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Abstract
We initiate the study of the problem of designing sublinear-time (local) algorithms that, given an
edge (u, v) in a connected graph G = (V,E), decide whether (u, v) belongs to a sparse spanning
graph G′ = (V,E′) of G. Namely, G′ should be connected and |E′| should be upper bounded
by (1 + ε)|V | for a given parameter ε > 0. To this end the algorithms may query the incidence
relation of the graph G, and we seek algorithms whose query complexity and running time (per
given edge (u, v)) is as small as possible. Such an algorithm may be randomized but (for a fixed
choice of its random coins) its decision on different edges in the graph should be consistent with
the same spanning graph G′ and independent of the order of queries.

We first show that for general (bounded-degree) graphs, the query complexity of any such
algorithm must be Ω(

√
|V |). This lower bound holds for graphs that have high expansion. We

then turn to design and analyze algorithms both for graphs with high expansion (obtaining a
result that roughly matches the lower bound) and for graphs that are (strongly) non-expanding
(obtaining results in which the complexity does not depend on |V |). The complexity of the
problem for graphs that do not fall into these two categories is left as an open question.
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1 Introduction

When dealing with large graphs, it is often important to work with a sparse subgraph that
maintains essential properties, such as connectivity, bounded diameter and other distance
metric properties, of the original input graph. Can one provide fast random access to such a
sparsified approximation of the original input graph? In this work, we consider the property
of connectivity: Given a connected graph G = (V,E), find a sparse subgraph of G′ that
spans G. This task can be accomplished by constructing a spanning tree in linear time.
However, it can be crucial to quickly determine whether a particular edge e belongs to such
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a subgraph G′, where by “quickly” we mean in time much faster than constructing all of G′.
The hope is that by inspecting only some small local neighborhood of e, one can answer in
such a way that maintains consistency with the same G′ on queries to all edges. We focus on
such algorithms, which are of use when we do not need to know the answer for every edge at
any single point in time, or if there are several independent processes that want to determine
the answer for edges of their choice, possibly in parallel.

If we insist that G′ would have the minimum number of edges sufficient for spanning G,
namely, that G′ be a spanning tree, then it is easy to see that the task cannot be performed in
general without inspecting almost all of G. Interestingly, this is in contrast to the seemingly
related problem of estimating the weight of a minimum spanning tree in sublinear-time,
which can be performed with complexity that does not depend on n def= |V | [11] (see further
discussion in Subsection 1.3.5). To verify this observe that if G consists of a single path,
then the algorithm must answer positively on all edges, while if G consists of a cycle, then
the algorithm must answer negatively on one edge. However, the two cases cannot be
distinguished without inspecting a linear number of edges. If on the other hand we allow the
algorithm some more slackness, and rather than requiring that G′ be a tree, require that it
be relatively sparse, i.e., contains at most (1 + ε)n edges, then the algorithm may answer
positively on all cycle edges, so distinguishing between these two cases is no longer necessary.

We thus consider the above relaxed version of the problem and also allow the algorithm
a small failure probability (for a precise formal definition, see Section 2). Our first finding
(Theorem 2) is that even when allowing this relaxation, for general (bounded-degree) graphs,
the algorithm must inspect Ω(

√
n) edges in G in order to decide for a given e whether it

belongs to the sparse spanning graph G′ defined by the algorithm. We then turn to design
several algorithms and analyze their performance for various families of graphs. The formal
statements of our results can be found in Theorems 3, 4, 5, 6, and 7 as well as Corollaries 12
and 13. Here we provide a high-level description of our algorithms and the types of graphs
they give meaningful results for.

1.1 Our Results

1.1.1 Expanders
The first algorithm we provide, the Centers’ Algorithm (which is discussed further in
Subsection 1.2), gives meaningful results for graphs in which the neighborhoods of almost
all the vertices in the graph expands in a similar rate. In particular, for graphs with high
expansion we get query and running time complexity nearly O(n1/2). Since our lower bound
applies for graphs with high expansion we obtain that for these graphs, our algorithm is
nearly optimal in terms of the complexity in n. More specifically, if the expansion of small
sets (of size roughly O(n1/2)) is Ω(d), where d is the maximum degree in the graph, then the
complexity of the algorithm is n1/2+O(1/ log d). In general, we obtain a sublinear complexity
for graphs with expansion (of small sets) that is at least d1/2+1/ logn.

1.1.2 Anti-expanders (Hyperfinite Graphs) and Slowly Expanding
Graphs

A graph is ρ-hyperfinite for a function ρ : R+ → R+, if its vertices can be partitioned into
subsets of size at most ρ(ε) that are connected and such that the number of edges between
the subsets is at most εn. For the family of hyperfinite graphs we provide an algorithm, the
Kruskal-based algorithm, which has success probability 1 and time and query complexity
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O(dρ(ε)). In particular, the complexity of the algorithm does not depend on n. (where we
assume that ρ(ε) is known).

1.1.2.1 Subfamilies of Hyperfinite Graphs

For the subfamily of hyperfinite graphs known as graphs with subexponential-growth, we can
estimate the diameter of the sets in the partition and hence replace ρ(ε) with such an estimate.
This reduces the complexity of the algorithm when the diameter is significantly smaller than
ρ(ε), and removes the assumption that ρ(ε) is known. For the subfamily of graphs with an
excluded minor (e.g., planar graphs) we can obtain a quasi-polynomial dependence on d and
1/ε by using a partition oracle for such graphs [21], and the same technique gives polynomial
dependence on these parameter for bounded-treewidth graphs (applying [14]).

