4,732 research outputs found

    Exact boundary observability for nonautonomous quasilinear wave equations

    Get PDF
    By means of a direct and constructive method based on the theory of semiglobal C2C^2 solution, the local exact boundary observability is shown for nonautonomous 1-D quasilinear wave equations. The essential difference between nonautonomous wave equations and autonomous ones is also revealed.Comment: 18 pages, 5 figure

    Local controllability of 1D linear and nonlinear Schr\"odinger equations with bilinear control

    Get PDF
    We consider a linear Schr\"odinger equation, on a bounded interval, with bilinear control, that represents a quantum particle in an electric field (the control). We prove the controllability of this system, in any positive time, locally around the ground state. Similar results were proved for particular models (by the first author and with J.M. Coron), in non optimal spaces, in long time and the proof relied on the Nash-Moser implicit function theorem in order to deal with an a priori loss of regularity. In this article, the model is more general, the spaces are optimal, there is no restriction on the time and the proof relies on the classical inverse mapping theorem. A hidden regularizing effect is emphasized, showing there is actually no loss of regularity. Then, the same strategy is applied to nonlinear Schr\"odinger equations and nonlinear wave equations, showing that the method works for a wide range of bilinear control systems

    Generation of two-dimensional water waves by moving bottom disturbances

    Get PDF
    We investigate the potential and limitations of the wave generation by disturbances moving at the bottom. More precisely, we assume that the wavemaker is composed of an underwater object of a given shape which can be displaced according to a prescribed trajectory. We address the practical question of computing the wavemaker shape and trajectory generating a wave with prescribed characteristics. For the sake of simplicity we model the hydrodynamics by a generalized forced Benjamin-Bona-Mahony (BBM) equation. This practical problem is reformulated as a constrained nonlinear optimization problem. Additional constraints are imposed in order to fulfill various practical design requirements. Finally, we present some numerical results in order to demonstrate the feasibility and performance of the proposed methodology.Comment: 21 pages, 7 figures, 1 table, 69 references. Other author's papers can be downloaded at http://www.denys-dutykh.com
    • …
    corecore