694 research outputs found

    Dynamic Replanning of Low Noise Rotorcraft Operations

    Get PDF
    A new method for rapidly planning and dynamically replanning low noise rotorcraft flight operations is developed. A large database of rotorcraft maneuver segments is generated, and an acoustic cost is assigned to each segment by using a computationally efficient semiempirical rotorcraft noise modeling method that accurately models the changes in rotor noise caused by maneuvering flight. Combinatoric optimization techniques are then employed to combine these maneuver segments into a low noise optimal flight path. A simple heuristic for estimating the total acoustic cost required to reach the target location is developed and incorporated into the search algorithm, allowing the computation of low noise paths in seconds. A procedure for implementing an anytime version of the method is described, enabling feasible solutions to be dynamically replanned on the flyi.e., in fractions of a secondand refined over time to a low noise optimal solution

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Drag reduction of airframe and non-lifting rotating systems

    Get PDF
    This work was made possible through the collaboration between University of Beira Interior, CEIIA and Agusta Westland.Acting as a bridge for the development of the aeronautics sector in the European Union, the Clean Sky project is being developed in partnership with leading European manufacturers of aircraft and their components. Taking into account all the environmental problems addressed during the recent past, this project has the goal of revolutionizing the industry through the construction and operation of aircraft with a low environmental impact. Consequently, the development of this dissertation focuses on the Green Rotorcraft (GRC2) project that is part of the mentioned European programme, which aims to shorten the time to market for new solutions tested on heavy-sized utility aircraft, aerodynamically improved to reduce fuel consumption and consequent emissions. The present work shows, through a literature search focused on guidelines and studies for active and passive control methodologies, a theoretical review of methods to reduce the parasite drag of the fuselage and non-lifting rotating systems with the objective to implement them on heavy-sized helicopters, which can ensure the achievement of the primary objectives established by the European Commission for the Clean Sky programme. Consequently, design guidelines are shown with practical examples demonstrated, to give evidence and enable the development of this project. An analytical work is performed in this thesis, divided into two distinct areas: Active Horizontal Stabilizer, to trim the fuselage; and Cooling Systems, improved to reduce their net ram drag. Optimization solutions are presented in this research, showing the theoretical benefits obtained from the implementation of such changes

    Aeronautical engineering: A special bibliography with indexes, supplement 82, April 1977

    Get PDF
    This bibliography lists 311 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1977

    System-of-Systems Considerations in the Notional Development of a Metropolitan Aerial Transportation System

    Get PDF
    There are substantial future challenges related to sustaining and improving efficient, cost-effective, and environmentally friendly transportation options for urban regions. Over the past several decades there has been a worldwide trend towards increasing urbanization of society. Accompanying this urbanization are increasing surface transportation infrastructure costs and, despite public infrastructure investments, increasing surface transportation "gridlock." In addition to this global urbanization trend, there has been a substantial increase in concern regarding energy sustainability, fossil fuel emissions, and the potential implications of global climate change. A recently completed study investigated the feasibility of an aviation solution for future urban transportation (refs. 1, 2). Such an aerial transportation system could ideally address some of the above noted concerns related to urbanization, transportation gridlock, and fossil fuel emissions (ref. 3). A metro/regional aerial transportation system could also provide enhanced transportation flexibility to accommodate extraordinary events such as surface (rail/road) transportation network disruptions and emergency/disaster relief responses

    Trajectory Generation and Control for Quadrotors

    Get PDF
    This thesis presents contributions to the state-of-the-art in quadrotor control, payload transportation with single and multiple quadrotors, and trajectory generation for single and multiple quadrotors. In Ch. 2 we describe a controller capable of handling large roll and pitch angles that enables a quadrotor to follow trajectories requiring large accelerations and also recover from extreme initial conditions. In Ch. 3 we describe a method that allows teams of quadrotors to work together to carry payloads that they could not carry individually. In Ch. 4 we discuss an online parameter estimation method for quadrotors transporting payloads which enables a quadrotor to use its dynamics in order to learn about the payload it is carrying and also adapt its control law in order to improve tracking performance. In Ch. 5 we present a trajectory generation method that enables quadrotors to fly through narrow gaps at various orientations and perch on inclined surfaces. Chapter 6 discusses a method for generating dynamically optimal trajectories through a series of predefined waypoints and safe corridors and Ch. 7 extends that method to enable heterogeneous quadrotor teams to quickly rearrange formations and avoid a small number of obstacles