1.1.2.2 Graphs with Slow Growth Rate

If we do not require that the algorithm work for every ε but rather for some fixed constant ε,
then the Kruskal-based algorithm gives sublinear complexity under a weaker condition than
that defining (ρ-)hyperfinite graphs (in which the desired partition should exist for every ε).
Roughly speaking, the sizes of the neighborhoods of vertices should have bounded growth
rate, where the rate may be exponential but the base of the exponent should be bounded
(for details, see Theorem 7).

1.1.2.3 Graphs with an Excluded Minor – the Weighted Case

In the full version of this paper [23] we provide a local minimum weight spanning graph
algorithm, the Borůvka based algorithm, for weighted graphs with an excluded fixed minor.
The minimum weight spanning graph problem is a generalization of the sparse spanning
graph problem for the weighted case. The requirement is that the weight of the graph G′
is upper bounded by (1 + ε) times the minimum weight of a spanning tree. The time and
query complexity of the algorithm are quasi-polynomial in 1/ε, d and W , where W is the
maximum weight of an edge. We use ideas from [21], but the algorithm differs from the
abovementioned partition-oracle based algorithm for the unweighted case.

1.2 Our Algorithms
On a high-level, underlying each of our algorithms is the existence of a (global) partition of
the graph vertices where edges within parts are dealt with differently than edges between
parts, either explicitly by the algorithm, or in the analysis. The algorithms differ in the way
the partitions are defined, where in particular, the number of parts in the partition may
be relatively small or relatively large, and the subgraphs they induce may be connected or
unconnected. The algorithms also differ in the way the spanning graph edges are chosen,
and in particular whether only some of the edges between parts are selected or possibly all.
While one of our algorithms works in a manner that is oblivious of the partition (and the
partition is used only in the analysis), the other algorithms need to determine in a local
manner whether the end points of the given edge belong to the same part or not, as a first
step in deciding whether the edge belongs to the sparse spanning graph.

Centers’ Algorithm. This algorithm is based on the following idea. Suppose we can partition
the graph vertices into

√
εn disjoint parts where each part is connected. If we now take

a spanning tree over each part and select one edge between every two parts that have an
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edge between them, then we obtain a connected subgraph with at most (1 + ε)n edges. The
partition is defined based on

√
εn special center vertices, which are selected uniformly at

random. Each vertex is assigned to the closest center (breaking ties according to a fixed
order over the centers), unless it is further than some threshold k from all centers, in which
case it is a singleton in the partition. This definition ensures the connectivity of each part.

Given an edge (x, y), the algorithm finds the centers to which x and y are assigned (or
determines that they are singletons). If x and y are assigned to the same center, then the
algorithm determines whether the edge between them belongs to the BFS-tree rooted at the
center. If they belong to different centers, then the algorithm determines whether (x, y) is
the single edge allowed to connect the parts corresponding to the two centers (according to a
prespecified rule).1 If one of them is a singleton, then (x, y) is taken to the spanning graph.

From the above description one can see that there is a certain tension between the
complexity of the algorithm and the number of edges in the spanning graph G′. On one hand,
the threshold k should be such that with high probability (over the choice of the centers)
almost all vertices have a center at distance at most k from them. Thus we need a lower
bound (of roughly

√
n/ε) on the size of the distance-k neighborhood of (most) vertices. On

the other hand, we also need an upper bound on the size of such neighborhoods so that
we can efficiently determine which edges are selected between parts. Hence, this algorithm
works for graphs in which the sizes of the aforementioned local neighborhoods do not vary
by too much and its complexity (in terms of the dependence on n) is Õ(

√
n). In particular

this property holds for good expander graphs. We note that the graphs used in our lower
bound construction have this property, so for such graphs we get a roughly tight result.

Kruskal-based Algorithm. This algorithm is based on the well known algorithm of Kruskal
[19] for finding a minimum weight spanning tree in a weighted graph. We use the order
over the edges that is defined by the ids of their endpoints as (distinct) “weights”. This
ensures that there is a unique “minimum weight” spanning tree. Here the algorithm simply
decides whether to include an edge in the spanning graph G′ if it does not find evidence in
the distance-k neighborhood of the edge that it is the highest ranking (maximum weight)
edge on some cycle.

Borůvka-based Algorithm. This algorithm is based on the “Binary Borůvka” algorithm [36]
for finding a minimum-weight spanning tree. Recall that Borůvka’s algorithm begins by first
going over each vertex in the graph and adding the lightest edge adjacent to that vertex.
Then the algorithm continues joining the formed clusters in a similar manner until a tree
spanning all vertices is completed. We aim to locally simulate the execution of Borůvka’s
algorithm to a point that on one hand all the clusters are relatively small and on the other
hand the number of edges outside the clusters is small. The size of the clusters directly
affect the complexity of the algorithm and thus our main challenge is in maintaining these
clusters small. To this end we use two different techniques. The first technique is to control
the growth of the clusters at each iteration by using a certain random orientation on the
edges of the graph. This controls the size of the clusters to some extent. In order to deal
with clusters that exceeded the required bound (since the local simulation is recursive even
small deviations can have large impact on the complexity), after each iteration we separate

1 In fact, it may be the case that for two parts that have edges between them, none of the edges are taken,
thus making the argument that the subgraph G′ is connected more subtle.
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large clusters into smaller ones (here we use the fact that the graph excludes a fixed minor
in order to obtain a small separator to each cluster).

