
J
H
E
P
0
3
(
2
0
1
4
)
1
1
8

Published for SISSA by Springer

Received: October 15, 2013

Revised: January 28, 2014

Accepted: February 28, 2014

Published: March 26, 2014

Coarse-grained entropy and causal holographic

information in AdS/CFT

William R. Kelly and Aron C. Wall

University of California at Santa Barbara,

Santa Barbara, CA 93106, U.S.A.

E-mail: wkelly@physics.ucsb.edu, aronwall@physics.ucsb.edu

Abstract: We propose bulk duals for certain coarse-grained entropies of boundary regions.

The ‘one-point entropy’ is defined in the conformal field theory by maximizing the entropy

in a domain of dependence while fixing the one-point functions. We conjecture that this is

dual to the area of the edge of the region causally accessible to the domain of dependence

(i.e. the ‘causal holographic information’ of Hubeny and Rangamani). The ‘future one-

point entropy’ is defined by generalizing this conjecture to future domains of dependence

and their corresponding bulk regions. We show that the future one-point entropy obeys

a nontrivial second law. If our conjecture is true, this answers the question “What is the

field theory dual of Hawking’s area theorem?”

Keywords: Gauge-gravity correspondence, AdS-CFT Correspondence

ArXiv ePrint: 1309.3610

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2014)118

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81742198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:wkelly@physics.ucsb.edu
mailto:aronwall@physics.ucsb.edu
http://arxiv.org/abs/1309.3610
http://dx.doi.org/10.1007/JHEP03(2014)118


J
H
E
P
0
3
(
2
0
1
4
)
1
1
8

Contents

1 Introduction 1

2 Causal holographic information: a brief review 3

3 Coarse-grained entropies 5

3.1 Definition 5

3.2 A correspondence principle 7

3.3 General properties 8

4 The one-point entropy 9

4.1 Definition of the one-point entropy 10

4.2 Properties of the one-point entropy 10

4.3 Comparison with other coarse-grained entropies 15

4.4 Possible tests of S(1) = χ 17

5 The future one-point entropy 21

5.1 Motivation and definition 21

5.2 Properties of the future one-point entropy 22

5.3 Generalization to arbitrary boundary regions 25

6 Discussion 26

A χ-preserving coarse grainings 27

B Boundary sources 28

1 Introduction

The AdS/CFT correspondence predicts that the effective degrees of freedom of certain

conformal field theories (CFT’s) in the large N limit are the same as the degrees of freedom

of classical supergravity [1–3]. Despite many nontrivial tests of the correspondence, the

precise way in which local interactions emerge in the large N limit of strongly coupled

CFT’s is not fully understood. What is known is that locality in the holographic dimension

is intimately connected with the locality of the renormalization group (RG) flow in the

CFT [4–7]. From a Wilsonian point of view, this suggests that the emergence of locality

in the bulk theory is related to some kind of coarse graining in the CFT.

One technical difficulty with making this idea precise is choosing an appropriate reg-

ulator to cut off the high energy modes. This problem is particularly difficult in the
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physically correct Lorentz signature. There the elimination of highly boosted modes nor-

mally requires sacrificing either Lorentz invariance (e.g. with a hard energy cutoff), or else

positivity of the inner product (e.g. Pauli-Villars [8]). On the other hand, the bulk theory

is Lorentz-invariant, and presumably has positive probabilities. Thus, although there is

detailed qualitative agreement between the dependence of fields in the radial direction, and

the RG flow of the field theory, a comprehensive framework relating the two is lacking.

Similar problems arise in the context of thermodynamics. In order to obtain a non-

trivial second law of thermodynamics, one needs to define a coarse-grained entropy. As

with the renormalization group flow, there are multiple possible coarse graining procedures.

Which one you choose affects the exact results for quantities like the entropy, introducing

an element of subjectivity. One hopes that in the thermodynamic limit, the choice does

not matter at leading order. But gauge/gravity duality suggests that (at least in the large

N limit) there may be a particular coarse graining procedure which has especially nice

properties, due to its relation to bulk locality.

In this article we will explore the relation between coarse graining of the CFT and bulk

locality. Rather than focusing on the RG flow, we will study the localization of information

in the CFT by attempting to relate coarse-grained entropies in regions of the CFT to areas

of bulk surfaces.

We take inspiration from the Ryu-Takayanagi conjecture (and its later generalization

by Hubeny, Rangamani, and Takayanagi) which relates the fine-grained von Neumann en-

tropy of a piece of the boundary to the area of minimal or extremal/maximin surfaces

in the bulk known as the holographic entanglement entropy [9–12]. This conjecture has

been validated in every case in which we have control over the calculations on both sides

of the duality and significant progress has been made towards a proof [13–18]. Work has

even begun on explicit constructions of the bulk geometry from the holographic entan-

glement entropy of arbitrary boundary regions [19–24]. Here we will propose a similar

conjecture, but using a coarse-grained entropy of a boundary region, in place of the von

Neumann entropy.

More recently Hubeny and Rangamani proposed a new quantity χA which they called

the “causal holographic information” [25–27]. This quantity is equal to the area of a co-

dimension two surface in the bulk that is defined by its casual relation to a boundary region

A. For a host of reasons Hubeny and Rangamani conjectured that χ quantifies some aspect

of the information content of the associated boundary domain of dependence.1 We will

present evidence that, for source-free boundary theories, χ is dual to a particular coarse-

grained entropy S(1). We will refer to S(1) as the ‘one-point entropy’, because it depends

only on the one-point functions of local operators in the domain of dependence of A.

We also propose a second duality between a coarse graining S(1) (the ‘future one-

point entropy’) and a bulk quantity φ (the ‘future causal information’). These quantities

are natural generalizations of S(1) and χ, but have the appealing new property that they

can increase during processes which involve thermalization in the CFT (corresponding to

horizon formation in the bulk). If this new conjecture is correct, the thermodynamic second

1See also [28, 29] for other approaches to understanding the information contained in boundary regions.

– 2 –



J
H
E
P
0
3
(
2
0
1
4
)
1
1
8

A
D[A]ΞA

∂+!A

∂−!A

Figure 1. A sketch of the causal wedge construction of [25]. D[A] is the boundary domain of

dependence of A and ΞA extends into the bulk (see text).

law obeyed by S(1) is dual to the area theorem in general relativity [30], as applied to causal

horizons of the form ∂J−(Z) where Z is some set of points on the boundary of AdS and

∂J− is the boundary of the causal past.2 In this way we propose a precise connection

between Hawking’s area theorem and the thermalization of a quantum mechanical system.

In section 2 we briefly review the definition of the causal holographic information

and establish our notation. In section 3 we define a class of coarse-grained entropies and

explore their general properties. In section 4 we define the one-point entropy S(1) and

present evidence for the conjecture that S(1) = χ (for source-free boundary theories). We

also comment on the uniqueness of our proposal and the prospects for precision tests.

In section 5 we define the future causal information φ and the future one-point entropy

S(1) and present evidence that they are also dual to each other (for source-free boundary

theories). Finally, in section 6 we conclude by summarizing our results and commenting

on the prospects of extending our conjectures to the semiclassical regime.

Appendix A presents two illustrative examples of failed proposals for the dual of χ, and

appendix B constructs a counterexamples to our conjecture, in the case where boundary

sources are allowed.

Whenever possible we adopt the notation of [25] (see section 2 for a review) with

the exception that we use D±[A], J±[A] to refer to the boundary future (past) domain

of dependence and domain of influence and D±bulk[A], J±bulk[A] to refer to the associated

bulk regions.

2 Causal holographic information: a brief review

In this section we briefly review the definition of causal holographic information χ. See [25–

27] for additional details. We emphasize that for our purposes, χ is only well-defined on

classical geometries (i.e. in the strict N →∞ limit).

Consider a closed spatial region A on the boundary CFT of an asymptotically AdS

spacetime.3 We assume that A is achronal (i.e. no timelike curves pass through it more

2This generalizes the notion of ‘causal horizon’ defined by Jacobson and Parentani [31], whose definition

would require Z to be just one point.
3Since we are restricting to source-free boundaries, we only consider the case in which the boundary is

conformally flat. But perhaps it is possible to generalize to static boundary geometries.
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than once), and codimension-one on the boundary. The region A defines a causal domain

of dependence D[A] = D+[A]∪D−[A], where D±[A] is defined as the collections of points

p for which any infinitely extended timelike curve must intersect A to the past (future)

of p [32].

The boundary domain of dependence D[A] defines a bulk causal wedge:

�A = J+
bulk[D[A]] ∩ J−bulk[D[A]], (2.1)

where J±bulk[A] is the future (past) of D[A] in the bulk. In other words any point p in �A
lies on at least one causal curve that begins and ends in D[A] (see figure 1).

Even though the topology of �A may be nontrivial [27], the boundary of �A can be

written as

∂ �A = ∂+�A ∪ ∂−�A, (2.2)

where ∂±�A are future (past) horizons anchored to the future (past) boundary of D[A].

These null surfaces intersect in a co-dimension two surface

ΞA = ∂+�A ∩ ∂−�A, (2.3)

known as the ‘causal information surface’ from which we calculate the causal holographic

information:

χA =
Area[ΞA]

4GN
, (2.4)

where GN is Newton’s constant.

Equation (2.4) is reminiscent of the definition of the HEE:

SA =
Area[EA]

4GN
, (2.5)

where EA is defined as the minimum area extremal surface homologous to A [11] or equiv-

alently as the maximin surface as described in [12]. We mention here, since it will come

up many times in our later analysis, that it has been shown in [12, 25] that

SA ≤ χA (2.6)

for smooth spacetimes satisfying the null energy condition which we will assume through-

out, since we are concerned with supergravity theories arising in AdS/CFT, for which the

null energy condition holds classically.

Throughout this paper we will assume that the Ryu-Takayanagi conjecture is true.

More precisely we assume that the order N2 contribution to the von Neumann entropy of

the reduced density matrix on ρA is equal to SA.4 Since we will only ever be interested

4Here we gloss over subtle questions involving how to define local observables in a gauge theory, and

whether there are additional “contact terms” besides the entanglement entropy which should be included

in the definition of SA [33–40].
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in the N → ∞ limit (see section 3.2 below) we will avoid introducing a new symbol and

simply let

SA(ρA) = −Tr[ρA log(ρA)]. (2.7)

Note that the entanglement entropy is divergent, as is the area of EA. In principle,

one should figure out what is the precise numerical relationship between the two cutoffs, in

order to compare the bulk and boundary quantities using the UV/IR correspondence [41].

Since this is difficult, it is more usual to cut off both quantities independently, and then

to compare only quantities which are independent of the cutoff procedure [9, 15]. This

includes logarithmic divergences and certain finite terms. Note also that the divergences

are state independent (at least for regular states), so universal information can also be

extracted by comparing states.

Presumably, a similar procedure should be used for χA and S
(1)
A . However, unlike

EA, the divergences in the area of ΞA depend on the choice of A in a nonlocal way [42].