    A Summary of NASA Rotary Wing Research: Circa 20082018

    Get PDF
    The general public may not know that the first A in NASA stands for Aeronautics. If they do know, they will very likely be surprised that in addition to airplanes, the A includes research in helicopters, tiltrotors, and other vehicles adorned with rotors. There is, arguably, no subsonic air vehicle more difficult to accurately analyze than a vehicle with lift-producing rotors. No wonder that NASA has conducted rotary wing research since the days of the NACA and has partnered, since 1965, with the U.S. Army in order to overcome some of the most challenging obstacles to understanding the behavior of these vehicles. Since 2006, NASA rotary wing research has been performed under several different project names [Gorton et al., 2015]: Subsonic Rotary Wing (SRW) (20062012), Rotary Wing (RW) (20122014), and Revolutionary Vertical Lift Technology (RVLT) (2014present). In 2009, the SRW Project published a report that assessed the status of NASA rotorcraft research; in particular, the predictive capability of NASA rotorcraft tools was addressed for a number of technical disciplines. A brief history of NASA rotorcraft research through 2009 was also provided [Yamauchi and Young, 2009]. Gorton et al. [2015] describes the system studies during 20092011 that informed the SRW/RW/RVLT project investment prioritization and organization. The authors also provided the status of research in the RW Project in engines, drive systems, aeromechanics, and impact dynamics as related to structural dynamics of vertical lift vehicles. Since 2009, the focus of research has shifted from large civil VTOL transports, to environmentally clean aircraft, to electrified VTOL aircraft for the urban air mobility (UAM) market. The changing focus of rotorcraft research has been a reflection of the evolving strategic direction of the NASA Aeronautics Research Mission Directorate (ARMD). By 2014, the project had been renamed the Revolutionary Vertical Lift Technology Project. In response to the 2014 NASA Strategic Plan, ARMD developed six Strategic Thrusts. Strategic Thrust 3B was defined as the Ultra-Efficient Commercial VehiclesVertical Lift Aircraft. Hochstetler et al. [2017] uses Thrust 3B as an example for developing metrics usable by ARMD to measure the effectiveness of each of the Strategic Thrusts. The authors provide near-, mid-, and long-term outcomes for Thrust 3B with corresponding benefits and capabilities. The importance of VTOL research, especially with the rapidly expanding UAM market, eventually resulted in a new Strategic Thrust (to begin in 2020): Thrust 4Safe, Quiet, and Affordable Vertical Lift Air Vehicles. The underlying rotary wing analysis tools used by NASA are still applicable to traditional rotorcraft and have been expanded in capability to accommodate the growing number of VTOL configurations designed for UAM. The top-level goal of the RVLT Project remains unchanged since 2006: Develop and validate tools, technologies and concepts to overcome key barriers for vertical lift vehicles. In 2019, NASA rotary wing/VTOL research has never been more important for supporting new aircraft and advancements in technology. 2 A decade is a reasonable interval to pause and take stock of progress and accomplishments. In 10 years, digital technology has propelled progress in computational efficiency by orders of magnitude and expanded capabilities in measurement techniques. The purpose of this report is to provide a compilation of the NASA rotary wing research from ~2008 to ~2018. Brief summaries of publications from NASA, NASA-funded, and NASA-supported research are provided in 12 chapters: Acoustics, Aeromechanics, Computational Fluid Dynamics (External Flow), Experimental Methods, Flight Dynamics and Control, Drive Systems, Engines, Crashworthiness, Icing, Structures and Materials, Conceptual Design and System Analysis, and Mars Helicopter. We hope this report serves as a useful reference for future NASA vertical lift researchers

    Towards consistent visual-inertial navigation

    Get PDF
    Visual-inertial navigation systems (VINS) have prevailed in various applications, in part because of the complementary sensing capabilities and decreasing costs as well as sizes. While many of the current VINS algorithms undergo inconsistent estimation, in this paper we introduce a new extended Kalman filter (EKF)-based approach towards consistent estimates. To this end, we impose both state-transition and obervability constraints in computing EKF Jacobians so that the resulting linearized system can best approximate the underlying nonlinear system. Specifically, we enforce the propagation Jacobian to obey the semigroup property, thus being an appropriate state-transition matrix. This is achieved by parametrizing the orientation error state in the global, instead of local, frame of reference, and then evaluating the Jacobian at the propagated, instead of the updated, state estimates. Moreover, the EKF linearized system ensures correct observability by projecting the most-accurate measurement Jacobian onto the observable subspace so that no spurious information is gained. The proposed algorithm is validated by both Monte-Carlo simulation and real-world experimental tests.United States. Office of Naval Research (N00014-12-1- 0093, N00014-10-1-0936, N00014-11-1-0688, and N00014-13-1-0588)National Science Foundation (U.S.) (Grant IIS-1318392

    Aeronautical Engineering: A special bibliography with indexes, supplement 64, December 1975

    Get PDF
    This bibliography lists 288 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1975
    corecore