1.3 Related Work

1.3.1 Local Algorithms for Other Graph Problems

The model of local computation algorithms as used in this work, was defined by Rubinfeld et al.
[37] (see also [2]). Such algorithms for maximal independent set, hypergraph coloring, k-CNF
and maximum matching are given in [37, 2, 26, 27]. This model generalizes other models that
have been studied in various contexts, including locally decodable codes (e.g., [25]), local
decompression [13], and local filters/reconstructors [1, 38, 9, 18, 17, 12]. Local computation
algorithms that give approximate solutions for various optimization problems on graphs,
including vertex cover, maximal matching, and other packing and covering problems, can
also be derived from sublinear time algorithms for parameter estimation [33, 28, 31, 15, 41].

Campagna et al. [10] provide a local reconstructor for connectivity. Namely, given a
graph which is almost connected, their reconstructor provides oracle access to the adjacency
matrix of a connected graph which is close to the original graph. We emphasize that our
model is different from theirs, in that they allow the addition of new edges to the graph,
whereas our algorithms must provide spanning graphs whose edges are present in the original
input graph.

1.3.2 Distributed Algorithms

The name local algorithms is also used in the distributed context [29, 30, 24]. As observed by
Parnas and Ron [33], local distributed algorithms can be used to obtain local computation
algorithms as defined in this work, by simply emulating the distributed algorithm on a
sufficiently large subgraph of the graph G. However, while the main complexity measure in
the distributed setting is the number of rounds (where it is usually assumed that each message
is of length O(logn)), our main complexity measure is the number of queries performed on
the graph G. By this standard reduction, the bound on the number of queries (and hence
running time) depends on the size of the queried subgraph and may grow exponentially with
the number of rounds. Therefore, this reduction gives meaningful results only when the
number of rounds is significantly smaller than the diameter of the graph.

The problem of computing a minimum weight spanning tree in this model is a central
one. Kutten and Peleg [20] provided an algorithm that works in O(

√
n log∗ n+D) rounds,

where D denotes the diameter of the graph. Their result is nearly optimal in terms of the
complexity in n, as shown by Peleg and Rubinovich [34] who provided a lower bound of
Ω(
√
n/ logn) rounds (when the length of the messages must be bounded).
Another problem studied in the distributed setting that is related to the one studied

in this paper, is finding a sparse spanner. The requirement for spanners is much stronger
since the distortion of the distance should be as minimal as possible. Thus, to achieve this
property, it is usually the case that the number of edges of the spanner is super-linear in
n. Pettie [35] was the first to provide a distributed algorithm for finding a low distortion
spanner with O(n) edges without requiring messages of unbounded length or O(D) rounds.
The number of rounds of his algorithm is log1+o(1) n. Hence, the standard reduction of [33]
yields a local algorithm with a trivial linear bound on the query complexity.
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1.3.3 Parallel Algorithms
The problems of computing a spanning tree and a minimum weight spanning tree were
studied extensively in the parallel computing model (see, e.g., [6], and the references therein).
However, these parallel algorithms have time complexity which is at least logarithmic in n
and therefore do not yield an efficient algorithm in the local computation model. See [37, 2]
for further discussion on the relationship between the ability to construct local computation
algorithms and the parallel complexity of a problem.

1.3.4 Local Cluster Algorithms
Local algorithms for graph theoretic problems have also been given for PageRank compu-
tations on the web graph [16, 7, 39, 4, 3]. Local graph partitioning algorithms have been
presented in [40, 4, 5, 42, 32], which find subsets of vertices whose internal connections are
significantly richer than their external connections in time that depends on the size of the
cluster that they output. Even when the size of the cluster is guaranteed to be small, it is
not obvious how to use these algorithms in the local computation setting where the cluster
decompositions must be consistent among queries to all vertices.

1.3.5 Other Related Sublinear-time Approximation Algorithms for
Graphs

The problem of estimating the weight of a minimum weight spanning tree in sublinear time
was considered by Chazelle, Rubinfeld and Trevisan [11]. They describe an algorithm whose
running time depends on the approximation parameter, the average degree and the range
of the weights, but does not directly depend on the number of nodes. A question that has
been open since that time, even before local computation algorithms were formally defined,
is whether it is possible to quickly determine which edges are in the minimum spanning tree.
Our lower bound for spanning trees applies to this question.

2 Preliminaries

The graphs we consider have a known degree bound d, and we assume we have query access
to their incidence-lists representation. Namely, for any vertex v and index 1 ≤ i ≤ d it is
possible to obtain the ith neighbor of v by performing a query to the graph (if v has less
than i neighbors, then a special symbol is returned).2 If the graph is edge-weighted, then
the weight of the edge is returned as well. The number of vertices in the graph is n and we
assume that each vertex v has an id, id(v), where there is a full order over the ids.

Let G = (V,E) be a graph. We denote the distance between two vertices u and v in G
by dG(u, v). For vertex v ∈ V and an integer k, let Γk(v,G) denote the set of vertices at
distance at most k from v and let Ck(v,G) denote the subgraph of G induced by Γk(v,G).
Let nk(G) def= maxv∈V |Γk(v,G)|. When the graph G is clear from the context, we shall use
the shorthand d(u, v), Γk(v) and Ck(v) for dG(u, v), Γk(v,G) and Ck(v,G), respectively.

I Definition 1 (Local Algorithms for sparse spanning graphs). An algorithm A is a local sparse
spanning graph algorithm if, given parameters n ≥ 1, ε ≥ 0 and 0 ≤ δ < 1 and given query

2 Graphs are allowed to have self-loops and multiple edges, but for our problem we may assume that
there are no self-loops and multiple-edges (since the answer on a self-loop can always be negative, and
the same is true for all but at most one among a set of parallel edges).
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access to the incidence-lists representation of a connected graph G = (V,E), the algorithm
A provides query access to a subgraph of G, G′ = (V,E′) such that the following hold:
1. G′ is connected with probability 1.
2. |E′| ≤ (1 + ε) · n with probability at least 1− δ, where the probability is taken over the

internal coin flips of A.
3. E′ is determined by G and the internal randomness of the oracle.
Namely, on input (u, v) ∈ E, A returns whether (u, v) ∈ E′ and for any sequence of queries,
A answers consistently with the same G′.

