrix X by λ2(X). A variant of the Courant-
Fischer min-max principle gives the following variational characterization of λ2(X):

λ2(X) = sup
|v〉

λmin(X + |v〉〈v|). (34)

We can apply this to our problem by observing that

λ2(H′LMR) = sup
|v〉

λmin(H′LMR + |v〉〈v|) (35)

≥ λmin(H′LMR + ∆′LR|G′ε〉〈G′ε|) (36)
(32)
≥ ∆′LRλmin(I− P̃ε + HM) (37)

Lemma 5
≥ c

4
− ε ≥ Ω(1) (38)

This establishes Claim 9.
To complete the proof, we need to show that the ground state is highly entangled. Two challenges which

complicate the usual continuity arguments are that H′LMR has a large norm and a large ancilla dimension.
We sidestep these as follows. Let |γ〉 denote the ground state of H′LMR. Adjust its overall phase so that
〈γ|G′ε〉 is real, implying |G′ε〉 =

√
1− δ|γ〉+

√
δ|γ⊥〉 for some orthogonal state |γ⊥〉. Then

ε
(31)
≥ 〈G′ε|H′LMR|G′ε〉 = (1− δ)〈γ|H′LMR|γ〉+ δ〈γ⊥|H′LMR|γ⊥〉 ≥ δ

( c
4
− ε
)

, (39)

where this last inequality follows from the fact that H′LMR is positive semi-definite and has gap ≥ c/4− ε.
Thus δ ≤ 5ε/c (assuming ε ≤ c/20).

Combining this with previous facts we have

|γ〉 ≈δ |G′ε〉 ≈2ε |G′〉 = |G〉 ⊗ |w〉 ⊗ |w〉 (40)

and the latter state is highly entangled according to Lemma 3. Assume WLOG that 〈γ|G′〉 is real and
nonnegative. Thus 〈g|G′〉 ≥ 1− ε′ for some ε′ = poly(1/n). However, the large dimension of the ancilla
states means we cannot directly use Fannes’s inequality. Let the Schmidt decomposition of |γ〉 be

|γ〉 = ∑
i

√
λi|Li〉 ⊗ |Ri〉,
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with λ1 ≥ λ2 ≥ . . . ≥ 0 and ∑i λi = 1. Then

1− ε′ ≤ 〈γ|G′〉 ≤ 1√
D

D

∑
i=1

√
λi.

Let r be the largest r for which λr ≥ κ/D for κ > 1 to be chosen later. By normalization, r ≤ D/κ ≤ D.
Let β = ∑i≤r λi. Then

√
D(1− ε′) ≤

D

∑
i=1

√
λi ≤

√
D
κ ∑

i≤r
λi +

√
D

D

∑
i=r+1

λi ≤
√

D(βκ−1/2 + (1− β)).

The second inequality follows from
√

λi ≤
√

D
κ λi for i ≤ r in the first term and Cauchy-Schwarz in the

second term. Rearranging we find that β ≤ ε′(1− κ−1/2). We conclude that the entropy of entanglement is

∑
i

λi log
(

1
λi

)
≥∑

i>r
λi log

(
D
κ

)
≥ (1− ε′(1− κ−1/2)) log

(
D
κ

)
.

Optimizing over κ we find that the entanglement is (1− o(1)) log(D). This concludes the proof of Claim 10
and therefore Theorem 7.

5.3 Decomposing the Hamiltonian H′L into O(1)-strength interaction terms

We now handle the problem of large interaction norm. The interactions in the Hamiltonian H′L have norm
poly(T). Each such term can be decomposed using the strengthening quantum gadget construction by Nagaj
and Cao [13], into poly(T) bounded-strength interactions acting on the original set of qudits plus poly(T)
extra ancilla qubits. The gap of this new H′L will remain a constant, while any state in its ground state will
now be 1/ poly(T) close to some |Ψx〉|0 · · · 0〉new ancillas, with |Ψx〉 from (26). This also implies that each
(less than a small constant energy) state of H′L is 1/ poly(T) close to the state |Φx〉|w〉|0 · · · 0〉new ancillas
for some x. However, this is just what we had in (21), with an expanded ancilla register state |w′〉 =
|w〉|0 · · · 0〉. Therefore, all of the arguments of Section 5.2 go through, and we have shown that

Theorem 12. There exists a 2-body Hamiltonian on n qudits, whose terms are of O(1) norm. The interac-
tion graph is as in Figure 1, where the two particles on the two sides of the cut are qutrits. All particles are
involved in at most poly(n) interactions. Moreover, the Hamiltonian is gapped with a unique ground state,
such that the entanglement entropy across the middle cut scales as Ω (nc) for some 0 < c < 1.

