62 research outputs found

    Local Hypergraph Clustering using Capacity Releasing Diffusion

    Full text link
    Local graph clustering is an important machine learning task that aims to find a well-connected cluster near a set of seed nodes. Recent results have revealed that incorporating higher order information significantly enhances the results of graph clustering techniques. The majority of existing research in this area focuses on spectral graph theory-based techniques. However, an alternative perspective on local graph clustering arises from using max-flow and min-cut on the objectives, which offer distinctly different guarantees. For instance, a new method called capacity releasing diffusion (CRD) was recently proposed and shown to preserve local structure around the seeds better than spectral methods. The method was also the first local clustering technique that is not subject to the quadratic Cheeger inequality by assuming a good cluster near the seed nodes. In this paper, we propose a local hypergraph clustering technique called hypergraph CRD (HG-CRD) by extending the CRD process to cluster based on higher order patterns, encoded as hyperedges of a hypergraph. Moreover, we theoretically show that HG-CRD gives results about a quantity called motif conductance, rather than a biased version used in previous experiments. Experimental results on synthetic datasets and real world graphs show that HG-CRD enhances the clustering quality.Comment: 18 pages, 6 figure

    Densest Subhypergraph: Negative Supermodular Functions and Strongly Localized Methods

    Full text link
    Dense subgraph discovery is a fundamental primitive in graph and hypergraph analysis which among other applications has been used for real-time story detection on social media and improving access to data stores of social networking systems. We present several contributions for localized densest subgraph discovery, which seeks dense subgraphs located nearby a given seed sets of nodes. We first introduce a generalization of a recent anchored densest subgraph\textit{anchored densest subgraph} problem, extending this previous objective to hypergraphs and also adding a tunable locality parameter that controls the extent to which the output set overlaps with seed nodes. Our primary technical contribution is to prove when it is possible to obtain a strongly-local algorithm for solving this problem, meaning that the runtime depends only on the size of the input set. We provide a strongly-local algorithm that applies whenever the locality parameter is at least 1, and show why via counterexample that strongly-local algorithms are impossible below this threshold. Along the way to proving our results for localized densest subgraph discovery, we also provide several advances in solving global dense subgraph discovery objectives. This includes the first strongly polynomial time algorithm for the densest supermodular set problem and a flow-based exact algorithm for a densest subgraph discovery problem in graphs with arbitrary node weights. We demonstrate the utility of our algorithms on several web-based data analysis tasks

    On learning the structure of clusters in graphs

    Get PDF
    Graph clustering is a fundamental problem in unsupervised learning, with numerous applications in computer science and in analysing real-world data. In many real-world applications, we find that the clusters have a significant high-level structure. This is often overlooked in the design and analysis of graph clustering algorithms which make strong simplifying assumptions about the structure of the graph. This thesis addresses the natural question of whether the structure of clusters can be learned efficiently and describes four new algorithmic results for learning such structure in graphs and hypergraphs. The first part of the thesis studies the classical spectral clustering algorithm, and presents a tighter analysis on its performance. This result explains why it works under a much weaker and more natural condition than the ones studied in the literature, and helps to close the gap between the theoretical guarantees of the spectral clustering algorithm and its excellent empirical performance. The second part of the thesis builds on the theoretical guarantees of the previous part and shows that, when the clusters of the underlying graph have certain structures, spectral clustering with fewer than k eigenvectors is able to produce better output than classical spectral clustering in which k eigenvectors are employed, where k is the number of clusters. This presents the first work that discusses and analyses the performance of spectral clustering with fewer than k eigenvectors, and shows that general structures of clusters can be learned with spectral methods. The third part of the thesis considers efficient learning of the structure of clusters with local algorithms, whose runtime depends only on the size of the target clusters and is independent of the underlying input graph. While the objective of classical local clustering algorithms is to find a cluster which is sparsely connected to the rest of the graph, this part of the thesis presents a local algorithm that finds a pair of clusters which are densely connected to each other. This result demonstrates that certain structures of clusters can be learned efficiently in the local setting, even in the massive graphs which are ubiquitous in real-world applications. The final part of the thesis studies the problem of learning densely connected clusters in hypergraphs. The developed algorithm is based on a new heat diffusion process, whose analysis extends a sequence of recent work on the spectral theory of hypergraphs. It allows the structure of clusters to be learned in datasets modelling higher-order relations of objects and can be applied to efficiently analyse many complex datasets occurring in practice. All of the presented theoretical results are further extensively evaluated on both synthetic and real-word datasets of different domains, including image classification and segmentation, migration networks, co-authorship networks, and natural language processing. These experimental results demonstrate that the newly developed algorithms are practical, effective, and immediately applicable for learning the structure of clusters in real-world data