An algorithm A is a local sparse spanning graph algorithm with respect to a class of graphs
C if the above conditions hold, provided that the input graph G belongs to C.

We are interested in local algorithms that have small query complexity, namely, that perform
few queries to the graph (for each edge they are queried on) and whose running time
(per queried edge) is small as well. As for the question of randomness and the implied
space complexity of the algorithms, we assume we have a source of (unbounded) public
randomness. Under this assumption, our algorithms do not keep a state and a global space
is not required. However, if unbounded public randomness is not available, then we note
that for our algorithms this is not an issue: One of our algorithms (see Section 5) is actually
deterministic, and for the others, the total number of random bits that is actually required
(over all possible queries) is upper bounded by the running time of the algorithm, up to a
multiplicative factor of O(logn). In what follows we sometimes describe a global algorithm
first, i.e., an algorithm that reads the entire graph and decides the subgraph G′. After that
we describe how to locally emulate the global algorithm. Namely on query e ∈ E, we emulate
the global algorithm decision on e while performing only a sublinear number of queries.

3 A Lower Bound for General Bounded-Degree Graphs

I Theorem 2. Any local sparse spanning graph algorithm has query complexity Ω(
√
n). This

result holds for graphs with a constant degree bound d and for constant 0 ≤ ε ≤ 2d/3 and
0 ≤ δ < 1/3.

The full proof can be found in the full version of this paper. Here we give the high-level
idea. Let V be a set of vertices and let v0 and v1 be a pair of distinct vertices in V . In
order to prove the lower bound we construct two families of random d-regular graphs over
V , F+

(v0,v1) and F−(v0,v1). F
+
(v0,v1) is the family of d-regular graphs, G = (V,E), for which

(v0, v1) ∈ E. F−(v0,v1) is the family of d-regular graphs for which (v0, v1) ∈ E and the removal
of (v0, v1) leaves the graph with two connected components, each of size 3 4 n/2. We prove
that given (v0, v1), any algorithm that performs at most

√
n/c queries for some sufficiently

large constant c > 1 cannot distinguish the case in which the graph is drawn uniformly
at random from F+

(v0,v1) from the case in which the graph is drawn uniformly at random
from F−(v0,v1). Essentially, if the number of queries is at most

√
n/c, then with high constant

probability, each new query to the graph returns a new random vertex in both families. By
“new vertex” we mean a vertex that neither appeared in the query history nor in the answers
history. Since the algorithm must answer consistently with a connected graph G′, for every

3 Although a graph that is drawn uniformly from F+
(v0,v1) (or F−(v0,v1)) might be disconnected, this event

happens with negligible probability [8]. Hence, the proof of the lower bound remains valid even if we
consider F+

(v0,v1) ∩ C and F−(v0,v1) ∩ C where C is the family of connected graphs.
4 Assume the without loss of generality that n · d is even and that (n · d)/2 is odd.
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graph in the support of F−(v0,v1) it must answer with probability 1 positively on the query
(v0, v1). But since the distributions on query-answer histories in both cases are very close
statistically, this can be shown to imply that there exist graphs for which the algorithm
answers positively on a large fraction of the edges.

4 Graphs with High Expansion

In this section we describe an algorithm that gives meaningful results for graphs in which,
roughly speaking, the local neighborhood of almost all vertices expands in a similar rate. In
particular this includes graphs with high expansion. In fact we only require that the graph
expands quickly for small sets: A graph G is an (s, α)-vertex expander if for all sets S of
size at most s, N(S) is of size at least α|S|, where N(S) denotes the set of vertices adjacent
to vertices in S that are not in S. Define hs(G) to be the maximum α such that G is an
(s, α)-vertex expander. We shall prove the following theorem.

I Theorem 3. Given a graph G = (V,E) with degree bound d, there is a local sparse
spanning graph algorithm with query complexity and running time (d · s)loghs(G) d where
s = s(n, ε, δ) def=

√
2n/ε · log(n/δ).

By Theorem 3, for bounded degree graphs with high expansion we get query and running
time complexity nearly O(n1/2). In particular, if hs(G) = Ω(d) for s = s(n, ε, δ) then the
complexity is n1/2+O(1/ log d). In fact, even for hs(g) ≥ d1/2+1/ logn the complexity is o(n).
Recall that in the construction of our lower bound of Ω(n1/2) we construct a pair of families of
d-regular random graphs. In both families, the expansion (of small sets) is Ω(d), implying that
for these families the gap between our lower bound and upper bound is at most nO(1/ log d).

Our algorithm, the local Centers’ Algorithm (which appears as Algorithm 1), is based on a
global algorithm which is presented in Subsection 4.1. The local Centers’ Algorithm appears
in Subsection 4.2 and it is analyzed in the proof of Theorem 4.

4.1 The Global Algorithm
For a given parameter k the global algorithm first defines a global partition of (part or all of)
the graph vertices in the following randomized manner.
1. Select ` =

√
εn/2 centers uniformly and independently at random from V , and denote

them v1, . . . , v`.
2. Initially, all vertices are unassigned.
3. For i = 0, . . . , k, for j = 1, . . . , `:

Let Lij denote the vertices in the ith level of the BFS tree of vj (where L0
j = {vj}). Assign

to vj all vertices in Lij that were not yet assigned to any other vj′ .
Let S(vj) denote the set of vertices that are assigned to the center vj . By the above
construction, the subgraph induced by S(vj) is connected.