We will comment briefly in section 4.4 on the plausibility of S
(1)
A and χA having match-

ing divergences. Note that because χ and S differ in their divergences, inequalities such

as SA ≤ χA typically reduce to a statement comparing the coefficients of their leading-

order divergences.5

3 Coarse-grained entropies

3.1 Definition

For the purposes of this paper a coarse-grained entropy is calculated by maximizing the

von Neumann entropy subject to some set of constraints. More precisely, we define a

coarse-grained entropy SA associated with boundary region A to be (cf. [43])

SA(ρA) = sup
τA∈TA

[SA(τA)] (3.1)

where ρA is the reduced density matrix associated with A, SA(τA) is the von Neumann

entropy of τA, and TA(ρA) is the set of all density matrices τA which satisfy the constraints

Tr[Om τA] = Tr[OmρA] (3.2)

where the {Om} are a set of operators supported inD[A]. Different coarse-grained entropies

differ only in the choice of constraints.

We will call the density matrix σA ∈ TA that maximizes the von Neumann entropy

the “coarse graining” of ρA, so that

SA(ρA) = SA(σA). (3.3)

5This requires that the quantities be regulated in a manner consistent with the proof; for example

theorem 14 of [12] compares the surfaces Ξ and E using the second law, so the two surfaces must be

regulated in such a way that the second law can be used.
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This coarse-grained state must be unique, since if we had two candidate states with equal

entropy σ
(1)
A and σ

(2)
A , then by convexity of the von Neumann entropy we could construct

a higher entropy state σA = (σ
(1)
A + σ

(2)
A )/2. According to [43] the general solution to (3.1)

is (even when the Om are not mutually commuting)

σA = Z−1 exp

(
−
∑
m

λmOm
)
, (3.4)

where λm are Lagrange multipliers determined by solving (3.2) and the normalization

constant Z is the partition function. In other words σA is a sort of generalized ensemble

in which the λm play the role of chemical potentials.

It will be useful in the following discussion to characterize coarse grainings by their

relative strengths as follows. Consider two entropies S̃ and S̄ as defined above with different

sets of constraints. If the constraints of S̃ are a proper subset of the constraints of S̄ (so

that T̄ ⊂ T̃ ) then we say that S̃ is a stronger coarse graining than S̄ and we use the notation

S̄ ≺ S̃.6 This implies that

S̄A(ρA) ≤ S̃A(ρA), (3.5)

for all states ρA, where equality holds if and only if σ̃A ∈ T̄ (ρA). Finally, if for two coarse

grainings Ŝ and S̄ neither set of constraints is a subset of the other, then we say that Ŝ and

S̄ are incomparable and we use the notation Ŝ ‖ S̃.

For future reference we prove a mathematical result that holds for all S:

(L1) For any positive definite, Hermitian density matrix we may, without loss of general-

ity, write

ρA = Z−1 exp(−βH). (3.6)

The operator H is known as the modular Hamiltonian associated with ρA and is gen-

erally non-local except in a few special cases, β is a number, and Z = Tr[exp(−βH)].

If H is one of the constraint operators associated with S, (i.e. H ∈ {Om}) then

SA(ρA) = SA(ρA). (3.7)

The proof is as follows: the state ρA maximizes the entropy subject to a subset of

the constraints (namely the constraint associated with 〈H〉), but adding additional

constraints can only lower the entropy, therefore

SA(ρA) ≤ SA(ρA). (3.8)

However, ρA satisfies all of the constraints (3.2); therefore by virtue of the maximiza-

tion condition in (3.1) we also have

SA(ρA) ≥ SA(ρA), (3.9)

and thus we obtain (3.7).

6Note that when the constraints are weaker, the coarse graining is “stronger”, in that one is forgetting

more about the state. The weakest possible coarse graining is simply the fine-grained entropy S, which

involves constraining all information about the state.
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C

BT

B−T

ΞT
C

T → ∞

T → ∞

Figure 2. When C is a Cauchy surface χC is calculated from the area of ΞT
C . B±T are slices of a

foliation of boundary Cauchy surfaces and ΞT
C is the intersection of their respective past and future

horizons. This construction addresses non-perturbative late time quantum effects such to Poincaré

recurrences and black hole evaporation.

3.2 A correspondence principle

Whereas the coarse-grained entropies S are defined for all reduced density matrices ρA, χ

is defined only on classical spacetimes. This means that any correspondence between some

S and χ must be restricted to the large N limit of the dual field theory. More precisely we

define the correspondence limit of a coarse-grained entropy by calculating S at finite N and

retaining only the order N2 term as we formally take the N →∞ limit. We will work in the

general relativity limit, in which the bulk Newton’s constant GN remains finite as the string

and Planck lengths vanish. Of course, it would be of interest to extend the definition of χ

into the semiclassical regime perhaps using the generalized entropy [44, 45] as inspiration

(see [46] for an extensive review) and compare subleading corrections; however we will not

pursue that idea in this work except for brief comments in section 6.

Of course not every density matrix is dual to a classical geometry in the bulk. We will

therefore be particularly interested in density matrices which define a bulk causal wedge

�A in the dual description. We will call any such density matrix a “classical state.” Note

that if ρA is classical it is not clear that the coarse-grained state σA must also be classical.

A subtlety arises when C is a Cauchy surface of the boundary, i.e. when D[C] is the en-

tire boundary. In this case, the field theory states will experience Poincaré recurrences and

other large fluctuations over times of order exp(N2). These fluctuations and recurrences

allow thermal states to be reconstructed simply by waiting an extremely long time. It is

therefore appropriate that in the correspondence limit we monitor the constraints (3.2)

only over times that are parametrically larger then any scale in the classical spacetime,

while still being parametrically smaller than exp(N2).

More precisely we define SC by introducing a foliation of Cauchy surfaces Bt and

replacing D[C] with region bounded by B−T and BT . We then take T → ∞ as N → ∞

– 7 –
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while maintaining T � exp(N2).7 On the bulk side we use the same foliation Bt of the

boundary to define the family of surfaces (see figure 2)

ΞTC = ∂+(J−bulk[BT ]) ∩ ∂−(J+
bulk[B−T ]), (3.10)

and we define the causal holographic information of the Cauchy surface C as

χC = lim
T→∞

Area
[
ΞTC
]

4GN
. (3.11)

One consequence of taking the correspondence limit is that it is possible for coarse

grainings which are different at finite N to agree to order N2 for all classical states as we

take N → ∞. We will say that any two such coarse grainings are “equivalent” and we

will use the symbol S̄ ≡ S̃.8 We will often only be interested in classifying coarse-grained

entropies as stronger or weaker up to this equivalence relation.

3.3 General properties

We now list a few general properties that hold for all coarse-grained entropies S.

(A1) The coarse-grained entropy of A depends only on the domain of dependence D[A]: in

particular, if there are two regions A and B for which D[A] = D[B] then ρA = ρB and

SA(ρA) = SB(ρB). This property follows trivially from the definition of SA(ρA) and

unitarity. The analogous result χA = χB also follows trivially from the definition of χ.

(A2) Coarse graining can only increase the von Neumann entropy: by virtue of the maxi-

mization condition in our definition of SA

SA(ρA) ≥ SA(ρA). (3.13)

This property echoes the result of [12, 25] that χA ≥ SA.

(A3) The coarse-grained entropy is the entropy of the coarse-grained state: given some

state ρA, if τA is any state which satisfies the constraints (3.2) (i.e. τA ∈ TA(ρA))

and σA is the coarse graining of ρA then

SA(ρA) = SA(τA) = SA(σA) = SA(σA). (3.14)

7Or using the much shorter black hole evaporation time for spacetimes with sufficiently small black holes.
8This fact suggests a more general class of coarse grainings. One could replace the constraint (3.2) with

|Tr[OmτA]− Tr[OmρA]| < cmN
1−km , (3.12)

where cm, km are positive constants. It is then possible that these generalized coarse grainings would agree

with our coarse grainings S in the correspondence limit, but differ for finite N . Coarse grainings of this type

could play an important role in future investigations of the semiclassical regime. For now, however, we will

only use constraints of the form (3.2) because we are uncertain how to choose cm and km. We thank Don

Marolf for pointing this out.
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From these simple facts we learn two things. First, if a coarse-grained entropy S is

dual to χ then it must have the property that for any classical state ρA

χA(ρA) = χA(τA), (3.15)

where τA is any other classical state in TA(ρA). We call any coarse graining which satis-

fies (3.15) a ‘χ-preserving coarse graining.’ Second, if S is a χ-preserving coarse-graining

and ρA is a classical state for which the coarse-grained state σA is also classical then

SA(ρA) ≤ χA(ρA). (3.16)

The conjunction of these results gives an even more useful result. Let S̄ and S̃ be two

χ-preserving coarse grainings and let S̄ ≺ S̃. Now let R̃ be the set of classical states which

are mapped to classical coarse-grained states under the coarse graining S̃. We say that S̃

is a ‘classical coarse graining’ on R̃ and it follows that for any ρA ∈ R̃

S̄A(ρA) ≤ S̃A(ρA) ≤ χA(ρA). (3.17)

This implies that S̄ cannot be dual to χ unless S̄(ρA) = S̃(ρA) for all ρA ∈ R̃. In other

words, if S̃ is dual to χ it must be (at order N2) as strong as possible over the states R̃.

This would imply that, up to equivalence, S̃ would have to be the unique maximally-strong

coarse graining over R̃, among those which are χ-preserving and classical.

The restriction that S̃ be as strong as possible only over the states R̃ is a little unwieldy

since the definition of R̃ depends on S̃. So, it is natural to ask if the restriction to R̃ can

simply be dropped, meaning that we would look for the strongest possible χ-preserving

coarse graining. The answer is no, as we show in appendix A. Given the importance of

this restriction, it is interesting to consider χ-preserving coarse grainings which map all

classical states to classical coarse-grained states. (An example of such a coarse graining

is the fine grained entropy S which preserves the entire state.) These completely classical

coarse-grained entropies are particularly convenient to work with because in principle all

of their properties can be derived by studying boundary value problems in classical general

relativity. While it is still logically consistent that χ is dual to a non-classical coarse

graining, our intuition is that χ is dual to the strongest χ-preserving coarse-grained entropy

which always maps classical states to classical coarse-grained states.

In section 4 we will define the one-point entropy S(1) and argue that it is the strongest,

classical χ-preserving coarse graining, at least in a particular perturbative context.

4 The one-point entropy

In this section we define a particular coarse-grained entropy which we call the ‘one-point

entropy’ S(1), and present evidence that it is dual to χ for theories without boundary

sources (see appendix B). We will then compare the one-point entropy to other coarse-

grained entropies, and indicate some potential future tests of our conjecture.

– 9 –
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4.1 Definition of the one-point entropy

The constraints {Om} of S
(1)
A are the one-point functions of all gauge-invariant, local CFT

operators supported on D[A].

Since we will only be testing our conjecture S(1) = χ in the classical correspon-

dence limit, many of the one-point CFT operators in {Om} do not play much of a role.

This includes:

• Fermionic operators, because fermions anticommute and therefore it is difficult to

make sense of them in the classical limit;

• Multi-trace operators, because the asymptotic boundary values of the classical fields

can be determined from the single-trace operators alone;

• Operators whose dimension is parametrically large in N, because these correspond to

very massive objects in the bulk, which are not contained in the classical supergravity

field theory limit.

It is not clear to us whether operators like these should be included or excluded. Possibly

it makes no difference at order N2, in which case either choice would lead to equivalent

coarse grainings.9 For the sake of definiteness, we define S(1) to include constraints from

all one-point functions. However, the reader should bear in mind the other possibilities.