6 Entanglement testing and ground states of Hamiltonians

We now connect our two results more directly, by providing an alternative derivation of the results in Section
4. Starting from the EPR testing protocol of Section 3.2, we turn it into a non-local Hamiltonian violating
the generalized area law, using Kitaev’s circuit-to-Hamiltonian construction. In fact, we use a slight variant
of the EPR testing protocol, which uses two ancillas (see Figure 3b), as it translates to a Hamiltonian more
easily.

We first describe the modified EPR testing protocol. Alice has two registers, L⊗ aL, and Bob has two
registers denoted aR⊗ R, where R, L are of large dimension D and aR,aL are of constant dimension d. They
wish to check whether their joint state |ψ〉LR on registers L⊗ R is maximally entangled. First, Alice and
Bob pre-share a maximally entangled state on aL ⊗ aR:

|φd〉 =
1√
d

d

∑
i=1
|i〉aL |i〉aR (41)
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Figure 3: EPR testing procedures. a) The test from Section 3.2. b) A modified test with two ancillas. c) The
Hamiltonian from Section 4 can be also easily recast as an EPR testing protocol.

Second, Alice applies the unitary W = ∑d
i=1 |i〉〈i| ⊗Ui to aL ⊗ L, and Bob applies W∗ to aR ⊗ R. Finally,

they apply a projective measurement on aL ⊗ aR of the state |φd〉 (41). It is not difficult to see that this too
is an EPR testing protocol; the test passes with probability close to 1 if and only if the original state |ψ〉LR
was very close to the maximally entangled state.

To encode this protocol into a Hamiltonian via the circuit-to-Hamiltonian construction, we use two
independent, two-step clocks. (We will think of the circuit W as well as W∗ as applied in a single time
step). The Hamiltonian will thus act on four registers, L, R and two enlarged registers, AL = aL ⊗ CL and
AR = aR ⊗ CR with CL, CR being the two 2-dimensional spaces of the two clocks, respectively. We write
the basis states of AL, AR as |0, i〉 and |1, i〉 for i ∈ {1, .., d}.

The Hamiltonian consists of the following terms. An “initialization” and “output” term on AL ⊗ AR:

HM =
1

∑
s=0

d

∑
i,j=1
|s, i〉〈s, i|AL ⊗ |s, j〉〈s, j|AR −

1

∑
s=0

d

∑
i=1
|s, i〉〈s, i|AL ⊗ |s, i〉〈s, i|AR (42)

whose ground states have the form |1, i〉|0, j〉 and |0, i〉|1, j〉 for any i, j, but more importantly 1√
d ∑d

i=1 |0, i〉|0, i〉
and 1√

d ∑d
i=1 |1, i〉|1, i〉. These two states are maximally entangled states of the ancillas when the “clocks”

are both 0 (initialization) or both 1 (output).
Second, we have the “left-computation-checking” Hamiltonian, which acts on the registers aL and L:

HL =
1
2

d

∑
i=1

(|0i〉〈0i|+ |1i〉〈1i|)aL
⊗ IL −

1
2

d

∑
i=1
|1i〉〈0i| ⊗W − 1

2

d

∑
i=1
⊗|0i〉〈1i| ⊗W†. (43)

Similarly, we define HR, the “right-computation-checking” Hamiltonian which acts on AR and R, replacing
W by W∗ and W† by WT:

HR =
1
2

d

∑
i=1

(|0i〉〈0i|+ |1i〉〈1i|)aR
⊗ IR −

1
2

d

∑
i=1
|1i〉〈0i| ⊗W∗ − 1

2

d

∑
i=1
|0i〉〈1i| ⊗WT. (44)

The final Hamiltonian, H = HM + HL + HR is our desired counterexample. We claim that its unique,
frustration-free ground state is the “history” state

|Ψ〉 = 1√
d

d

∑
i=1

(|0, i〉aL + (W ⊗ I) |1, i〉aL) (|0, i〉aR + (I⊗W∗) |1, i〉aR) |φD〉LR.