The subgraph G′ = (V,E′) is defined as follows.
1. For each center v, let E′(v) denote the edges of a BFS-tree that spans the subgraph

induced by S(v) (where the BFS-tree is determined by the order over the ids of the
vertices in S(v)). For each center v, put in E′ all edges in E′(v).

2. For each vertex w that does not belong to any S(v) for a center v, put in E′ all edges
incident to w.

APPROX/RANDOM’14



834 Local Algorithms for Sparse Spanning Graphs

3. For each pair of centers u and v, let P (u, v) be the shortest path between u and v that
has minimum lexicographic order among all shortest paths (as determined by the ids of
the vertices on the path). If all vertices on this path belong either to S(u) or to S(v),
then add to E′ the single edge (x, y) ∈ P (u, v) such that x ∈ S(u) and y ∈ S(v), where
we denote this edge by e(u, v).

In what follows we shall prove that G′ is connected and that for k that is sufficiently large,
G′ is sparse with high probability as well. We begin by proving the latter claim. To this
end we define a parameter which determines the minimum distance needed for most vertices
to see roughly

√
n vertices. More formally, define kCε,δ(G) to be the minimum distance k

ensuring that all but an ε/(2d)-fraction of the vertices have at least s(n, ε, δ) vertices in their
k-neighborhood. That is,

kCε,δ(G) def= min
k
{|{v : Γk(v) ≥ s(n, ε, δ)}| ≥ (1− ε/(2d)) |V |} . (1)

We next establish that for k ≥ kCε,δ(G) it holds that |E′| ≤ (1 + ε)n with probability at least
1− δ, over the random choice of centers. Since for j = 1, . . . , ` the sets E′(vj) are disjoint,
we have that

∣∣∣⋃`j=1 E
′(vj)

∣∣∣ < n. Since there is at most one edge e(u, v) added to E′ for each
pair of centers u, v and the number of centers is ` =

√
εn/2, the total number of these edges

in E′ is at most εn/2. Finally, Let T ⊆ V denote the subset of the vertices, v, such that
|Γk(v)| ≥ s(n, ε, δ). Since the centers are selected uniformly, independently at random, for
each w ∈ T the probability that no vertex in Γk(w) is selected to be a center is at most
(1 − log(n/δ)/

√
εn/2)

√
εn/2 < δ/n. By taking a union bound over all vertices in T , with

probability at least 1 − δ, every w ∈ T is assigned to some center v. Since the number of
vertices in V \ T is at most εn/(2d) and each contributes at most d edges to E′, we get the
desired upper bound on |E′|.

It remains to establish that G′ is connected. To this end it suffices to prove that there is
a path in G′ between every pair of centers u and v. This suffices because for each vertex
w that is assigned to some center v, there is a path between w and v (in the BFS-tree of
v), and for each vertex w that is not assigned to any center, all edges incident to w belong
to E′. The proof proceeds by induction on d(u, v) and the sum of the ids of u and v as
follows. For the base case consider a pair of centers u and v for which d(u, v) = 1. In this
case, the shortest path P (u, v) consists of a single edge (u, v) where u ∈ S(u) and v ∈ S(v),
implying that (u, v) ∈ E′. For the induction step, consider a pair of centers u and v for which
d(u, v) > 1, and assume by induction that the claim holds for every pair of centers (u′, v′)
such that either d(u′, v′) < d(u, v) or d(u′, v′) = d(u, v) and id(u′) + id(v′) < id(u) + id(v).
Similarly to base case, if the set of vertices in P (u, v) is contained entirely in S(u) ∪ S(v),
then u and v are connected by construction. Namely, P (u, v) = (u, x1, . . . , xt, ys, . . . , y1, v)
where x1, . . . , xt ∈ S(u) and y1, . . . , ys ∈ v. The edge (xt, ys) was added to E′ and there
are paths in the BFS-trees of u and v between u and xt and between v and ys, respectively.
Otherwise, we consider two cases.
1. There exists a vertex x in P (u, v), and a center (different from u and v), y, such that

x ∈ S(y). Note that this must be the case when d(u, v) ≤ 2k+ 1. This implies that either
d(x, y) < d(x, v) or that d(x, y) = d(x, v) and id(y) < id(v). Hence, either

d(u, y) ≤ d(u, x) + d(x, y) < d(u, x) + d(x, v) = d(u, v)

or d(u, y) = d(u, v) and id(u) + id(y) < id(u) + id(v). In either case we can apply the
induction hypothesis to obtain that u and y are connected. A symmetric argument gives
us that v and y are connected.
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2. Otherwise, all the vertices on the path P (u, v) that do not belong to S(u) ∪ S(v) are
vertices that are not assigned to any center. Since E′ contains all edges incident to such
vertices, u and v and connected in this case as well.

4.2 The Local Algorithm

Algorithm 1 (Centers’ Algorithm)
For a random choice of ` =

√
εn/2 centers, v1, . . . , v` in V (which is fixed for all queries),

and for a given parameter k, on query (x, y):
1. Perform a BFS to depth k in G from x and from y.
2. If either Γk(x) ∩ {v1, . . . , v`} = ∅ or Γk(y) ∩ {v1, . . . , v`} = ∅, then return YES.
3. Otherwise, let u be the center closest to x and let v be the center closest to y (if there is

more than one such center, break ties according to the order v1, . . . , v`).
4. If u = v then do the following:

If d(x, u) = d(y, u), then return NO.
If d(y, u) = d(x, u) + 1, then consider all neighbors of y, w, on a shortest path between
y and u. If there exists such neighbor w for which id(w) < id(x), then return NO,
otherwise, return YES.