The AdS/CFT dictionary states that the single-trace one-point functions are given by

〈Om(x)〉 =
s√−g

δSren

δϕ̃(x)
, (4.1)

where g is the determinant of the boundary metric gµν , ϕ̃ is an appropriately conformally

rescaled bulk field, s is a conventional constant, and Sren is the renormalized action which

includes the boundary counterterms required by the prescription of [47, 48] (see [49] for a

review). For example, the one-point functions of the stress tensor are given by

〈Tµν(x)〉 =
2√−g

δSren

δgµν(x)
, (4.2)

with similar relations holding for all of the other bulk fields. These relations allow us to

express the constraints as a set of conditions on the asymptotic behavior of the bulk fields

in �A.

4.2 Properties of the one-point entropy

We now list some properties of the one-point entropy S(1) (beyond those in section 3.3

which apply to all coarse grainings) that make it a promising candidate for the dual of χ.

(B1) The one-point entropy is additive for spacelike separated regions: consider two space-

like separated boundary regions A and B for which D[A] ∩ D[B] = ∅. (Note that

9But one would have to make a definite choice if one tried to extend the conjecture to the semiclassical

regime, as discussed in section 6.
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CB Σgeon

Figure 3. A causal diagram of the geon spacetime described in the text. Σgeon is a bulk Cauchy

surface, C is a boundary Cauchy surface and B is the bifurcation surface of the geon.

because these domains are closed, D[A] and D[B] cannot even touch at their bound-

aries.) Consider the state ρA ⊗ ρB. This state is not in general the same state as

ρA∪B, because the correlations between A and B have been removed. However, since

the constraints (3.2) only involve local operators, correlations between the two re-

gions will not contribute to any of the expectation values of local operators, so the

constraints factorize. Thus, σA∪B = σA ⊗ σB and we obtain

S
(1)
A∪B = S

(1)
A + S

(1)
B . (4.3)

Now by boundary causality on the CFT, we know that there are no timelike or null

causal curve connecting D[A] and D[B] in the bulk. Hence the bulk causal wedges

do not “interact” and the causal holographic information obeys

χA∪B = χA + χB. (4.4)

A similar observation for a related proposal was previously made in [42] (see section 6

for further discussion).

This is a special property of the one-point entropy. A coarse-graining S(n) which

included the effects of higher n-point functions would not in general be additive,

since it would be sensitive to correlations between two nearby regions A and B.

(B2) The one-point entropy of a pure state does not always vanish: consider a thermal

state ρthermal with finite temperature β > 0. A pure state |ψ〉 for which

〈Om〉|ψ〉〈ψ| = 〈Om〉ρthermal
, (4.5)

will have the property that for any Cauchy surface C we have S
(1)
C (|ψ〉 〈ψ|) > 0. Note

that we must use the limiting procedure described in section 3.2 to exclude Poincaré

recurrences or other large quantum fluctuations from our analysis.

An interesting example of such states are topological geons [50]. The simplest geon

solution is constructed by cutting off a t = 0 slice of AdS-Schwarzschild at the

bifurcation surface B and then identifying antipodal points on B to heal the geometry.

– 11 –



J
H
E
P
0
3
(
2
0
1
4
)
1
1
8

Call the resulting surface Σgeon. The maximal evolution of Σgeon is a spacetime that

has AdS-Schwarzschild as its universal covering space (see figure 3). In D = 4

spacetime dimensions this geometry is called a RP3 geon because its spatial slices

have topology RP3 − {O} where O corresponds to spatial infinity (see e.g. [51]).

Now we will show that the CFT state ρgeon associated with this geometry is a pure

state by calculating SC(ρgeon), where C is a Cauchy surface of geon boundary. The

HRT proposal tells us that we must find the minimum-area extremal surface EC that

is homologous to C. As with AdS-Schwarzschild there are two candidate extremal

surfaces: the empty set (with zero area) and the bifurcation surface (with finite

area). In AdS-Schwarzschild only the bifurcation surface is homologous to C; therefore

SC(ρthermal) = SBH (where ρthermal is the dual CFT state and SBH is the Bekenstein-

Hawking entropy). But in the geon spacetime, the empty set is also homologous to

C; therefore SC(ρgeon) = 0 (see also [52]).

Next we calculate S
(1)
C (ρgeon). By construction the geon spacetime is isometric to

AdS-Schwarzschild in the exterior of the horizon. It then follows trivially from the

AdS/CFT dictionary (4.2) that the one-point functions of ρgeon and ρthermal are equal.

Therefore, by (A3) we have

S
(1)
C (ρgeon) = SC(ρthermal) = SBH. (4.6)

Now on the bulk side, when we calculate χC(ρgeon) using the limiting procedure

of (3.11) we also obtain χC = SBH = S
(1)
C (ρgeon). Again this follows trivially from

the fact that the geon spacetime is isometric to AdS-Schwarzschild in the exterior of

the horizon.10 It is intriguing that this calculation relies crucially on the fact that S

depends on the global topology of the spacetime but χ does not.

The state ρgeon also provides an important counterexample useful for excluding coarse

grainings weaker than S(1) (see section 4.3 below). We will now show that the states

ρgeon and ρthermal have different two-point functions. Therefore a coarse graining

S(2) which constraints all one- and two-point function would have S(2)(ρgeon) < SBH

by (3.5).

Consider two points x, y on the boundary of the geon spacetime. In the free field

limit, the two-point function is due to Witten diagrams which begin at x and end at

y in position space. Now because the geon is a quotient of AdS-Schwarzschild, it in-

cludes not only the Witten diagrams of AdS-Schwarzschild, but also noncontractable

Witten diagrams which wrap around the nontrivial topology and make an additional

contribution to the two-point function. Therefore the two point functions of ρgeon

and ρthermal are not equal.11

10Note that had we not used (3.11) we would have incorrectly obtained SBH/2 since the antipodal identi-

fication of the bifurcation surface effectively halves its area. This quotient does not change the area of any

other surface of the horizon, so the limit in (3.11) does not know about this discontinuity in the area.
11See [53] for explicit calculations showing that physical detectors placed outside of the horizon register

the difference between the states ρgeon and ρthermal.
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(B3) For pure states, the one-point entropy of a region is generally not equal to the

one-point region of the complementary region: this property follows immediately

from (B2) since for any Cauchy surface C, S(1)

CC = 0 but it was just shown that for

some pure states S
(1)
C > 0. More generally if we take an arbitrary region A and act

with an arbitrary unitary operator supported only in AC we do not change S
(1)
A , but

will generally change S
(1)

AC because the one-point functions are not invariant under

unitary transformations.

Similarly, it was shown in [25] (by applying the Gao-Wald focusing theorem [54]) that

generally χA 6= χAC for arbitrary regions A.

(B4) The one-point entropy reduces to the fine-grained entropy for states which are thermal

with respect to geometric flows: this fact is of particular interest because Hubeny and

Rangamani conjectured that χA = SA if ρA is thermal [25]. By (L1), our proposal

reproduces this result whenever the modular Hamiltonian (as defined in (L1)) of ρ

is a linear combination of local operators.12 This happens to be true for all known

cases in which χA = SA. The known cases are

• Spherical regions A in the vacuum state ρvacuum of a CFT. In this case the

modular Hamiltonian of ρA is a diffeomorphism generator, and therefore a linear

function of Tµν [15].

• Spherical regions A of the rotating BTZ geometry. A change of coordinates

maps the BTZ wedge �A onto a wedge to the AdS geometry and the previous

argument applies.

• Certain eternal black holes (including charged and dilatonic black holes) are

also dual to thermal states of the entire CFT. The modular Hamiltonian is

simply a linear combination of global charges of the spacetime and therefore

S
(1)
C = SC = SBH = χC , where C is a Cauchy surface. (This shows that we need

our coarse graining to constrain, not just the one-point function of the boundary

stress-energy tensor Tµν , but also the CFT operators which are dual to the bulk

dilaton and gauge fields.)

(B5) The one-point entropy is bounded by a thermal entropy: for any region A

S
(1)
A (ρA) ≤ SA(ρthermal), (4.7)

where

ρthermal = Z−1 exp(−βρH). (4.8)

In the previous expression H ∈ {Om} and βρ is a constant chosen so that

〈H〉ρA = 〈H〉ρthermal
.

To see this note that ρthermal maximizes the entropy subject to what amounts to a

subset of the constraints (3.2), and imposing additional constraints cannot raise the

entropy. Furthermore, by (L1) S
(1)
A (ρthermal) = SA(ρthermal) so we obtain (4.7).

12See section 4.3 for comparison with the results of [42].
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Now in the case of a Cauchy surface of an eternal black hole spacetime which is dual

to a thermal state, the modular Hamiltonian H is a linear combination of energy,

angular momentum, and other global charges. In this case, (B4) implies that (4.7)

is saturated, so our proposal requires that black holes which are dual to thermal

states always maximize their area subject to the constraint of fixed energy and other

global charges.

(B6) The one-point entropy is invariant under alterations to the dual spacetime outside

the causal wedge: consider some boundary region A with a classical reduced density

matrix ρA dual to a bulk causal wedge �A. Now consider an alteration of the bulk

spacetime which leaves the casual wedge of A unchanged, but which is not necessarily

small anywhere else. Such an alteration will produce a new reduced density matrix

τA, which is in general not equal to ρA. To see this, note that for generic spacetimes

the extremal surface EA lies outside of �A [12, 25]. Therefore it is possible for a

modification of the spacetime outside of �A to change the fine grained entropy, so that

SA(τA) 6= SA(ρA). Now it follows immediately from the AdS/CFT dictionary (4.1)

and the locality of the bulk theory that any such perturbation will not change the

one-point functions in D[A]. Therefore τA ∈ TA(ρA), so S
(1)
A (τA) = S

(1)
A (ρA).

By construction we have not modified the causal wedge �A so it immediately follows

that χA(τA) = χA(ρA).

(B7) The one-point entropy is χ-preserving in perturbation theory: whereas (B6) showed

that perturbations which do not alter �A (and therefore χA) preserve the one point

functions, here we show a limited converse: that small perturbations which do not

alter the one-point functions preserve �A and therefore χA.

The problem of reconstructing the bulk given boundary data in asymptotically AdS

spacetimes has been extensively studied [55–62]. In the linearized bulk theory the

boundary data in A is sufficient to reconstruct the fields in �A; this construction

can also be extended to the full nonlinear theory order-by-order in the interaction

strength
√
GN [61, 62]. In the correspondence limit, this boundary data reduces

to one-point functions; therefore in the classical, perturbative regime, �A can be

reconstructed from the one-point functions in D[A].

Now consider two states ρA and τA which are perturbatively close to one another and

have the same one-point functions. Because they have the same one-point functions

it follows immediately that S
(1)
A (ρA) = S

(1)
A (τA). Now in the bulk theory, the one-

point functions completely determine the causal wedges associated with both states;

therefore �A(ρA) = �A(τA) which implies χA(ρA) = χA(τA).