    High performance algorithms for large scale placement problem

    Get PDF
    Placement is one of the most important problems in electronic design automation (EDA). An inferior placement solution will not only affect the chip’s performance but might also make it nonmanufacturable by producing excessive wirelength, which is beyond available routing resources. Although placement has been extensively investigated for several decades, it is still a very challenging problem mainly due to that design scale has been dramatically increased by order of magnitudes and the increasing trend seems unstoppable. In modern design, chips commonly integrate millions of gates that require over tens of metal routing layers. Besides, new manufacturing techniques bring out new requests leading to that multi-objectives should be optimized simultaneously during placement. Our research provides high performance algorithms for placement problem. We propose (i) a high performance global placement core engine POLAR; (ii) an efficient routability-driven placer POLAR 2.0, which is an extension of POLAR to deal with routing congestion; (iii) an ultrafast global placer POLAR 3.0, which explore parallelism on POLAR and can make full use of multi-core system; (iv) some efficient triple patterning lithography (TPL) aware detailed placement algorithms

    Critical bistability and large-scale synchrony in human brain dynamics

    Get PDF
    Neurophysiological dynamics of the brain, overt behaviours, and private experiences of the mind are co-emergent and co-evolving phenomena. An adult human brain contains ~100 billion neurons that are hierarchically organized into intricate networks of functional units comprised of interconnected neurons. It has been hypothesized that neurons within a functional unit communicate with each other or neurons from other units via synchronized activity. At any moment, cascades of synchronized activity from millions of neurons propagate through networks of all sizes, and the levels of synchronization wax and wane. How to understand cognitive functions or diseases from such rich dynamics poses a great challenge. The brain criticality hypothesis proposes that the brain, like many complex systems, optimize its performance by operating near a critical point of phase transition between disorder and order, which suggests complex brain dynamics be effectively studied by combining computational and empirical approaches. Hence, the brain criticality framework requires both classic reductionist and reconstructionist approaches. Reconstructionism in the current context refers to addressing the “Wholeness” of macro-level emergence due to fundamental mechanisms such as synchrony between neurons in the brain. This thesis includes five studies and aims to advance theory, empirical evidence, and methodology in the research of neuronal criticality and large-scale synchrony in the human brain. Study I: The classic criticality theory is based on the hypothesis that the brain operates near a continuous, second order phase transition between order and disorder in resource-conserving systems. This idea, however, cannot explain why the brain, a non-conserving system, often shows bistability, a hallmark of first order, discontinuous phase transition. We used computational modeling and found that bistability may occur exclusively within the critical regime so that the first-order phase transition emerged progressively with increasing local resource demands. We observed that in human resting-state brain activity, moderate α-band (11 Hz) bistability during rest predicts cognitive performance, but excessive resting-state bistability in fast (> 80 Hz) oscillations characterizes epileptogenic zones in patients’ brain. These findings expand the framework of brain criticality and show that near-critical neuronal dynamics involve both first- and second-order phase transitions in a frequency-, neuroanatomy-, and state-dependent manner. Study II: Long-range synchrony between cortical oscillations below ~100 Hz is pervasive in brain networks, whereas oscillations and broad-band activities above ~100 Hz have been considered to be strictly local phenomena. We showed with human intracerebral recordings that high-frequency oscillations (HFOs, 100−400 Hz) may be synchronized between brain regions separated by several centimeters. We discovered subject-specific frequency peaks of HFO synchrony and found the group-level HFO synchrony to exhibit laminar-specific connectivity and robust community structures. Importantly, the HFO synchrony was both transiently enhanced and suppressed in separate sub-bands during tasks. These findings showed that HFO synchrony constitutes a functionally significant form of neuronal spike-timing relationships in brain activity and thus a new mesoscopic indication of neuronal communication per se. Studies III: Signal linear mixing in magneto- (MEG) and electro-encephalography (EEG) artificially introduces linear correlations between sources and confounds the separability of cortical current