5. If u 6= v, then perform a BFS of depth k from both of the centers, u and v. Find the
shortest path between u and v that has the smallest lexicographical order, and denote it
by P (u, v). Return YES if both x ∈ P (u, v) and y ∈ P (u, v). Otherwise, return NO.

I Theorem 4. Algorithm 1, when run with k ≥ kCε,δ(G), is a local sparse spanning graph
algorithm. The query complexity and running time of the algorithm are O(d · nk(G)).

Proof. We prove the theorem by showing that Algorithm 1 is a local emulation of the global
algorithm that appears in Subsection 4.1. Given x and y, by performing a BFS to depth k
from each of the two vertices, Algorithm 1 either finds the centers u and v that x and y are
(respectively) assigned to (by the global algorithm, for the same selection of centers), or for
at least one of them it finds no center in the distance k neighborhood. In the latter case, the
edge (x, y) belongs to E′, and Algorithm 1 returns a positive answer, as required. In the
former case, there are two subcases.
1. If x and y are assigned to the same center, that is, u = v, then Algorithm 1 checks

whether the edge (x, y) is an edge in the BFS-tree of u (i.e., (x, y) ∈ E′(u)). If x and y
are on the same level of the tree (i.e., are at the same distance from u), then Algorithm 1
returns a negative answer, as required. If y is one level further than x, then Algorithm 1
checks whether y has another neighbor w that is also assigned to u, is on the same level
as x and has a smaller id than x. Namely, a neighbor of y that is on a shortest path
between y and u and has a smaller id than x. If this is the case, then the edge (x, y)
does not belong to the tree (but rather the edge (w, y)) so that the algorithm returns a
negative answer. If no such neighbor of y exists, then the algorithm returns a positive
answer (as required).

2. If x and y are assigned to different centers, that is, u 6= v, then Algorithm 1 determines
whether (x, y) = e(u, v) exactly as defined in the global algorithm: The algorithm finds
P (u, v) and returns a positive answer if and only if (x, y) belongs to P (u, v). Notice that
from the fact that x ∈ S(u) and y ∈ S(v) and the fact that (x, y) belongs to P (u, v) it
follows that all the vertices on P (u, v) belong to either S(u) or S(v). This is implied
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from the fact that for every center u and a vertex which is assigned to u, w, it holds that
every vertex on a shortest path between u and w is also assigned to u.

Finally, the bound on the query complexity and running time of Algorithm 1 follows directly
by inspection of the algorithm. J

4.3 The Parameter k

Recall that Algorithm 1 is given a parameter k that determines the depth of the BFS that
the algorithm performs. By Theorem 4 is suffices to require that k ≥ kCε,δ(G) in order to
ensure that the spanning graph obtained by the algorithm is sparse. For the case that k is
not given in advance we describe next how to compute k such that with probability at least
1− δ it holds that

kCε,δ(G) ≤ k ≤ k′Cε,δ(G) , (2)

where k′Cε,δ(G) = mink
{
|{v : Γk(v) ≥ s(n, ε, δ)}| ≥

(
1− εd

4
)
|V |
}
. Select uniformly at random

s = Θ(1/ε2 log(1/δ)) vertices from V . Let v1, . . . , vs denote the selected vertices. For each
vertex in the sample vi, let ki = mink{Γk(vi) ≥ s(n, ε, δ)}. Assume without loss of generality
that k1 ≤ . . . ,≤ ks and set k = kd1− 3ε

8d e
. By Chernoff’s inequality we obtain that with

probability greater than 1− δ Equation (2) holds.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Assume without loss of generality that kCε,δ(G) is unknown and we
run Algorithm 1 with k such that kCε,δ(G) ≤ k ≤ k′Cε,δ(G). From the fact that nk(G) ≥
min{hs(G)k, s} we obtain that k′Cε,δ(G) ≤ log s

loghs(G) for s = s(n, ε, δ). On the other hand, since
the degree is bounded by d, it holds that nk(G) ≤ 1 + dk. Hence, by Theorem 4 we obtain
that the query complexity is bounded by d · (1 + d

log s
loghs(G) ), as desired. J

5 Hyperfinite Graphs

In this section we provide an algorithm that is designed for the family of hyperfinite graphs.
Roughly speaking, hyperfinite graphs are non-expanding graphs. Formally, a graph G = (V,E)
is (ε, k)-hyperfinite if it is possible to remove at most ε|V | edges of the graph so that the
remaining graph has connected components of size at most k. We refer to these edges as the
separating edges of G. A graph G is ρ-hyperfinite for ρ : R+ → R+ if for every ε ∈ (0, 1], G
is (ε, ρ(ε))-hyperfinite. The family of hyperfinite graphs includes many subfamilies of graphs
such as graphs with an excluded-minor (e.g. planar graphs), graphs that have subexponential
growth and graphs with bounded treewidth. The complexity of our algorithm does not
depend on the size of the graph as stated in the next theorem.

I Theorem 5. Algorithm 2, when run with k = ρ(ε), is a local sparse spanning graph
algorithm for the family of ρ-hyperfinite graphs with a degree bounded by d. The query
complexity and running time of Algorithm 2 are O(dρ(ε)+1), and its success probability is 1.

We note that we could also obtain a local sparse spanning graph algorithm for hyperfinite
graphs by using the partition oracle of [15] (see the reduction described in Section 6) but the
complexity would be higher (O(ddρ(ε))).