(B8) The one-point entropy of a Cauchy surface vanishes for certain collapsed black holes:

consider a classical spacetime which is perturbatively close to vacuum AdS for a

time 0 ≤ t ≤ Tpert. Let Ct be a family of boundary Cauchy surfaces and let M
be the boundary region between C0 and CTpert . Let Tpert be large enough that

J+
bulk[M] ∩ J−bulk[M] contains a bulk Cauchy surface Σ (see figure 4). Let the set
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Σ

C0

CTpert

t

Figure 4. A sketch of the setup described in (B8). The spacetime is perturbatively close to vacuum

AdS for a sufficiently long time Tpert that a bulk Cauchy surface Σ can be reconstructed from the

boundary one-point functions.

of all such states be called Rχ=0. The reconstruction results explained in (B7) imply

that the classical Cauchy data on Σ (and therefore the entire bulk spacetime) can be

reconstructed from the boundary one-point functions in M.13 Thus, the one-point

entropy S
(1)
Ct (ρCt) counts all states which correspond to this bulk geometry in the corre-

spondence limit. This quantity is precisely what is calculated by the Ryu-Takayanagi

entropy SCt(ρCt) so14

S
(1)
Ct (ρCt) = SCt(ρCt) = 0. (4.9)

Now, by construction ∂+�Ct and ∂−�Ct do not intersect. This means that χCt = 0,

and so

S
(1)
Ct (ρCt) = χCt = 0. (4.10)

In [63–65] it is shown that AdS is perturbatively unstable to black hole collapse.

Thus almost all of the solutions we have considered will become black holes at late

times. The physical interpretation of χCt = 0 for these states is that the one-point

entropy is sensitive to the boundary data in the CFT, prior to the time that the

state thermalizes.

4.3 Comparison with other coarse-grained entropies

We begin this section by showing that for the class of perturbative states Rχ=0 considered

in (B8), S(1) is the strongest, classical χ-preserving coarse grained entropy. The key feature

of the states Rχ=0 are i) that there is a one-to-one map between boundary one-point

functions and bulk causal wedges �Ct and ii) that SCt = 0 = χCt .

13Note that by invoking (B7) we are implicitly assuming that the coarse grained state is perturbatively

close to original state. This seems plausible at least for some class of small perturbations.
14Recall from section 3.2 that we are only interested in the order N2 pieces of S and S(1).
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Since each classical state in Rχ=0 is its own coarse graining, it follows that S(1) is χ-

preserving and classical over Rχ=0. Next, consider a stronger χ-preserving coarse graining

S̃ � S(1). If S̃ 6≡ S(1) then there must exist at least O(N2) classically distinguishable bulk

wedges �(i) that satisfy the constraints of S̃ for some classical state ρCt . All of these causal

wedges have the same (vanishing) von Neumann entropy by the inequality SCt ≤ χCt = 0,

therefore the coarse-grained state σCt must be a mixture of the states dual to the �(i). In

other words, σCt is not classical and so S̃ is not classical over Rχ=0. Therefore there is no

stronger, classical χ-preserving coarse graining than S(1) over the states Rχ=0.

Note that by (B6) and (B7), S(1) is also χ-preserving and classical in the perturbative

regime for states with χ > 0. However, it is no longer trivial to show that any stronger

χ-preserving coarse graining is nonclassical. Still, we conjecture that the obstacles to ex-

tending our argument are technical and that in fact S(1) is the strongest such coarse graining

in this perturbative regime (in which we maximize entropy subject to the assumption that

σ is perturbatively close to ρ).

Throwing all caution to the winds, we conjecture that S(1) continues to be the strongest

classical χ-preserving coarse graining non-perturbatively. One can explore this question in

classical general relativity, by asking if the bulk reconstruction results discussed in (B7)

extend to the non-perturbative regime. If not, it seems likely that the one-point functions

do not fix χ, in which case our conjecture S(1) = χ can only work perturbatively. In this

case, it would be of interest to attempt to construct the strongest, classical χ-preserving

coarse graining explicitly (if it exists) and see if it is a candidate for the dual of χ.

So, since we are not certain that S(1) is classical and χ-preserving, it is worth con-

sidering if any weaker coarse graining might be viable. One possibility is to consider a

coarse-grained entropy S(2) ≺ S(1) which constrains all one- and two-point functions. How-

ever, we can show that S(2) is inconsistent with the additivity property (B1). Let A and

B be two spherical regions on the vacuum AdS boundary, separated by a small spacelike

gap. For such regions the fine-grained entropy is subadditive: SA∪B ≤ SA + SB.

By (B4) we know that S
(1)
A (ρA) = S

(2)
A (ρA) = SA(ρA) and similarly for B. However,

the two-point functions connecting regions A and B do not vanish, therefore σ
(1)
A∪B 6∈

T
(2)
A∪B(ρA∪B) (see (B1)). So, by (3.5) we have

S
(2)
A∪B(ρA∪B) < S

(2)
A (ρA) + S

(2)
B (ρB). (4.11)

Since the fine-grained entropy is subadditive at order N2 we presume that S(2) is as well.

One could try to evade this problem by strengthening S(2). Consider a coarse grain-

ing S(2♦) which constrains all one-point functions and those two-point functions for which

both points are causally connected (cf. [66]). Now, S(2♦) manifestly satisfies the addi-

tivity property (B1). However, consider the states ρgeon and ρthermal discussed in (B2).

These states have the same one-point functions but different two-point functions, there-

fore, ρthermal 6∈ T (2♦)(ρgeon). It then follows from (3.5) that for a Cauchy surface C

S
(2♦)
C (ρgeon) < S

(1)
C (ρgeon) = χC . (4.12)

Assuming as above that this difference is of order N2, this rules out S(2♦) and any weaker

coarse graining as the dual of χ.
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Another conceivable weaker coarse graining might constrain all of the one-point func-

tions and all Wilson loops. However, Wilson loops are dual to extremal surfaces in the

bulk geometry [67, 68] and extremal surfaces can lie outside of �A [69], in obvious tension

with (B6).15

It is also conceivable that some incomparable coarse graining Ŝ ‖ S(1) that combines

partial data about the one-point functions and partial data about more complicated opera-

tors produce a candidate for the dual of χ. However, this type of construction seems likely

to suffer from at least some of the shortcomings of both the stronger and weaker coarse

grainings considered above.

Freivogel and Mosk have put forward a different kind of proposal for the dual of χ [42].

Let D[A] be a simple causal diamond (i.e. it takes the form J−(p) ∩ J+(q) where p and

q are points) on a conformally flat boundary metric. The region D[A] thus has a time-

translation conformal Killing vector ξ. Now let U = exp(−iHt) be the unitary operator

corresponding to the flow with respect to ξ. The proposal of [42] is that for such regions,

χA = S̃A(ρA), where

S̃A(ρA) = SA

(∑
i

PiρAPi

)
, (4.13)

and the Pi above are projection operators onto the eigenbasis of the operator H. If ρA is

a thermal state with modular Hamiltonian H then S̃A(ρA) = SA(ρA), which reproduces

the result (B4) above. Note that the projection PiρAPi removes all off diagonal elements

in the H basis, which makes the resulting state time independent. This corresponds to a

coarse graining in which the constraints {Om} consist of all functions of H.

The projection (4.13) is equivalent to taking a time average of the state ρA, which

we call ρ̄A. Unfortunately, this implies that it is not dual to χ. For consider an out of

equilibrium state ρA which eventually (for very early and late modular times t) settles to an

equilibrium state. Let us suppose that in the bulk dual, this area of the future horizon at

late times is equal to Afinal, as is the area of the past horizon at early times. By the second

law of horizons, χ(ρA) < Afinal/4GN . But inside of �A, the time average of this bulk state

is a stationary horizon with area Afinal. Hence χ(ρ̄A) = Afinal/4GN , so χ(ρA) < χ(ρ̄A) and

the coarse graining S̃ is not χ-preserving.16

4.4 Possible tests of S(1) = χ

While there is a great deal of data describing the behavior of χ in complex circumstances

(see [26, 27]), S(1) seems to be much less amenable to numerical calculation. To test the

conjecture, one may wish to look for aspects of S(1) (such as its divergence structure) which

may be easy to calculate.

An even better strategy for testing S(1) = χ might be to identify circumstances in

which our conjecture can be tested entirely within general relativity. If two solutions exist

15On the other hand, it has been argued [70, 71] that this duality is only valid in appropriately analytic

spacetimes, and therefore it is not straightforward to draw inferences about causality. So, this tension might

have a resolution.
16We owe this argument to Don Marolf.
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with the same one-point functions and different values of χ, then this would show that

S(1) is not χ-preserving and therefore not the dual of χ. Since the one-point functions

correspond to the asymptotic values of classical fields, this leads to predictions about the

allowed spacetimes on the bulk side.

Below we list a few special regimes in which it might be particularly easy to construct

tests of our conjecture.

(C1) Spherical symmetry: one strategy for finding solutions with the same one-point data

is to exploit Birkhoff’s theorem, which states that any spherically symmetric solution

to general relativity with compactly supported matter will have one-point functions

which are identical to AdS-Schwarzschild.

Now it is certainly possible to construct initial data that is spherically symmetric and

has compactly supported matter. However, evolving such initial data will generally

lead to radiation which will propagate to the AdS boundary in finite time. If this

radiation can be suppressed in such a way that the presence of some matter alters χA
but no radiation reaches D[A], such a spacetime would be a counterexample to our

conjecture that S(1) = χ. There are several no-go theorems in general relativity that

forbid “horizonless solitons” (see e.g. [72] and references therein); however because

the radiation only needs to be suppressed for a finite time these theorems are not

sufficient by themselves to protect our conjecture.

In particular it would be interesting to attempt to construct such a solution using

branes which have vanishing back reaction on the spacetime in the N → ∞ limit.17

Even though it is possible to construct spherically symmetric branes in AdS these

branes are still localized on the compact dimensions and therefore may radiate via

Kaluza-Klein modes.

(C2) Null shock waves: another approach to constructing counterexamples is to study null

shock waves which pass through �A but which do not have an endpoint on D[A].

In [75, 76] it is shown that the effect of such shock waves on the boundary one-point

functions is heavily suppressed. Thus it may be possible to bound the change in S(1)

caused by these shock waves and compare it with the associated change in χ.

(C3) Generic coarse grained states: consider a generic boundary region A and associated

with a bulk causal wedge �A. By (B6) arbitrary perturbations outside of �A will

not affect S
(1)
A or χA but they will generically change SA. Now, by [12] we must

have SA < χA for smooth generic spacetimes satisfying the null energy condition.

However, if χA−SA can be made arbitrarily small then continuity would imply that

if S(1) is classical, then it is dual to χ.

Another approach would be to construct non-smooth spacetimes for which SA = χA
exactly. Such spacetimes are reminiscent of the “disentangled” Rindler wedges con-

sidered in [77]. There it was shown that the Rindler horizons become singular when

17Another intriguing possibility would be to study the Coulomb branch solutions considered in [73, 74].
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AEA ΞA

χA > SA

Figure 5. Matter reflecting off the AdS boundary. The solid line to the right represents the AdS

boundary and A is a spherical region (see (C5)).

the entanglement between the two regions is no longer maximal. These disentangled

wedges could serve as a model for more general coarse grained states.

(C4) Comparing divergences: freivogel and Mosk [42] have calculated the logarithmically

divergent piece of χA for arbitrary regions A on a flat boundary in D = 4 spacetime

dimension. They find that this logarithmic divergence is universal (i.e. independent

of the state and the regulator) and that it cannot be expressed as an integral of local

geometric boundary quantities. This means that unlike SA, the divergent terms in

χA are not dominated by vacuum correlations. A greater understanding of coarse-

grained states could allow comparison between the divergences of S(1) and those of

χ. (Note that if σ is a classical state, it must generically be nonsmooth at the causal

surface, as shown in (C3). It is not surprising therefore that its divergences might

differ from that of ρ.)

