19 research outputs found

    Constant-time connectivity tests

    Full text link
    We present implementations of constant-time algorithms for connectivity tests and related problems. Some are implementations of slightly improved variants of previously known algorithms; for other problems we present new algorithms that have substantially better runtime than previously known algorithms (estimates of the distance to and tolerant testers for connectivity, 2-edge-connectivity, 3-edge-connectivity, eulerianity)

    Faster and Simpler Distributed Algorithms for Testing and Correcting Graph Properties in the CONGEST-Model

    Full text link
    In this paper we present distributed testing algorithms of graph properties in the CONGEST-model [Censor-Hillel et al. 2016]. We present one-sided error testing algorithms in the general graph model. We first describe a general procedure for converting ϵ\epsilon-testers with a number of rounds f(D)f(D), where DD denotes the diameter of the graph, to O((logn)/ϵ)+f((logn)/ϵ)O((\log n)/\epsilon)+f((\log n)/\epsilon) rounds, where nn is the number of processors of the network. We then apply this procedure to obtain an optimal tester, in terms of nn, for testing bipartiteness, whose round complexity is O(ϵ1logn)O(\epsilon^{-1}\log n), which improves over the poly(ϵ1logn)poly(\epsilon^{-1} \log n)-round algorithm by Censor-Hillel et al. (DISC 2016). Moreover, for cycle-freeness, we obtain a \emph{corrector} of the graph that locally corrects the graph so that the corrected graph is acyclic. Note that, unlike a tester, a corrector needs to mend the graph in many places in the case that the graph is far from having the property. In the second part of the paper we design algorithms for testing whether the network is HH-free for any connected HH of size up to four with round complexity of O(ϵ1)O(\epsilon^{-1}). This improves over the O(ϵ2)O(\epsilon^{-2})-round algorithms for testing triangle freeness by Censor-Hillel et al. (DISC 2016) and for testing excluded graphs of size 44 by Fraigniaud et al. (DISC 2016). In the last part we generalize the global tester by Iwama and Yoshida (ITCS 2014) of testing kk-path freeness to testing the exclusion of any tree of order kk. We then show how to simulate this algorithm in the CONGEST-model in O(kk2+1ϵk)O(k^{k^2+1}\cdot\epsilon^{-k}) rounds

    Tolerant Testers of Image Properties

    Get PDF
    We initiate a systematic study of tolerant testers of image properties or, equivalently, algorithms that approximate the distance from a given image to the desired property (that is, the smallest fraction of pixels that need to change in the image to ensure that the image satisfies the desired property). Image processing is a particularly compelling area of applications for sublinear-time algorithms and, specifically, property testing. However, for testing algorithms to reach their full potential in image processing, they have to be tolerant, which allows them to be resilient to noise. Prior to this work, only one tolerant testing algorithm for an image property (image partitioning) has been published. We design efficient approximation algorithms for the following fundamental questions: What fraction of pixels have to be changed in an image so that it becomes a half-plane? a representation of a convex object? a representation of a connected object? More precisely, our algorithms approximate the distance to three basic properties (being a half-plane, convexity, and connectedness) within a small additive error epsilon, after reading a number of pixels polynomial in 1/epsilon and independent of the size of the image. The running time of the testers for half-plane and convexity is also polynomial in 1/epsilon. Tolerant testers for these three properties were not investigated previously. For convexity and connectedness, even the existence of distance approximation algorithms with query complexity independent of the input size is not implied by previous work. (It does not follow from the VC-dimension bounds, since VC dimension of convexity and connectedness, even in two dimensions, depends on the input size. It also does not follow from the existence of non-tolerant testers.) Our algorithms require very simple access to the input: uniform random samples for the half-plane property and convexity, and samples from uniformly random blocks for connectedness. However, the analysis of the algorithms, especially for convexity, requires many geometric and combinatorial insights. For example, in the analysis of the algorithm for convexity, we define a set of reference polygons P_{epsilon} such that (1) every convex image has a nearby polygon in P_{epsilon} and (2) one can use dynamic programming to quickly compute the smallest empirical distance to a polygon in P_{epsilon}. This construction might be of independent interest