We present Algorithm 2 in Subsection 5.1. In Subsection 5.2 we give an improved analysis
for the subfamily of graphs that have subexponential growth.
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5.1 The Algorithm
Recall that Kruskal’s algorithm for finding a minimum-weight spanning tree in a weighted
connected graph works as follows. First it sorts the edges of the graph from minimum to
maximum weight (breaking ties arbitrarily). Let this order by e1, . . . em. It then goes over
the edges in this order, and adds ei to the spanning tree if and only if it does not close a cycle
with the previously selected edges. It is well known (and easy to verify), that if the weights
of the edges are distinct, then there is a single minimum weight spanning tree in the graph.
For an unweighted graph G, consider the order defined over its edges by the order of the ids
of the vertices. Namely, we define a ranking r of the edges as follows: r(u, v) < r(u′, v′) if
and only if min{id(u), id(v)} < min{id(u′), id(v′)} or min{id(u), id(v)} = min{id(u′), id(v′)}
and max{id(u), id(v)} < max{id(u′), id(v′)}. If we run Kruskal’s algorithm using the rank
r as the weight function (where there is a single ordering of the edges), then we obtain a
spanning tree of G.

While the local algorithm we give in this section (Algorithm 2) is based on the afore-
mentioned global algorithm, it does not exactly emulate it, but rather emulates a certain
relaxed version of it. In particular, it will answer YES for every edge selected by the global
algorithm (ensuring connectivity), but may answer YES also on edges not selected by the
global algorithm.

Algorithm 2 (Kruskal-based Algorithm)
The algorithm is provided with an integer parameter k, which is fixed for all queries. On
query (x, y):
1. Perform a BFS to depth k from x, thus obtaining the subgraph Ck(x) induced by Γk(x)

in G.
2. If (x, y) is the edge with largest rank on some cycle in Ck(x), then answer NO, otherwise,

answer YES.

Theorem 5. By the description of Algorithm 2 it directly follows that its answers are
consistent with a connected subgraph G′. We next show that the algorithm returns YES
on at most (1 + ε)n edges. Let k = ρ(ε). For a vertex u, let C̃(u) = (Ṽ (u), Ẽ(u)) denote
the component of u after the removal of the separating edges (as defined at the start of the
subsection). We next prove that G′ does not contain a cycle on the subgraph induced on
Ṽ (u). In our proof we use properties of C̃(u), however, we note that the algorithm does
not compute C̃(u). By definition, |Ṽ (u)| ≤ k, thus the diameter of C̃(u) is at most k − 1.
This implies that Ck(u) contains C̃(u) for every u ∈ G. Let σ be a cycle in C̃(u) and let
e = (w, v) be the edge in σ with the largest rank. Since C̃(u) = C̃(v) = C̃(w) it follows that
on query (w, v) the algorithm returns NO. We conclude that for every u ∈ V the algorithm
returns YES only on at most |Ṽ (u)| − 1 among the edges in Ẽ(u). Since the number of edges
that do not belong to any component C̃(u), that is, the number of separating edges in an
(ε, k = ρ(ε))-hyperfinite graph is at most ε|V | we have that the total number of edges for
which the algorithm returns YES is at most (1 + ε)|V |. J

5.2 Graphs with Subexponential-Growth
In this subsection we analyze Algorithm 2 when executed on graphs with subexponential-
growth and for an appropriate k. We first show that graphs with subexponential-growth are
(ε, ρ(ε))-hyperfinite. In order to obtain an improved analysis of the complexity of Algorithm 2
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for graphs with subexponential-growth, we bound not only the size of each component but
also the diameter of each component.

A monotone function f : N→ N has subexponential growth if for any β > 0, there exists
rf (β) > 0 such that f(r) ≤ exp(β · r) for all r ≥ rf (β). A graph G has growth bounded by f
if for every k ≥ 1, nk(G) ≤ f(k).

I Theorem 6. Given a graph G = (V,E) with degree bounded by d that has growth bounded
by f : N → N where f has subexponential growth, there is a local sparse spanning graph
algorithm with query complexity and running time O(d · nrf (β)(G)) = O(d · exp(β · rf (β)))
for β = ε

2d .

Recall that Algorithm 2 is provided with an integer parameter, k, which determines the
depth of the BFS that is performed by the algorithm. In case the graph is (ε, ρ(ε))-hyperfinite
we showed that setting k = ρ(ε) is sufficient. For a general graph G, we next define another
parameter which is also sufficient for bounding the required depth of the BFS, as we show
in Theorem 7. Thereafter, we shall prove that for graphs with subexponential-growth this
parameter is small and can be computed efficiently.

Define kKα,β(G) to be the minimum distance k ensuring that all but an α-fraction of the
vertices have at most exp (βk/2) vertices in their k-neighborhood (k is allowed to be larger
than the diameter of G so that kKα,β(G) is well defined). Formally,

kKα,β(G) = min
k
{|{v : |Γk(v)| ≤ exp(βk/2)}| ≥ (1− α) |V |} . (3)

I Theorem 7. Algorithm 2, when run with k ≥ kKα,β(G), where α + β = ε/d, is a local
sparse spanning graph algorithm. The query complexity and running time of the algorithm
are O(dnk(G)) = O(dk+1).

Theorem 6 follows directly from Theorem 7 and Theorem 7 follows directly from the proof of
Theorem 5 and the following lemma.

I Lemma 8. Every graph G = (V,E) is (ε, (1 + β)k)-hyperfinite for k = kKα,β(G) and
α+ β = ε/d. Moreover, it is possible to remove at most ε|V | edges of the graph so that the
remaining graph has connected components with diameter at most 2k.