(C5) Reflecting matter off the AdS boundary: consider a spherical region A on the bound-

ary of vacuum AdS. The reduced density matrix associated with this region is the

thermal state ρA (see (B4)). Now consider a state ρ̄A = e−iJρAeiJ where J is a

source operator. The spacetime associated with such a state will (for an appropri-

ately chosen J) have a matter field bouncing off the AdS boundary (see figure 5).

Since the von Neumann entropy is preserved by unitary transformations and since

ρA is thermal we know that S(1)(ρ̄A) ≥ S(1)(ρA). Furthermore ρ̃A does not have the

same one-point functions as ρA so it is unlikely that S(1)(ρ̄A) = S(1)(ρA) for general

U . Similarly, we know that χA(ρ̄A) > S(1)(ρA). It is conceivable that the state ρ̄A
and its dual geometry could be constructed in sufficient detail to allow a precision

test of S(1) = χ.
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ΞA

A

(a)

EA

A

(b)

Figure 6. (a) A sketch of a t = constant slice of the AdS-Schwarzschild solution. Even for very

small AC , χA does not approach SBH. See [27] for a precise diagram. (b) A bulk Cauchy surface of

the (non-stationary) black funnel-like geometry discussed in the text. The reduced density matrix

on A is a candidate for a coarse graining of ρA.

(C6) Almost-complete Cauchy slices: consider an eternal black hole in D ≥ 4 spacetime di-

mensions and consider the quantity ∆SA = SA(ρA)−SAC (ρAC ). It is well known that

lim
AC→∅

∆SA = SBH, (4.14)

and in fact ∆SA = SBH even when AC is sufficiently small but finite. In [78] this

leveling off of ∆SA is referred to as the entanglement plateaux.

But for the causal surface, there is no plateaux. If we now consider ∆χA = χA−χAC

we find that

lim
AC→∅

∆χA > SBH, (4.15)

even though (B4) says that χA = SBH when AC = ∅. This means that ∆χA jumps by

a finite amount right when A becomes a complete Cauchy surface! This effect is due

to the red shift at the horizon, which prevents the causal surface from approaching

arbitrarily close to the event horizon (figure 6(a)). Can S(1) also jump in the same way

(in the large N limit)? If not, then our conjecture that S
(1)
A = χA would be falsified.

Our conjecture requires that for arbitrarily small but finite AC , there must exist a

state σA in A that has the same stress tensor Tµν as the eternal black hole, and has

entropy SA(σA) = S
(1)
A (ρA). If we assume that S(1) is classical, then we can look for

such states entirely within classical general relativity. An interesting candidate state

can be constructed by patching the region A to a Schwarzschild black hole. Consider

such a state with a time reflection symmetry on a Cauchy surface C which contains A.

The horizon of this boundary black hole will extend into the bulk in a manner which
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might resemble a non-stationary black funnel-like spacetime sketched in figure 6(b)

(see [79–82]).18 As noted in (C3), σA cannot be smooth, however, it is possible that

the required patching of the black hole disrupts the smoothness of the bulk geometry.

If it could be shown that such a solution exists and has SA(σA) = SA(σA) = S
(1)
A (ρA)

this would provide a nontrivial check on our proposal.

5 The future one-point entropy

5.1 Motivation and definition

Consider a pure state in AdS which, after some time, collapses to a black hole and rings

down. The HRT proposal assigns such a state zero entropy even at arbitrarily late times. It

is appropriate that a fine-grained notion of entropy should assign such a state zero entropy

since the initial state is pure, and unitary evolution does not alter the entropy. However,

since this state is asymptotically stationary, at late times it is externally indistinguishable

from an eternal black hole, which has a nonzero Bekenstein-Hawking entropy. It is therefore

tempting to apply the HRT proposal to the eternal black hole geometry, in order to calculate

an approximate coarse-grained entropy.

Returning to the collapsing geometry, not only does the HRT entropy vanish for a

Cauchy surface C, but so do χC and S
(1)
C (at least in the cases considered in (B8)). We

attribute this to the fact that the domain D[C] over which we coarse grain extends far into

the past into the pre-thermalization region, when the geometry could easily be distinguished

from a black hole. While this is all perfectly consistent, it is not typically what is meant

by a coarse-grained entropy, since it does not allow for thermalization.

Another feature that S(1) lacks that we might expect from a coarse-grained entropy is

an interesting second law. Technically S
(1)
A satisfies a second law (just like SA), however

only in the trivial sense that

∂t

(
S

(1)
At

)
= 0 (5.1)

where At is a foliation of D[A] parameterized by t.

Motivated by the above concerns, we propose a new set of bulk and boundary quan-

tities which we call the ‘future causal information’ φA and the ‘future one-point entropy’

S
(1)
A (ρA). We define

S
(1)
A (ρA) = sup

τA∈T+
A

[SA(τA)] (5.2)

where T+
A is the set of all density matrices which satisfy the constraints

Tr[OmρA] = Tr[OmτA] (5.3)

where now the {Om} in (5.3) are the set of all one-point functions of the fields with support

only on D+[A].

18This solution can only exist if the one-point functions do not uniquely specify �A non-perturbatively.

Another interesting candidate for σA is the related black droplet solution.
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A
D[A]

ΦA

∂+!A

∂−(J
+
bulk[A])

Figure 7. A sketch of the construction of ΦA described in the text. D[A] is the boundary domain

of dependence of A and ΦA extends into the bulk (see text).

We conjecture that in the absence of boundary sources, and in the correspondence

limit of section 3.2, the bulk dual of S
(1)
A is given by

S
(1)
A = φA :=

Area[ΦA]

4G
, (5.4)

where ΦA is the codimension-two surface (see figure 7)

ΦA := ∂+�A ∩ ∂−(J+
bulk[A]). (5.5)

To summarize we have formed a new conjecture by modifying our old conjecture in two

ways: the operators Om are now supported on D+[A] only as opposed to D+[A]∪D−[A],

and the associated bulk surface is ∂+�A ∩ ∂−(J+
bulk[A]) as opposed to ∂+�A ∩ ∂−�A. We

have again restricted our conjecture to theories without boundary sources for the reasons

given in appendix B.

5.2 Properties of the future one-point entropy

Note that lemma (L1) and properties (A2) and (A3) still apply to S(1). However, (A1) no

longer applies, since S(1) now depends on the choice of A, not just on D[A]. In addition

S(1) has the following properties:

(D1) The future one-point entropy equals the one-point entropy if A is its own past: if

A = D−[A] then D+[A] = D[A], and it follows that S
(1)
A = S

(1)
A . In this case we also

have φA = χA. Thus if S(1) = φ then it follows immediately that S(1) = χ.

(D2) The future one-point entropy is additive for spacelike separated regions: consider two

spacelike separated regions A and B for which D+[A] ∩D+[B] = ∅. Now if D+[A] ∩
D+[B] = ∅ then it immediately follows that D[A] ∩D[B] = ∅. Therefore, exactly as

in (B1), we can consider the state ρA ⊗ ρB which differs from ρA∪B by correlations

between A and B. Since the constraints are not sensitive to such correlations we

obtain σA∪B = σA ⊗ σB and

S
(1)
A∪B = S

(1)
A + S

(1)
B . (5.6)
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Since D[A] ∩ D[B] = ∅, boundary causality requires that there are no bulk causal

curves connecting D+[A] and D+[B]; hence

φA∪B = φA + φB. (5.7)

(D3) The future one-point entropy obeys a non-trivial second law: let A and B be two

surfaces such that D[A] = D[B] and let B lie nowhere to the past of A. Then

S
(1)
A ≤ S

(1)
B (5.8)

due to the fact that the latter coarse graining has fewer constraints.

This matches the classical second law of causal horizons [30], which says that for any

causal horizon,

φA ≤ φB. (5.9)

In the case where C is a Cauchy surface, φC corresponds to a slice of the global event

horizon. In the case where D[A] is a simple causal diamond, it corresponds to slices

of an AdS-Rindler type causal horizon [31]. In the most general case, it corresponds

to the boundary of the past of some set of points Z on the AdS-boundary. This is

a slightly more general notion of causal horizon than that considered by [31] (which

required the causal horizon to be the boundary of the past of a single future-infinite

worldline) but it still obeys a second law [83].

Note that although every choice of boundary slice B ∈ D[A] maps to some slice φB of

the causal horizon, the map is neither one-to-one, nor onto. If the null surface shot

out from B develops caustics before intersecting the future horizon, then it is possible

to modify parts of B without affecting φB. Similarly, for any given slice φ there is no

guarantee that there exists any dual choice of B, since a null surface shot out from

φ may also develop caustics. Nevertheless it is remarkable that, if our conjecture is

true, there exists an infinite-dimensional family of slices of the future horizon, whose

(geometrical) bulk second law is dual to a (thermodynamic) boundary second law.

(D4) The future one-point entropy is a stronger coarse graining than the one-point entropy:

since the maximization associated with S
(1)
A involves fewer constraints than that

associated with S
(1)
A , it follows that

S ≺ S(1) ≺ S(1), (5.10)

where we have also used (A2). Similarly from (D3) we have

S ≤ χ ≤ φ. (5.11)

(D5) The future one-point entropy thermalizes: let Ct be a foliation of Cauchy surfaces of

a spacetime that starts as a small perturbation to AdS, but ultimately settles down

to one or more black holes. At early times, by (D1), we recover

lim
t→−∞

S
(1)
Ct (ρCt) = S

(1)
Ct (ρCt) = 0. (5.12)
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But at late times, the black holes ring down and the field theory state thermalizes. In

particular the one-point functions approach those of a thermal state, and we obtain

lim
t→∞

S
(1)
Ct (ρAt) = SCt(ρthermal) = SBH. (5.13)

In the bulk geometry it follows from the causal structure of the spacetime that

lim
t→−∞

φCt = 0, lim
t→∞

φCt = SBH. (5.14)

Again, we have used the limiting procedure of section 3.2 to exclude Poincaré recur-

rences from our analysis.

There are also spacetimes which remain perturbatively close to AdS even at late

times (see e.g. [84]), for which φCt = 0 for all t. By the bulk reconstruction argument

of (B8) these are precisely the state for which we would expect to have S
(1)
Ct = 0

for all t as well, since the entire bulk geometry can be reconstructed from one-point

functions even at late times.

(D6) The future one-point entropy reduces to the fine-grained entropy for states which are

thermal with respect to geometric flows: by (B4), if A is a spherical region of the

boundary of vacuum AdS, a BTZ black hole, or a Cauchy surface of an eternal black

hole, then

SA(ρA) = S
(1)
A (ρA) = S

(1)
A (ρA). (5.15)

This is also true for the associated bulk quantities even though ΦA 6= EA = ΞA.

This is because in each of these special cases, the future and past horizons of D[A]

are stationary. As a result, ΦA is connected to ΞA by a null congruence with zero

expansion, so that χA = φA.

(D7) The future one-point entropy is bounded by a thermal entropy: just as in (B5), for

any region A if ρthermal is a thermal state with modular Hamiltonian H ∈ {Om}
satisfying 〈H〉ρA = 〈H〉ρthermal

then

S
(1)
A (ρA) ≤ S

(1)
A (ρthermal). (5.16)

However, now we find that this bound is saturated not just by eternal black holes,

but also by collapsed black holes in the limit that A sufficiently far to the future of

the formation of the event horizon.

