703 research outputs found

    A quasilinear differential inclusion for viscous and rate-independent damage systems in non-smooth domains

    Get PDF
    This paper focuses on rate-independent damage in elastic bodies. Since the driving energy is nonconvex, solutions may have jumps as a function of time, and in this situation it is known that the classical concept of energetic solutions for rate-independent systems may fail to accurately describe the behavior of the system at jumps. Therefore we resort to the (by now well-established) vanishing viscosity approach to rate-independent modeling, and approximate the model by its viscous regularization. In fact, the analysis of the latter PDE system presents remarkable difficulties, due to its highly nonlinear character. We tackle it by combining a variational approach to a class of abstract doubly nonlinear evolution equations, with careful regularity estimates tailored to this specific system, relying on a q-Laplacian type gradient regularization of the damage variable. Hence for the viscous problem we conclude the existence of weak solutions, satisfying a suitable energy-dissipation inequality that is the starting point for the vanishing viscosity analysis. The latter leads to the notion of (weak) parameterized solution to our rate-independent system, which encompasses the influence of viscosity in the description of the jump regime

    The nonconforming virtual element method for eigenvalue problems

    Full text link
    We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allow to treat in the same formulation the two- and three-dimensional case.We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L^2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problem. The proposed schemes provide a correct approximation of the spectrum, in particular we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numerical tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice

    Symmetry of minimizers with a level surface parallel to the boundary

    Get PDF
    We consider the functional IΩ(v)=∫Ω[f(∣Dv∣)−v]dx,I_\Omega(v) = \int_\Omega [f(|Dv|) - v] dx, where Ω\Omega is a bounded domain and ff is a convex function. Under general assumptions on ff, G. Crasta [Cr1] has shown that if IΩI_\Omega admits a minimizer in W01,1(Ω)W_0^{1,1}(\Omega) depending only on the distance from the boundary of Ω\Omega, then Ω\Omega must be a ball. With some restrictions on ff, we prove that spherical symmetry can be obtained only by assuming that the minimizer has one level surface parallel to the boundary (i.e. it has only a level surface in common with the distance). We then discuss how these results extend to more general settings, in particular to functionals that are not differentiable and to solutions of fully nonlinear elliptic and parabolic equations

    A flexible space-variant anisotropic regularisation for image restoration with automated parameter selection

    Get PDF
    We propose a new space-variant anisotropic regularisation term for variational image restoration, based on the statistical assumption that the gradients of the target image distribute locally according to a bivariate generalised Gaussian distribution. The highly flexible variational structure of the corresponding regulariser encodes several free parameters which hold the potential for faithfully modelling the local geometry in the image and describing local orientation preferences. For an automatic estimation of such parameters, we design a robust maximum likelihood approach and report results on its reliability on synthetic data and natural images. For the numerical solution of the corresponding image restoration model, we use an iterative algorithm based on the Alternating Direction Method of Multipliers (ADMM). A suitable preliminary variable splitting together with a novel result in multivariate non-convex proximal calculus yield a very efficient minimisation algorithm. Several numerical results showing significant quality-improvement of the proposed model with respect to some related state-of-the-art competitors are reported, in particular in terms of texture and detail preservation
    • …
    corecore