Proof. Let S ⊆ V denote the set of vertices, v, for which |Γk(v)| > exp(βk/2). We start
by removing all the edges adjacent to vertices in S. Overall, we remove at most dα|V |
edges. For each vertex v ∈ V − S it holds that |Γk(v)| ≤ exp(βk/2). From the fact that
exp(x) < 1 + 2x for every x < 1 we obtain that |Γk(v)| < (1 + β)k. Therefore, there exists
k′ < k such that |Γk′+1(v)| < |Γk′(v)|(1 + β). Thus, Ck′(v) can be disconnected from G by
removing at most dβ|Γk′(v)| edges. Since it holds that |Γk(v)| < (1 + β)k for every subgraph
of G and every v ∈ V − S, we can continue to iteratively disconnect connected components
of diameter at most 2k from the resulting graph. Hence, we obtain that by removing at most
d(α+ β)|V | edges, the remaining graph has connected components with diameter at most
2k, as desired. J

5.3 The Parameter k

Recall that Algorithm 2 is given a parameter k that determines the depth of the BFS that
the algorithm performs. By Theorem 7 it is sufficient to require that k ≥ kKε/(2d),ε/(2d)(G) in
order to ensure that the resulting graph is sparse. For the case that k is not given in advance,
we can compute k such that with probability greater than 1− δ it holds that

kKε/(2d),ε/(2d)(G) ≤ k ≤ kKε/(4d),ε/(2d)(G) , (4)
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as follows. Sample Θ(1/ε2 log(1/δ)) vertices. Start with k = 1 and iteratively increase k
until for at least

(
1− 3ε

8d
)
-fraction of the vertices, v, in the sample it holds that |Γk(v)| ≤

exp(εk/(4d)). By Chernoff’s inequality we obtain that with probability greater than 1− δ
Equation (4) holds.

6 Partition Oracle-based Algorithm

In this section we describe a simple reduction from local algorithm for sparse spanning graph
to partition oracle. We begin with a few definitions concerning partition oracles.

I Definition 9. For ε ∈ (0, 1], k ≥ 1 and a graph G = (V,E), we say that a partition
P = (V1, . . . , Vt) of V is an (ε, k)-partition (with respect to G), if the following conditions
hold:
1. For every 1 ≤ i ≤ t it holds that |Vi| ≤ k;
2. For every 1 ≤ i ≤ t the subgraph induced by Vi in G is connected;
3. The total number of edges whose endpoints are in different parts of the partition is at

most ε|V | (that is, |{(vi, vj) ∈ E : vi ∈ Vj , vj ∈ Vj , i 6= j}| ≤ ε|V |).
Let G = (V,E) be a graph and let P be a partition of V . We denote by gP the function from
v ∈ V to 2V (the set of all subsets of V ), that on input v ∈ V , returns the subset V` ∈ P
such that v ∈ V`.

I Definition 10 ([15]). An oracle O is a partition oracle if, given query access to the
incidence-lists representation of a graph G = (V,E), the oracle O provides query access to a
partition P = (V1, . . . , Vt) of V , where P is determined by G and the internal randomness of
the oracle. Namely, on input v ∈ V , the oracle returns gP(v) and for any sequence of queries,
O answers consistently with the same P . An oracle O is an (ε, k)-partition oracle with respect
to a class of graphs C if the partition P it answers according to has the following properties.
1. For every V` ∈ P , |V`| ≤ k and the subgraph induced by V` in G is connected.
2. If G belongs to C, then |{(u, v) ∈ E : gP(v) 6= gP(u)}| ≤ ε|V | with high constant

probability, where the probability is taken over the internal coin flips of O.
By the above definition, if G ∈ C, then with high constant probability the partition P is
an (ε, k)-partition, while if G /∈ C then it is only required that each part of the partition is
connected and has size at most k.

I Theorem 11. If there exists an (ε, k)-partition oracle, O, for the family of graphs C having
query complexity q(ε, k, d, n) and running time t(ε, k, d, n), then there exists a local sparse
spanning graph algorithm, A, for the family of graphs C, whose success probability is the
same as that of O. The running time of of A is bounded from above by t(ε, k, d, n) +O(kd)
and the query complexity of A is q(ε, k, d, n) +O(kd).

Proof. On query (u, v) the algorithm A proceeds as follows:
1. Query O on u and v and get gP(u) and gP(v), respectively.
2. If gP(u) 6= gP(v), return YES.
3. Otherwise, let w denote the vertex in gP(u) such that id(w) is minimal.
4. Perform a BFS on the subgraph induced on gP(u), starting from w.
5. If (u, v) belongs to the edges of the above BFS then return YES, otherwise, return NO.
The fact that A returns YES on at most (1 + ε)|V | edges follows from the fact that P is a
partition can that |{(u, v) ∈ E : gP(v) 6= gP(u)}| ≤ ε|V |. The connectivity follows from the
fact that the subgraph induced on Vi is connected for every Vi ∈ P. The additional term of
O(kd) in the time and query complexity is due to the BFS performed on gP(u). J
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The following corollaries follow from [14] and [21, 22], respectively.

I Corollary 12. There exists a local sparse spanning graph algorithm for the family of graphs
with bounded treewidth. This algorithm has high constant success probability and its query
complexity and running time are poly(1/ε, d).

I Corollary 13. There exists a local sparse spanning graph algorithm for the family of graphs
with a fixed excluded minor. This algorithm has high constant success probability and its
query complexity and running time are (d/ε)O(log(1/ε)).
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