It is worth emphasizing again that if our conjecture S(1) = φ is correct, then the

thermodynamic second law of S(1) of (D3) is the bulk dual of the Hawking area increase

theorem [30], as applied to certain kinds of causal horizons [31, 83]. In this way our proposal

provides a quantum mechanical interpretation of the area law in terms of a thermodynamic

second law in the boundary theory.
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A−

A+

ΨA± D[A±]

Figure 8. A sketch of the construction of ΨA−,A+
described in the text. D[A−] = D[A+] is the

boundary domain of dependence of A± and ΨA−,A+
extends into the bulk (see text).

5.3 Generalization to arbitrary boundary regions

The generalization of χ to φ suggests a further generalization to more general bulk wedges.

Consider two regions A− and A+ which have the same domain of dependence D[A−] =

D[A+] and for which A+ is everywhere to the future of A−, i.e. A+ ∈ J+[A−]. A natural

generalization of (5.5) is then to consider the surface (see figure 8)

ΨA−,A+ = ∂+(J−bulk[A+]) ∩ ∂−(J+
bulk[A−]). (5.17)

Based on our previous experience it is tempting to conjecture that ψ := Area[Ψ]/4GN is

dual to a coarse-grained entropy S(1) whose constraints {Om} are all one-point function

supported in the region J+[A−] ∩ J−[A+]. However, this proposal meets with serious

difficulties right away.

Let C− and C+ be two Cauchy surfaces on the boundary of the AdS vacuum so that

the region between C− and C+ forms a strip. The constraints associated with this strip

include the total energy of the spacetime, which vanishes for vacuum AdS. Since the AdS

vacuum is the unique state in the theory with E = 0, it follows that S(1)
C−,C+ = 0 for any

choice of C− and C+. Yet in the bulk, we have ψC−,C+ = 0 only if C− and C+ are separated

by an AdS light crossing time or more. Therefore, we find that ψC−,C+ > S(1)
C−,C+ for certain

choices of C−, C+.

It is hard to imagine how we might modify S(1) in order to make a credible candidate

for the dual of ψ. One possibility is to introduce finite imprecision into the constraints,

roughly as proposed in footnote 8. In particular we would need to the precision to depend

on the width of the strip. This is in some ways reminiscent of the Heisenberg uncertainty

principle, which limits the precision with which the energy can be measured by coupling

to a classical system for a finite time. Bounds of this kind were found in the “holographic

thought experiments” of [85]. However, it is unclear how to translate these ideas into a

precise proposal for the dual of ψ.

A very different way of interpreting ψC−,C+ is put forward in [66, 86]. Balasubramanian

et al. propose that ψC−,C+ measures the entanglement between spatial regions separated

by ΨC−,C+ , which in the field theory roughly translates to entanglement between UV and
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IR degrees of freedom. It would be very interesting to know if this entanglement entropy

could be formulated as a coarse-grained entropy which preserves the appropriate IR degrees

of freedom.

6 Discussion

In summary, we have examined two coarse-grained entropies S(1) and S(1) in detail and

found that they are plausibly dual to the causal holographic information χ and the future

causal information φ, respectively. We have tested these conjectures by finding shared

properties, and eliminating several classes of alternate proposals.

The evidence for our conjectures includes that i) both S(1) and S(1) are additive, as

are their bulk duals (see (B1), (D2)), ii) S(1) = χ and S(1) = φ for thermal states and

for the pure geon state (see (B2), (B4), (D6), (D7)), and iii) in certain circumstances, the

classical bulk spacetime can be reconstructed from the one-point functions (see (B7)), as

discussed below. Additionally, for the future one-point entropy, iv) S(1) obeys a second

law (see (D3)), and thermalizes in a way which correctly reproduces the early and late time

entropy of a collapsing black hole (see (D5)).

Assuming that the dual of χ is a member of a particularly nice class of coarse grainings,

we can show that it must be the strongest such coarse graining. This class consists of those

coarse-grainings which preserve χ and map classical states to classical states. If the dual

of χ belongs to this class, then (at least for these classical states) it must be the strongest

possible such coarse graining, at order N2. In certain perturbative contexts, we have shown

that S(1) does indeed belong to this class, and for the states Rχ=0 considered in 4.3 we

have also shown that it is the strongest. Even for perturbations to geometries with χ > 0,

the bulk reconstruction theorems discussed in (B7) suggest that it is still the strongest.

Our conjecture is on more dubious ground non-perturbatively, but we have identified

situations in which it can be tested using classical general relativity. Several tests (some of

which are non-perturbative) are listed in section 4.4. We believe that experts will be able

to falsify or confirm our conjecture using existing analytic and numerical methods.

The most striking feature of S(1) is that it obeys a nontrivial second law (cf. (D3)).

This allows us to describe the thermalization of CFT states, in a way which — if our

conjecture is correct — is dual to the Hawking area theorem in the bulk. However, the

second law is a general feature of any coarse graining based on maximizing entropy subject

to diminishing constraints. So this property is not unique to the one-point constraints.

However the bulk reconstruction theorems tell us that the one-point entropy thermalizes

in a way which is qualitatively similar to the collapse of a black hole as argued in (D5).

Finally we note that even though we have only analyzed the coarse-grained entropies

S(1) and S(1) in the correspondence limit, these quantities are well defined at finite N , if

one includes all local operators as prescribed in section 4.1. Are there still nice bulk duals

for these quantities?

One can start by looking at the semiclassical regime. In the boundary, this corresponds

to taking the N →∞ limit, yet keeping terms subleading in N . In this regime, the area of

the HRT must be surface be corrected by adding a term which equal to the entanglement
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entropy across the surface [87]. In other words, S on the boundary is dual to the generalized

entropy of the HRT surface.

It is natural to suppose that χ and φ must be corrected in the same way. Note that

φ no longer obeys a second law because quantum matter fields can violate the null energy

condition. However, S(1) still obeys a second law, and so does the generalized entropy

associated with φ [88]. But unlike χ and φ, the generalized entropy is not additive. Perhaps

this proposal can be saved by restricting to connected boundary regions, or by including

higher-point functions at finite precision in N (cf. footnote 8).
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A χ-preserving coarse grainings

As mentioned in section 3.3, it is natural to ask if the restriction of (3.17) to states with

classical coarse grainings can be dropped. In this appendix we show that the answer to

this question is no.

Consider a coarse graining with the single constraint that 〈χ̂〉 be held fixed, where 〈χ̂〉
is some linear quantum expectation value which equals χ for classical states. This coarse

graining, which we call S(χ̂), cannot be the dual of χ. Consider any Cauchy surface C and

state ρC for which χC = 0. The entropy S
(χ̂)
C (ρC) counts all states for which χC = 0. Because

the volume of AdS is infinite, there are an infinite number of such states even at finite N .

Therefore S
(χ̂)
C (ρC) diverges (beyond the usual N2 divergence) in the correspondence limit.

S(χ̂) is therefore pathological since it assigns infinite entropy to a pure state. However,

we can easily tame this divergence by adding a second constraint
〈∫

Ttt
〉
, which for a

Cauchy surface C is simply the total energy E of the spacetime. Call this new coarse-

grained entropy S(χ̂,E). Now the state counting for ρC includes all ways to collapse a black

hole of a particular energy, including very slow collapses (e.g. the time reversal of Hawking

evaporation for a sufficiently small black hole). This quantity is finite but still of order N2,

which implies

S
(χ̂,E)
C (ρC) > χC . (A.1)

We have not violated the inequality (3.17) because (3.17) only holds when the coarse-

grained state σC is classical. However, all of the classical states satisfying the constraints

of S(χ̂,E) have the same (vanishing) von Neumann entropy (since SC ≤ χC = 0 for all such

classical geometries). Hence the coarse graining σC is a mixture of an infinite number of

classically distinguishable states, and therefore it is non-classical.
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AEA ΞA

(a)

χA = SA

AEA ΞA

(b)

χA > SA

Figure 9. Various insertions of sources on the vacuum AdS boundary. In each figure the solid

line to the right represents the AdS boundary and A is a spherical region. (a) By causality EA is

unperturbed by the sources however ΞA is moved due to focusing of light rays (shown schematically

by the dashed lines). However this focusing does not change χ since the past horizon has vanishing

expansion. (b) An ingoing and outgoing source which gives χA > SA = S
(1)
A .

B Boundary sources

As mentioned above, we only conjecture that χ is dual to a coarse-grained entropy for

theories with time-independent Hamiltonians (i.e. in the absence of boundary sources).

We now explain the reason for this restriction.

Let S be any coarse graining and let ρA be any state which satisfies the conditions

of (L1) so that SA(ρA) = SA(ρA). An important feature of (L1) is that nothing is assumed

about the time evolution of ρA within D[A], except that it is unitary. It therefore applies

even if we insert boundary sources, which can potentially increase χA.

This would lead to a contradiction in situations where H ∈ {Om}, since we can always

add or remove boundary sources to achieve SA(ρA) < χA(ρA) (see figure 9).

This includes the case in which A is a Cauchy surface and the bulk geometry is a

stationary black hole. In this case the modular Hamiltonian is a linear combination of

energy, angular momentum, gauge charges, etc. It is hard to imagine a χ-preserving coarse

graining which does not constrain any of these quantities, and yet which does not suffer

from the same problems as S(χ̂,E) (see appendix A). For this reason we will restrict our

attention to theories without any boundary sources turned on.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 28 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
3
(
2
0
1
4
)
1
1
8

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]

[INSPIRE].

[2] S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[4] B. Swingle, Entanglement renormalization and holography, Phys. Rev. D 86 (2012) 065007

[arXiv:0905.1317] [INSPIRE].

[5] I. Heemskerk and J. Polchinski, Holographic and Wilsonian renormalization groups, JHEP

06 (2011) 031 [arXiv:1010.1264] [INSPIRE].

[6] T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: holographic Wilsonian RG

and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].

[7] S.-S. Lee, Quantum renormalization group and holography, JHEP 01 (2014) 076

[arXiv:1305.3908] [INSPIRE].

[8] W. Pauli and F. Villars, On the invariant regularization in relativistic quantum theory, Rev.

Mod. Phys. 21 (1949) 434 [INSPIRE].

[9] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[10] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006)

045 [hep-th/0605073] [INSPIRE].

[11] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement

entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[12] A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic

entanglement entropy, arXiv:1211.3494 [INSPIRE].

[13] D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006)

018 [hep-th/0606184] [INSPIRE].

[14] M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010)

126010 [arXiv:1006.0047] [INSPIRE].

[15] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement

entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

[16] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

[17] T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].

[18] T. Faulkner, The entanglement Renyi entropies of disjoint intervals in AdS/CFT,

arXiv:1303.7221 [INSPIRE].

[19] J. Hammersley, Extracting the bulk metric from boundary information in asymptotically AdS

spacetimes, JHEP 12 (2006) 047 [hep-th/0609202] [INSPIRE].

[20] J. Hammersley, Numerical metric extraction in AdS/CFT, Gen. Rel. Grav. 40 (2008) 1619

[arXiv:0705.0159] [INSPIRE].

