584,181 research outputs found

    Local Feature Based Face Recognition

    Get PDF

    Video-based driver identification using local appearance face recognition

    Get PDF
    In this paper, we present a person identification system for vehicular environments. The proposed system uses face images of the driver and utilizes local appearance-based face recognition over the video sequence. To perform local appearance-based face recognition, the input face image is decomposed into non-overlapping blocks and on each local block discrete cosine transform is applied to extract the local features. The extracted local features are then combined to construct the overall feature vector. This process is repeated for each video frame. The distribution of the feature vectors over the video are modelled using a Gaussian distribution function at the training stage. During testing, the feature vector extracted from each frame is compared to each person’s distribution, and individual likelihood scores are generated. Finally, the person is identified as the one who has maximum joint-likelihood score. To assess the performance of the developed system, extensive experiments are conducted on different identification scenarios, such as closed set identification, open set identification and verification. For the experiments a subset of the CIAIR-HCC database, an in-vehicle data corpus that is collected at the Nagoya University, Japan is used. We show that, despite varying environment and illumination conditions, that commonly exist in vehicular environments, it is possible to identify individuals robustly from their face images. Index Terms — Local appearance face recognition, vehicle environment, discrete cosine transform, fusion. 1

    3D FACE RECOGNITION USING LOCAL FEATURE BASED METHODS

    Get PDF
    Face recognition has attracted many researchers’ attention compared to other biometrics due to its non-intrusive and friendly nature. Although several methods for 2D face recognition have been proposed so far, there are still some challenges related to the 2D face including illumination, pose variation, and facial expression. In the last few decades, 3D face research area has become more interesting since shape and geometry information are used to handle challenges from 2D faces. Existing algorithms for face recognition are divided into three different categories: holistic feature-based, local feature-based, and hybrid methods. According to the literature, local features have shown better performance relative to holistic feature-based methods under expression and occlusion challenges. In this dissertation, local feature-based methods for 3D face recognition have been studied and surveyed. In the survey, local methods are classified into three broad categories which consist of keypoint-based, curve-based, and local surface-based methods. Inspired by keypoint-based methods which are effective to handle partial occlusion, structural context descriptor on pyramidal shape maps and texture image has been proposed in a multimodal scheme. Score-level fusion is used to combine keypoints’ matching score in both texture and shape modalities. The survey shows local surface-based methods are efficient to handle facial expression. Accordingly, a local derivative pattern is introduced to extract distinct features from depth map in this work. In addition, the local derivative pattern is applied on surface normals. Most 3D face recognition algorithms are focused to utilize the depth information to detect and extract features. Compared to depth maps, surface normals of each point can determine the facial surface orientation, which provides an efficient facial surface representation to extract distinct features for recognition task. An Extreme Learning Machine (ELM)-based auto-encoder is used to make the feature space more discriminative. Expression and occlusion robust analysis using the information from the normal maps are investigated by dividing the facial region into patches. A novel hybrid classifier is proposed to combine Sparse Representation Classifier (SRC) and ELM classifier in a weighted scheme. The proposed algorithms have been evaluated on four widely used 3D face databases; FRGC, Bosphorus, Bu-3DFE, and 3D-TEC. The experimental results illustrate the effectiveness of the proposed approaches. The main contribution of this work lies in identification and analysis of effective local features and a classification method for improving 3D face recognition performance

    Spatial Domain Representation for Face Recognition

    Get PDF
    Spatial domain representation for face recognition characterizes extracted spatial facial features for face recognition. This chapter provides a complete understanding of well-known and some recently explored spatial domain representations for face recognition. Over last two decades, scale-invariant feature transform (SIFT), histogram of oriented gradients (HOG) and local binary patterns (LBP) have emerged as promising spatial feature extraction techniques for face recognition. SIFT and HOG are effective techniques for face recognition dealing with different scales, rotation, and illumination. LBP is texture based analysis effective for extracting texture information of face. Other relevant spatial domain representations are spatial pyramid learning (SPLE), linear phase quantization (LPQ), variants of LBP such as improved local binary pattern (ILBP), compound local binary pattern (CLBP), local ternary pattern (LTP), three-patch local binary patterns (TPLBP), four-patch local binary patterns (FPLBP). These representations are improved versions of SIFT and LBP and have improved results for face recognition. A detailed analysis of these methods, basic results for face recognition and possible applications are presented in this chapter

    Comparison of Different Algorithm for Face Recognition

    Get PDF
    This paper is about the different algorithms which are used for face recognition. There are so many algorithms which are available for face recognition .There are two approaches by which the face can be recognize i.e. face Geometry based and face appearance based. The appearance based technique is also sub divided into two technique i.e. local feature and global feature based. The technique of local feature based are Discrete Cosine Transform (DCT).In this paper we study the two global features (holistic) appearance based algorithm i.e. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) in which every face image is converted into 1D, we are using 1D for all the calculation and then compare these two algorithm with the help of FAR (False Acceptance Rate),FRR (False Rejection Rate),Time, Memory and checks which algorithm gives the better result

    Fuzzy Sparse Autoencoder Framework for Single Image Per Person Face Recognition

    Get PDF
    The issue of single sample per person (SSPP) face recognition has attracted more and more attention in recent years. Patch/local-based algorithm is one of the most popular categories to address the issue, as patch/local features are robust to face image variations. However, the global discriminative information is ignored in patch/local-based algorithm, which is crucial to recognize the nondiscriminative region of face images. To make the best of the advantage of both local information and global information, a novel two-layer local-to-global feature learning framework is proposed to address SSPP face recognition. In the first layer, the objective-oriented local features are learned by a patch-based fuzzy rough set feature selection strategy. The obtained local features are not only robust to the image variations, but also usable to preserve the discrimination ability of original patches. Global structural information is extracted from local features by a sparse autoencoder in the second layer, which reduces the negative effect of nondiscriminative regions. Besides, the proposed framework is a shallow network, which avoids the over-fitting caused by using multilayer network to address SSPP problem. The experimental results have shown that the proposed local-to-global feature learning framework can achieve superior performance than other state-of-the-art feature learning algorithms for SSPP face recognition

    Real-time Multi-object Face Recognition Using Content Based Image Retrieval (CBIR)

    Get PDF
    Face recognition system in real time is divided into three processes, namely feature extraction, clustering, detection, and recognition. Each of these stages uses different methods, Local Binary Pattern (LBP), Agglomerative Hierarchical Clustering (AHC) and Euclidean Distance. Multi-face image search using Content Based Image Retrieval (CBIR) method. CBIR performs image search by image feature itself. Based on real time trial results, the accuracy value obtained is 61.64%. 
    • …
    corecore