It is not difficult to check that this is a maximally entangled state of dimension dD, by observing that the
Schmidt rank is dD and the coefficients are uniform.
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7 Discussion, related work and Open Questions

We have shown that in both the context of EPR testing, as well as ground states of Hamiltonians, constant
resources suffice to enforce what seems to be a global property. Our results are reminiscent in spirit to the
classical PCP theorem, or more generally to property testing. The common theme is that a small amount
of resources (bits checked, Hamiltonian interactions, qubits transmitted, etc.) serve to verify the properties
of some large object. However, the fact that such highly non-local properties as global entanglement can
be detected using local resources seems rather counter-intuitive, and calls for further investigation in other
contexts.

Our results leave many questions open. Below we discuss them as well as the broader context of these
results.

The Area Law question Of course, the major open question of the 2-D area law, which was the main
motivation for this work, is left wide open. A more modest goal would be to reduce the degree in our
construction to a constant. Such a step already seems to require significant progress in our understanding
of related notions, e.g., parallel circuit-to-Hamiltonian constructions (see e.g.,[12]), and quantum expanders
which are geometrically constrained, as well as the notion of quantum degree reduction, as a possible route
towards quantum PCP [1]. Alternatively, it might be true that the generalized area law does in fact hold with
bounded-degree bounded-strength Hamiltonians.

Indeed, such a conjecture is not unplausible, and could potentially be motivated by the following intu-
ition. The area law had been long believed, without proof, to be related to another very important physical
property of gapped Hamiltonians: the exponential decay of correlations in the ground state. This means that
a Hamiltonian has an associated correlation length ξ such that |〈AB〉 − 〈A〉〈B〉| ≤ ‖A‖ ‖B‖ e−`/ξ where
〈X〉 := 〈G|X|G〉 and A, B are observables separated by a distance `. Such an exponential decay is known
to hold on a lattice of any constant dimension, and in fact in any constant-degree graph [25] 4 It is perhaps
natural to conjecture that if correlations in gapped Hamiltonians are in this way “local”, entanglement is
also local; One way to quantify this is with the area law conjecture. However, we stress that only in 1-D this
implication is known to hold [11].

Our results (in particular Theorem 7) provide a counterexample to another possible version of the area
law: one in which the interaction degree is bounded, but the norms of the interactions are required to be
bounded only accross the cut, and otherwise they can be polynomially large. The rationale of this condition
is that large norm terms on each side of the cut should only increase the entanglement within the two regions
on each side of the cut and therefore by monogamy of entanglement only decrease the entanglement across
the cut. Our counterexample suggests that the above monogamy-of-entanglement argument is too naive.

Another possibile version of the area law that might still hold is that a subsystem with dimension di
at distance `i from the cut can contribute at most log(di)e−`i/ξ entanglement, where ξ is the correlation
length. Attempting to strengthen our counter-example may either rule these conjectures out or, in failing to
do so, give a hint of how they might be proved.

We note that the implications of an(y of the above forms of an) area law for general systems are not
yet fully understood. For ground states of gapped one-dimensional systems, proving an area law was an
important step towards proving that they can be efficiently described [22] and that these descriptions can
be found efficiently [4, 30]. For Hamiltonians on general graphs, a partition into pieces with subvolume
entanglement scaling (i.e. region S has≤ ε|S| entropy) would imply a classical description accurate enough
to be incompatible with the quantum PCP conjecture [10]. Since entropy is a way to count effective degrees

4Why don’t our constructions contradict this, since they will have large amounts of entanglement in the ground state? Our
large-dimension construction in Section 4 does fit the criteria of [25] to have constant correlation length, but there the entire graph
has constant diameter. Our construction in Section 5 has large degree and so the correlation-length bound from [25] is also growing
with the system size.
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of freedom, another interpretation of area laws is that a quantum system can equivalently be represented by
a theory living on its boundary. This idea is known as the holographic principle, and is currently a major
conjecture in quantum field theory [35]. It remains to be clarified whether an area law of any of the suggested
forms can lead to a more succinct description of the ground states.

Related work There are several related works that we would like to mention. First, Gottesman and Hastings
[14], Irani [26], and Movassagh and Shor [32] have examined qudit chains with highly entangled ground
states for Hamiltonians whose gaps are inverse-polynomial. To the best of our knowledge, our results cannot
be derived in a straightforward manner from these works. Here, we focus on spin chains with a constant gap.
One can attempt to get a constant-gap version of the above constructions by using the strengthening gadgets
of Nagaj and Cao [13] as we did in this paper. However, this fails to provide the desired counterexample,
since these gadgets introduce a complicated geometry of interactions, and we would need to apply them for
every edge. Thus, the size of the cut in the resulting graph would no longer be small. It is crucial that in our
present construction, the middle link is unchanged; only the rest of the interactions need to be strengthened
by gadgets.