– 29 –

http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://dx.doi.org/10.1103/PhysRevD.86.065007
http://arxiv.org/abs/0905.1317
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1317
http://dx.doi.org/10.1007/JHEP06(2011)031
http://dx.doi.org/10.1007/JHEP06(2011)031
http://arxiv.org/abs/1010.1264
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1264
http://dx.doi.org/10.1007/JHEP08(2011)051
http://arxiv.org/abs/1010.4036
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.4036
http://dx.doi.org/10.1007/JHEP01(2014)076
http://arxiv.org/abs/1305.3908
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3908
http://dx.doi.org/10.1103/RevModPhys.21.434
http://dx.doi.org/10.1103/RevModPhys.21.434
http://inspirehep.net/search?p=find+J+Rev.Mod.Phys.,21,434
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://arxiv.org/abs/hep-th/0605073
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605073
http://dx.doi.org/10.1088/1126-6708/2007/07/062
http://arxiv.org/abs/0705.0016
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0016
http://arxiv.org/abs/1211.3494
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.3494
http://dx.doi.org/10.1088/1126-6708/2006/09/018
http://dx.doi.org/10.1088/1126-6708/2006/09/018
http://arxiv.org/abs/hep-th/0606184
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606184
http://dx.doi.org/10.1103/PhysRevD.82.126010
http://dx.doi.org/10.1103/PhysRevD.82.126010
http://arxiv.org/abs/1006.0047
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0047
http://dx.doi.org/10.1007/JHEP05(2011)036
http://arxiv.org/abs/1102.0440
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0440
http://dx.doi.org/10.1007/JHEP08(2013)090
http://arxiv.org/abs/1304.4926
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4926
http://arxiv.org/abs/1303.6955
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6955
http://arxiv.org/abs/1303.7221
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.7221
http://dx.doi.org/10.1088/1126-6708/2006/12/047
http://arxiv.org/abs/hep-th/0609202
http://inspirehep.net/search?p=find+EPRINT+hep-th/0609202
http://dx.doi.org/10.1007/s10714-007-0564-6
http://arxiv.org/abs/0705.0159
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0159


J
H
E
P
0
3
(
2
0
1
4
)
1
1
8

[21] S. Bilson, Extracting spacetimes using the AdS/CFT conjecture, JHEP 08 (2008) 073

[arXiv:0807.3695] [INSPIRE].

[22] M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of entanglement

entropy from Einstein Equation, Phys. Rev. D 88 (2013) 026012 [arXiv:1304.7100]

[INSPIRE].

[23] N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics from

entanglement “thermodynamics”, arXiv:1308.3716 [INSPIRE].

[24] J. Bhattacharya and T. Takayanagi, Entropic counterpart of perturbative Einstein equation,

JHEP 10 (2013) 219 [arXiv:1308.3792] [INSPIRE].

[25] V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP 06 (2012) 114

[arXiv:1204.1698] [INSPIRE].

[26] V.E. Hubeny, M. Rangamani and E. Tonni, Thermalization of causal holographic

information, JHEP 05 (2013) 136 [arXiv:1302.0853] [INSPIRE].

[27] V.E. Hubeny, M. Rangamani and E. Tonni, Global properties of causal wedges in

asymptotically AdS spacetimes, JHEP 10 (2013) 059 [arXiv:1306.4324] [INSPIRE].

[28] R. Bousso, S. Leichenauer and V. Rosenhaus, Light-sheets and AdS/CFT, Phys. Rev. D 86

(2012) 046009 [arXiv:1203.6619] [INSPIRE].

[29] B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a

density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

[30] S. Hawking, Gravitational radiation from colliding black holes, Phys. Rev. Lett. 26 (1971)

1344 [INSPIRE].

[31] T. Jacobson and R. Parentani, Horizon entropy, Found. Phys. 33 (2003) 323

[gr-qc/0302099] [INSPIRE].

[32] R.P. Geroch, The domain of dependence, J. Math. Phys. 11 (1970) 437 [INSPIRE].

[33] D.N. Kabat, Black hole entropy and entropy of entanglement, Nucl. Phys. B 453 (1995) 281

[hep-th/9503016] [INSPIRE].

[34] F. Larsen and F. Wilczek, Renormalization of black hole entropy and of the gravitational

coupling constant, Nucl. Phys. B 458 (1996) 249 [hep-th/9506066] [INSPIRE].

[35] D. Iellici and V. Moretti, Kabat’s surface terms in the zeta function approach,

hep-th/9703088 [INSPIRE].

[36] A.R. Zhitnitsky, Entropy, contact interaction with horizon and dark energy, Phys. Rev. D 84

(2011) 124008 [arXiv:1105.6088] [INSPIRE].

[37] W. Donnelly and A.C. Wall, Do gauge fields really contribute negatively to black hole

entropy?, Phys. Rev. D 86 (2012) 064042 [arXiv:1206.5831] [INSPIRE].

[38] S.N. Solodukhin, Remarks on effective action and entanglement entropy of Maxwell field in

generic gauge, JHEP 12 (2012) 036 [arXiv:1209.2677] [INSPIRE].

[39] C. Eling, Y. Oz and S. Theisen, Entanglement and thermal entropy of gauge fields, JHEP 11

(2013) 019 [arXiv:1308.4964] [INSPIRE].

[40] W. Donnelly and A. Wall, unpublished (2013).

[41] L. Susskind and E. Witten, The holographic bound in Anti-de Sitter space, hep-th/9805114

[INSPIRE].

– 30 –

http://dx.doi.org/10.1088/1126-6708/2008/08/073
http://arxiv.org/abs/0807.3695
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3695
http://dx.doi.org/10.1103/PhysRevD.88.026012
http://arxiv.org/abs/1304.7100
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7100
http://arxiv.org/abs/1308.3716
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.3716
http://dx.doi.org/10.1007/JHEP10(2013)219
http://arxiv.org/abs/1308.3792
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.3792
http://dx.doi.org/10.1007/JHEP06(2012)114
http://arxiv.org/abs/1204.1698
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.1698
http://dx.doi.org/10.1007/JHEP05(2013)136
http://arxiv.org/abs/1302.0853
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.0853
http://dx.doi.org/10.1007/JHEP10(2013)059
http://arxiv.org/abs/1306.4324
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4324
http://dx.doi.org/10.1103/PhysRevD.86.046009
http://dx.doi.org/10.1103/PhysRevD.86.046009
http://arxiv.org/abs/1203.6619
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6619
http://dx.doi.org/10.1088/0264-9381/29/15/155009
http://arxiv.org/abs/1204.1330
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.1330
http://dx.doi.org/10.1103/PhysRevLett.26.1344
http://dx.doi.org/10.1103/PhysRevLett.26.1344
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,26,1344
http://dx.doi.org/10.1023/A:1023785123428
http://arxiv.org/abs/gr-qc/0302099
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0302099
http://dx.doi.org/10.1063/1.1665157
http://inspirehep.net/search?p=find+J+J.Math.Phys.,11,437
http://dx.doi.org/10.1016/0550-3213(95)00443-V
http://arxiv.org/abs/hep-th/9503016
http://inspirehep.net/search?p=find+EPRINT+hep-th/9503016
http://dx.doi.org/10.1016/0550-3213(95)00548-X
http://arxiv.org/abs/hep-th/9506066
http://inspirehep.net/search?p=find+EPRINT+hep-th/9506066
http://arxiv.org/abs/hep-th/9703088
http://inspirehep.net/search?p=find+EPRINT+hep-th/9703088
http://dx.doi.org/10.1103/PhysRevD.84.124008
http://dx.doi.org/10.1103/PhysRevD.84.124008
http://arxiv.org/abs/1105.6088
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.6088
http://dx.doi.org/10.1103/PhysRevD.86.064042
http://arxiv.org/abs/1206.5831
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5831
http://dx.doi.org/10.1007/JHEP12(2012)036
http://arxiv.org/abs/1209.2677
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.2677
http://dx.doi.org/10.1007/JHEP11(2013)019
http://dx.doi.org/10.1007/JHEP11(2013)019
http://arxiv.org/abs/1308.4964
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4964
http://arxiv.org/abs/hep-th/9805114
http://inspirehep.net/search?p=find+EPRINT+hep-th/9805114


J
H
E
P
0
3
(
2
0
1
4
)
1
1
8

[42] B. Freivogel and B. Mosk, Properties of causal holographic information, JHEP 09 (2013) 100

[arXiv:1304.7229] [INSPIRE].

[43] M. Gell-Mann and J. Hartle, Quasiclassical coarse graining and thermodynamic entropy,

Phys. Rev. A 76 (2007) 022104 [quant-ph/0609190] [INSPIRE].

[44] J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

[45] S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [INSPIRE].

[46] A.C. Wall, Ten proofs of the generalized second law, JHEP 06 (2009) 021 [arXiv:0901.3865]

[INSPIRE].

[47] M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023

[hep-th/9806087] [INSPIRE].

[48] V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun.

Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

[49] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002)

5849 [hep-th/0209067] [INSPIRE].

[50] R.D. Sorkin, Introduction to topological geons, in NATO ASIB Proc. 138: Topological

Structure of Space-Time, P.G. Bergmann and V. de Sabbata eds., U.S.A. (1986).

[51] J.L. Friedman, K. Schleich and D.M. Witt, Topological censorship, Phys. Rev. Lett. 71

(1993) 1486 [Erratum ibid. 75 (1995) 1872] [gr-qc/9305017] [INSPIRE].

[52] J. Louko and D. Marolf, Single exterior black holes and the AdS/CFT conjecture, Phys. Rev.

D 59 (1999) 066002 [hep-th/9808081] [INSPIRE].

[53] A.R.H. Smith and R.B. Mann, Looking inside a black hole, arXiv:1309.4125 [INSPIRE].

[54] S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class.

Quant. Grav. 17 (2000) 4999 [gr-qc/0007021] [INSPIRE].

[55] V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in

Anti-de Sitter space-time, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].

[56] V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of

Anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] [INSPIRE].

[57] T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal

field theory, hep-th/9808016 [INSPIRE].

[58] I. Bena, On the construction of local fields in the bulk of AdS5 and other spaces, Phys. Rev.

D 62 (2000) 066007 [hep-th/9905186] [INSPIRE].

[59] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a

boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118]

[INSPIRE].

[60] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local

bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].

[61] D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting

AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].

[62] I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, Bulk and transhorizon measurements in

AdS/CFT, JHEP 10 (2012) 165 [arXiv:1201.3664] [INSPIRE].