    Local Algorithms for Sparse Spanning Graphs

    Get PDF
    We initiate the study of the problem of designing sublinear-time (local) algorithms that, given an edge (u,v) in a connected graph G=(V,E), decide whether (u,v) belongs to a sparse spanning graph G\u27 = (V,E\u27) of G. Namely, G\u27 should be connected and |E\u27| should be upper bounded by (1+epsilon)|V| for a given parameter epsilon > 0. To this end the algorithms may query the incidence relation of the graph G, and we seek algorithms whose query complexity and running time (per given edge (u,v)) is as small as possible. Such an algorithm may be randomized but (for a fixed choice of its random coins) its decision on different edges in the graph should be consistent with the same spanning graph G\u27 and independent of the order of queries. We first show that for general (bounded-degree) graphs, the query complexity of any such algorithm must be Omega(sqrt{|V|}). This lower bound holds for graphs that have high expansion. We then turn to design and analyze algorithms both for graphs with high expansion (obtaining a result that roughly matches the lower bound) and for graphs that are (strongly) non-expanding (obtaining results in which the complexity does not depend on |V|). The complexity of the problem for graphs that do not fall into these two categories is left as an open question

    Lower Bounds for Tolerant Junta and Unateness Testing via Rejection Sampling of Graphs

    Get PDF
    We introduce a new model for testing graph properties which we call the rejection sampling model. We show that testing bipartiteness of n-nodes graphs using rejection sampling queries requires complexity Omega~(n^2). Via reductions from the rejection sampling model, we give three new lower bounds for tolerant testing of Boolean functions of the form f : {0,1}^n -> {0,1}: - Tolerant k-junta testing with non-adaptive queries requires Omega~(k^2) queries. - Tolerant unateness testing requires Omega~(n) queries. - Tolerant unateness testing with non-adaptive queries requires Omega~(n^{3/2}) queries. Given the O~(k^{3/2})-query non-adaptive junta tester of Blais [Eric Blais, 2008], we conclude that non-adaptive tolerant junta testing requires more queries than non-tolerant junta testing. In addition, given the O~(n^{3/4})-query unateness tester of Chen, Waingarten, and Xie [Xi Chen et al., 2017] and the O~(n)-query non-adaptive unateness tester of Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova, and Seshadhri [Roksana Baleshzar et al., 2017], we conclude that tolerant unateness testing requires more queries than non-tolerant unateness testing, in both adaptive and non-adaptive settings. These lower bounds provide the first separation between tolerant and non-tolerant testing for a natural property of Boolean functions

    Hard Properties with (Very) Short PCPPs and Their Applications

    Get PDF
    We show that there exist properties that are maximally hard for testing, while still admitting PCPPs with a proof size very close to linear. Specifically, for every fixed ?, we construct a property P^(?)? {0,1}^n satisfying the following: Any testing algorithm for P^(?) requires ?(n) many queries, and yet P^(?) has a constant query PCPP whose proof size is O(n?log^(?)n), where log^(?) denotes the ? times iterated log function (e.g., log^(2)n = log log n). The best previously known upper bound on the PCPP proof size for a maximally hard to test property was O(n?polylog(n)). As an immediate application, we obtain stronger separations between the standard testing model and both the tolerant testing model and the erasure-resilient testing model: for every fixed ?, we construct a property that has a constant-query tester, but requires ?(n/log^(?)(n)) queries for every tolerant or erasure-resilient tester

    Non-Local Probes Do Not Help with Graph Problems

    Full text link
    This work bridges the gap between distributed and centralised models of computing in the context of sublinear-time graph algorithms. A priori, typical centralised models of computing (e.g., parallel decision trees or centralised local algorithms) seem to be much more powerful than distributed message-passing algorithms: centralised algorithms can directly probe any part of the input, while in distributed algorithms nodes can only communicate with their immediate neighbours. We show that for a large class of graph problems, this extra freedom does not help centralised algorithms at all: for example, efficient stateless deterministic centralised local algorithms can be simulated with efficient distributed message-passing algorithms. In particular, this enables us to transfer existing lower bound results from distributed algorithms to centralised local algorithms
    corecore