estimates. This linear mixing effect in turn introduces false positives into synchrony estimates between MEG/EEG sources. Several connectivity metrics have been proposed to supress the linear mixing effects. We show that, although these metrics can remove false positives caused by instantaneous mixing effects, all of them discover false positive ghost interactions (SIs). We also presented major difficulties and technical concerns in mapping brain functional connectivity when using the most popular pairwise correlational metrics. Study IV and V: We developed a novel approach as a solution to the SIs problem. Our approach is to bundle observed raw edges, i.e., true interactions or SIs, into hyperedges by raw edges’ adjacency in signal mixing. We showed that this bundling approach yields hyperedges with optimal separability between true interactions while suffers little loss in the true positive rate. This bundling approach thus significantly decreases the noise in connectivity graphs by minimizing the false-positive to true-positive ratio. Furthermore, we demonstrated the advantage of hyperedge bundling in visualizing connectivity graphs derived from MEG experimental data. Hence, the hyperedges represent well the true cortical interactions that are detectable and dissociable in MEG/EEG sources. Taken together, these studies have advanced theory, empirical evidence, and methodology in the research of neuronal criticality and large-scale synchrony in the human brain. Study I provided modeling and empirical evidence for linking bistable criticality and the classic criticality hypothesis into a unified framework. Study II was the first to reveal HFO phase synchrony in large-scale neocortical networks, which was a fundamental discovery of long-range neuronal interactions on fast time-scale per se. Study III raised awareness of the ghost interaction (SI) problem for a critical view on reliable interpretation of MEG/EEG connectivity, and for the development of novel approaches to address the SI problem. Study IV offered a practical solution to the SI problem and opened a new avenue for mapping reliable MEG/EEG connectivity. Study V described the technical details of the hyperedge bundling approach, shared the source code and specified the simulation parameters used in Study IV.Ihmisaivojen neurofysiologinen dynamiikka, ihmisen käyttäytyminen, sekä yksityiset mielen kokemukset syntyvät ja kehittyvät rinnakkaisina ilmiöinä. Ihmisen aivot koostuvat ~100 miljardista hierarkisesti järjestäytyneestä hermosolusta, jotka toisiinsa kytkeytyneinä muodostavat monimutkaisen verkoston toiminnallisia yksiköitä. Hermosolujen aktiivisuuden synkronoitumisen on esitetty mahdollistavan neuronien välisen kommunikoinnin toiminnallisten yksiköiden sisällä sekä niiden välillä. Hetkenä minä hyvänsä, synkronoidun aktiivisuuden kaskadit etenevät aivojen erikokoisissa verkostoissa jatkuvasti heikentyen ja voimistuen. Kognitiivisten funktioiden ja erilaisten aivosairauksien ymmärtäminen tulkitsemalla aivojen rikasta dynamiikkaa on suuri haaste. Kriittiset aivot -hypoteesi ehdottaa aivojen, kuten monien muidenkin kompleksisten systeemien, optimoivan suorituskykyään operoimalla lähellä kriittistä pistettä järjestyksen ja epäjärjestyksen välissä, puoltaen sitä, että aivojen kompleksisia dynamiikoita voitaisiin tutkia yhdistämällä laskennallisia ja empiirisiä lähestymistapoja. Aivojen kriittisyyden viitekehys edellyttää perinteistä reduktionismia ja rekonstruktionismia. Erityisesti, rekonstruktionismi tähtää kuvaamaan aivojen makrotason “yhteneväisyyden” syntymistä perustavanlaatuisten mekaniikoiden, kuten aivojen toiminnallisten yksiköiden välisen synkronian avulla. Tämä väitöskirja sisältää viisi tutkimusta, jotka edistävät teoriaa, empiirisiä todisteita ja metodologiaa aivojen kriittisyyden ja laajamittaisen synkronian tutkimuksessa. Tutkimus I tarjosi mallinnuksia ja empiirisiä todisteita bistabiilin kriittisyyden ja klassisen kriittisyyden hypoteesien yhdistämiseksi yhdeksi viitekehykseksi. Tutkimus II oli ensimmäinen laatuaan paljastaen korkeataajuisten oskillaatioiden (high-frequency oscillation, HFO) vaihesynkronian laajamittaisissa neokortikaalisissa verkostoissa, mikä oli perustavanlaatuinen löytö pitkän matkan neuronaalisista vuorovaikutuksista nopeilla aikaskaaloilla. Tutkimus III lisäsi tietoisuutta aave-vuorovaikutuksien (spurious interactions, SI) ongelmasta MEG/EEG kytkeytyvyyden luotettavassa tulkinnassa sekä uudenlaisten menetelmien kehityksessä SI-ongelman ratkaisemiseksi. Tutkimus IV tarjosi käytännöllisen “hyperedge bundling” -ratkaisun SI-ongelmaan ja avasi uudenlaisen tien luotettavaan MEG/EEG kytkeytyvyyden kartoittamiseen. Tutkimus V kuvasi teknisiä yksityiskohtia hyperedge bundling -menetelmästä, jakoi menetelmän lähdekoodin ja täsmensi tutkimuksessa IV käytettyjä simulaatioparametreja. Yhdessä nämä tutkimukset ovat edistäneet teoriaa, empiirisiä todisteita ja metodologiaa neuronaalisen kriittisyyden sekä laajamittaisen synkronian hyödyntämisessä ihmisaivojen tutkimuksessa
    corecore