– 31 –

http://dx.doi.org/10.1007/JHEP09(2013)100
http://arxiv.org/abs/1304.7229
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7229
http://dx.doi.org/10.1103/PhysRevA.76.022104
http://arxiv.org/abs/quant-ph/0609190
http://inspirehep.net/search?p=find+EPRINT+quant-ph/0609190
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://inspirehep.net/search?p=find+J+Phys.Rev.,D7,2333
http://dx.doi.org/10.1007/BF01609863
http://inspirehep.net/search?p=find+J+CMPHA,45,9
http://dx.doi.org/10.1088/1126-6708/2009/06/021
http://arxiv.org/abs/0901.3865
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3865
http://dx.doi.org/10.1088/1126-6708/1998/07/023
http://arxiv.org/abs/hep-th/9806087
http://inspirehep.net/search?p=find+EPRINT+hep-th/9806087
http://dx.doi.org/10.1007/s002200050764
http://dx.doi.org/10.1007/s002200050764
http://arxiv.org/abs/hep-th/9902121
http://inspirehep.net/search?p=find+EPRINT+hep-th/9902121
http://dx.doi.org/10.1088/0264-9381/19/22/306
http://dx.doi.org/10.1088/0264-9381/19/22/306
http://arxiv.org/abs/hep-th/0209067
http://inspirehep.net/search?p=find+EPRINT+hep-th/0209067
http://dx.doi.org/10.1103/PhysRevLett.71.1486
http://dx.doi.org/10.1103/PhysRevLett.71.1486
http://arxiv.org/abs/gr-qc/9305017
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9305017
http://dx.doi.org/10.1103/PhysRevD.59.066002
http://dx.doi.org/10.1103/PhysRevD.59.066002
http://arxiv.org/abs/hep-th/9808081
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808081
http://arxiv.org/abs/1309.4125
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.4125
http://dx.doi.org/10.1088/0264-9381/17/24/305
http://dx.doi.org/10.1088/0264-9381/17/24/305
http://arxiv.org/abs/gr-qc/0007021
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0007021
http://dx.doi.org/10.1103/PhysRevD.59.046003
http://arxiv.org/abs/hep-th/9805171
http://inspirehep.net/search?p=find+EPRINT+hep-th/9805171
http://dx.doi.org/10.1103/PhysRevD.59.104021
http://arxiv.org/abs/hep-th/9808017
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808017
http://arxiv.org/abs/hep-th/9808016
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808016
http://dx.doi.org/10.1103/PhysRevD.62.066007
http://dx.doi.org/10.1103/PhysRevD.62.066007
http://arxiv.org/abs/hep-th/9905186
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905186
http://dx.doi.org/10.1103/PhysRevD.73.086003
http://arxiv.org/abs/hep-th/0506118
http://inspirehep.net/search?p=find+EPRINT+hep-th/0506118
http://dx.doi.org/10.1103/PhysRevD.74.066009
http://arxiv.org/abs/hep-th/0606141
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606141
http://dx.doi.org/10.1103/PhysRevD.83.106009
http://arxiv.org/abs/1102.2910
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.2910
http://dx.doi.org/10.1007/JHEP10(2012)165
http://arxiv.org/abs/1201.3664
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.3664


J
H
E
P
0
3
(
2
0
1
4
)
1
1
8

[63] P. Bizon and A. Rostworowski, On weakly turbulent instability of Anti-de Sitter space, Phys.

Rev. Lett. 107 (2011) 031102 [arXiv:1104.3702] [INSPIRE].

[64] J. Jalmuzna, A. Rostworowski and P. Bizon, A comment on AdS collapse of a scalar field in

higher dimensions, Phys. Rev. D 84 (2011) 085021 [arXiv:1108.4539] [INSPIRE].

[65] O.J. Dias, G.T. Horowitz and J.E. Santos, Gravitational turbulent instability of

Anti-de Sitter space, Class. Quant. Grav. 29 (2012) 194002 [arXiv:1109.1825] [INSPIRE].

[66] V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller, A

hole-ographic spacetime, arXiv:1310.4204 [INSPIRE].

[67] J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859

[hep-th/9803002] [INSPIRE].

[68] S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and

anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

[69] V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP 07 (2012) 093

[arXiv:1203.1044] [INSPIRE].

[70] J. Louko, D. Marolf and S.F. Ross, On geodesic propagators and black hole holography, Phys.

Rev. D 62 (2000) 044041 [hep-th/0002111] [INSPIRE].

[71] S.B. Giddings and M. Lippert, Precursors, black holes and a locality bound, Phys. Rev. D 65

(2002) 024006 [hep-th/0103231] [INSPIRE].

[72] G. Gibbons and N. Warner, Global structure of five-dimensional BPS fuzzballs, Class.

Quantum Grav. 31 (2014) 025016 [arXiv:1305.0957] [INSPIRE].

[73] S.B. Giddings and S.F. Ross, D3-brane shells to black branes on the Coulomb branch, Phys.

Rev. D 61 (2000) 024036 [hep-th/9907204] [INSPIRE].

[74] I. Chepelev and R. Roiban, A Note on correlation functions in AdS5/SYM4 correspondence

on the Coulomb branch, Phys. Lett. B 462 (1999) 74 [hep-th/9906224] [INSPIRE].

[75] R. Bousso, B. Freivogel, S. Leichenauer, V. Rosenhaus and C. Zukowski, Null geodesics, local

CFT operators and AdS/CFT for subregions, Phys. Rev. D 88 (2013) 064057

[arXiv:1209.4641] [INSPIRE].

[76] S. Leichenauer and V. Rosenhaus, AdS black holes, the bulk-boundary dictionary and

smearing functions, Phys. Rev. D 88 (2013) 026003 [arXiv:1304.6821] [INSPIRE].

[77] B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, Rindler quantum gravity,

Class. Quant. Grav. 29 (2012) 235025 [arXiv:1206.1323] [INSPIRE].

[78] V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, Holographic entanglement plateaux,

JHEP 08 (2013) 092 [arXiv:1306.4004] [INSPIRE].

[79] V.E. Hubeny, D. Marolf and M. Rangamani, Hawking radiation in large-N strongly-coupled

field theories, Class. Quant. Grav. 27 (2010) 095015 [arXiv:0908.2270] [INSPIRE].

[80] V.E. Hubeny, D. Marolf and M. Rangamani, Black funnels and droplets from the AdS

C-metrics, Class. Quant. Grav. 27 (2010) 025001 [arXiv:0909.0005] [INSPIRE].

[81] V.E. Hubeny, D. Marolf and M. Rangamani, Hawking radiation from AdS black holes, Class.

Quant. Grav. 27 (2010) 095018 [arXiv:0911.4144] [INSPIRE].

[82] J.E. Santos and B. Way, Black funnels, JHEP 12 (2012) 060 [arXiv:1208.6291] [INSPIRE].

– 32 –

http://dx.doi.org/10.1103/PhysRevLett.107.031102
http://dx.doi.org/10.1103/PhysRevLett.107.031102
http://arxiv.org/abs/1104.3702
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.3702
http://dx.doi.org/10.1103/PhysRevD.84.085021
http://arxiv.org/abs/1108.4539
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.4539
http://dx.doi.org/10.1088/0264-9381/29/19/194002
http://arxiv.org/abs/1109.1825
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.1825
http://arxiv.org/abs/1310.4204
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.4204
http://dx.doi.org/10.1103/PhysRevLett.80.4859
http://arxiv.org/abs/hep-th/9803002
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803002
http://dx.doi.org/10.1007/s100520100799
http://arxiv.org/abs/hep-th/9803001
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803001
http://dx.doi.org/10.1007/JHEP07(2012)093
http://arxiv.org/abs/1203.1044
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1044
http://dx.doi.org/10.1103/PhysRevD.62.044041
http://dx.doi.org/10.1103/PhysRevD.62.044041
http://arxiv.org/abs/hep-th/0002111
http://inspirehep.net/search?p=find+EPRINT+hep-th/0002111
http://dx.doi.org/10.1103/PhysRevD.65.024006
http://dx.doi.org/10.1103/PhysRevD.65.024006
http://arxiv.org/abs/hep-th/0103231
http://inspirehep.net/search?p=find+EPRINT+hep-th/0103231
http://dx.doi.org/10.1088/0264-9381/31/2/025016
http://dx.doi.org/10.1088/0264-9381/31/2/025016
http://arxiv.org/abs/1305.0957
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0957
http://dx.doi.org/10.1103/PhysRevD.61.024036
http://dx.doi.org/10.1103/PhysRevD.61.024036
http://arxiv.org/abs/hep-th/9907204
http://inspirehep.net/search?p=find+EPRINT+hep-th/9907204
http://dx.doi.org/10.1016/S0370-2693(99)00886-2
http://arxiv.org/abs/hep-th/9906224
http://inspirehep.net/search?p=find+EPRINT+hep-th/9906224
http://dx.doi.org/10.1103/PhysRevD.88.064057
http://arxiv.org/abs/1209.4641
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.4641
http://dx.doi.org/10.1103/PhysRevD.88.026003
http://arxiv.org/abs/1304.6821
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.6821
http://dx.doi.org/10.1088/0264-9381/29/23/235025
http://arxiv.org/abs/1206.1323
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.1323
http://dx.doi.org/10.1007/JHEP08(2013)092
http://arxiv.org/abs/1306.4004
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4004
http://dx.doi.org/10.1088/0264-9381/27/9/095015
http://arxiv.org/abs/0908.2270
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.2270
http://dx.doi.org/10.1088/0264-9381/27/2/025001
http://arxiv.org/abs/0909.0005
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0005
http://dx.doi.org/10.1088/0264-9381/27/9/095018
http://dx.doi.org/10.1088/0264-9381/27/9/095018
http://arxiv.org/abs/0911.4144
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4144
http://dx.doi.org/10.1007/JHEP12(2012)060
http://arxiv.org/abs/1208.6291
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.6291


J
H
E
P
0
3
(
2
0
1
4
)
1
1
8

[83] A.C. Wall, The generalized second law implies a quantum singularity theorem, Class. Quant.

Grav. 30 (2013) 165003 [Erratum ibid. 30 (2013) 199501] [arXiv:1010.5513] [INSPIRE].

[84] O.J. Dias, G.T. Horowitz, D. Marolf and J.E. Santos, On the nonlinear stability of

asymptotically Anti-de Sitter solutions, Class. Quant. Grav. 29 (2012) 235019

[arXiv:1208.5772] [INSPIRE].

[85] D. Marolf, Holographic thought experiments, Phys. Rev. D 79 (2009) 024029

[arXiv:0808.2845] [INSPIRE].

[86] V. Balasubramanian, B. Czech, B.D. Chowdhury and J. de Boer, The entropy of a hole in

spacetime, JHEP 10 (2013) 220 [arXiv:1305.0856] [INSPIRE].

[87] T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic

entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

[88] A.C. Wall, A proof of the generalized second law for rapidly changing fields and arbitrary

horizon slices, Phys. Rev. D 85 (2012) 104049 [arXiv:1105.3445] [INSPIRE].

– 33 –

http://dx.doi.org/10.1088/0264-9381/30/19/199501
http://dx.doi.org/10.1088/0264-9381/30/19/199501
http://arxiv.org/abs/1010.5513
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5513
http://dx.doi.org/10.1088/0264-9381/29/23/235019
http://arxiv.org/abs/1208.5772
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.5772
http://dx.doi.org/10.1103/PhysRevD.79.024029
http://arxiv.org/abs/0808.2845
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.2845
http://dx.doi.org/10.1007/JHEP10(2013)220
http://arxiv.org/abs/1305.0856
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0856
http://dx.doi.org/10.1007/JHEP11(2013)074
http://arxiv.org/abs/1307.2892
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2892
http://dx.doi.org/10.1103/PhysRevD.87.069904
http://arxiv.org/abs/1105.3445
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.3445

	Introduction
	Causal holographic information: a brief review
	Coarse-grained entropies
	Definition
	A correspondence principle
	General properties 

	The one-point entropy
	Definition of the one-point entropy
	Properties of the one-point entropy 
	Comparison with other coarse-grained entropies
	Possible tests of S(1) = chi

	The future one-point entropy
	Motivation and definition
	Properties of the future one-point entropy
	Generalization to arbitrary boundary regions

	Discussion
	chi-preserving coarse grainings
	Boundary sources