We mention another relevant prior work [20, 23], which described a state on a one-dimensional chain
with a large amount of entanglement across cuts (say log n) but only short-range correlations. The claim
about decaying correlations here is rather subtle: two regions that are separated by a distance ` from each
other and `′ from the boundary have correlation no greater than e−`/ξ(1 + ne−`

′/ξ). In this way it avoids
contradicting the relation between decaying correlation and area law from [11]. See [23] for further discus-
sion. This result is incomparable to ours because the states in question are not ground states of a gapped
O(1)-local Hamiltonian.

More general implications Finally, we believe that our results point at a potentially useful link between
two seemingly unrelated topics. Our paper shows that a counterexample to the generalized area law can be
derived from an entanglement testing protocol of limited communication and converting it into a Hamilto-
nian using Kitaev’s circuit-to-Hamiltonian construction. Our area-law violating Hamiltonian can be viewed
as a “tester” of its highly entangled ground state, where the norm of the Hamiltonian terms along the cut
corresponds to the communication complexity of the protocol. Can any area-law-violating Hamiltonian be
connected to an entanglement-testing protocol with communication pattern corresponding to the interac-
tion graph of the Hamiltonian? More generally, in what ways can Hamiltonians be viewed as testers for
their ground states? Whether such a “translation” always exists between entanglement testing protocols
of limited communication, and entangled ground states of Hamiltonians with limited interactions between
different parts of the system, remains to be explored. Making such an equivalence rigorous might open up
a whole new set of tools to studying the area law question, and more generally, help develop better intu-
ition for local Hamiltonians and their ground states. A related question is whether EPR testing is in fact
equivalent in some sense to the property of being a quantum expander.
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[28] C. Jordan. Essai sur la géométrie à n dimensions. Bull. Soc. Math. France, 3:103–174, 1875.

[29] A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and Quantum Computation. American Mathe-
matical Society, Boston, MA, USA, 2002.

[30] Z. Landau, U. Vazirani, and T. Vidick. An efficient algorithm for finding the ground state of 1d gapped
local hamiltonians. In Proceedings of the 5th Conference on Innovations in Theoretical Computer
Science, ITCS ’14, pages 301–302, 2014, 1307.5143.

[31] A. Lutomirski, S. Aaronson, E. Farhi, D. Gosset, J. Kelner, A. Hassidim, and P. Shor. Making and
breaking quantum money. In Innovations in Computer Science (ICS), pages 20–31, 2010, 0912.3825.

[32] R. Movassagh and P. W. Shor. Power law violation of the area law in critical spin chains, 2014,
1408.1657.

[33] I. Newman. Private vs. common random bits in communication complexity. Inf. Process. Lett.,
39(2):67–71, 1991.

[34] Y. Shi and Y. Zhu. Tensor norms and the classical communication complexity of nonlocal quantum
measurement. SIAM J. Comput., 38(3):753–766, 2008, quant-ph/0511071.

[35] B. Swingle. Entanglement renormalization and holography. Phys.Rev. D, 86:065007, 2012, 0905.1317.

21

http://arxiv.org/abs/cond-mat/0701055
http://arxiv.org/abs/math-ph/0507008
http://arxiv.org/abs/quant-ph/0511071

	1 Introduction
	1.1 Main idea and results

	2 Quantum Expanders
	3 A communication protocol for certifying global entanglement
	3.1 The EPR testing problem
	3.2 EPR testing with constant quantum communication

	4 A counterexample to the generalized area law
	4.1 Background about local Hamiltonians
	4.2 Construction of the Hamiltonian
	4.3 The ground state is highly entangled
	4.4 The Hamiltonian is gapped

	5 The abstract Hamiltonian can be implemented locally
	5.1 Evaluating a quantum expander locally (3 computations in parallel)
	5.2 A local Hamiltonian with an entangled ground state
	5.3 Decomposing the Hamiltonian H'L into O(1)-strength interaction terms

	6 Entanglement testing and ground states of Hamiltonians
	7 Discussion, related work and Open Questions
	8 Acknowledgements

