10 research outputs found

    Independent sets and cuts in large-girth regular graphs

    Get PDF
    We present a local algorithm producing an independent set of expected size 0.44533n0.44533n on large-girth 3-regular graphs and 0.40407n0.40407n on large-girth 4-regular graphs. We also construct a cut (or bisection or bipartite subgraph) with 1.34105n1.34105n edges on large-girth 3-regular graphs. These decrease the gaps between the best known upper and lower bounds from 0.01780.0178 to 0.010.01, from 0.02420.0242 to 0.01230.0123 and from 0.07240.0724 to 0.06160.0616, respectively. We are using local algorithms, therefore, the method also provides upper bounds for the fractional coloring numbers of 1/0.445332.245541 / 0.44533 \approx 2.24554 and 1/0.404072.47481 / 0.40407 \approx 2.4748 and fractional edge coloring number 1.5/1.341051.11851.5 / 1.34105 \approx 1.1185. Our algorithms are applications of the technique introduced by Hoppen and Wormald

    Correlation bound for distant parts of factor of IID processes

    Full text link
    We study factor of i.i.d. processes on the dd-regular tree for d3d \geq 3. We show that if such a process is restricted to two distant connected subgraphs of the tree, then the two parts are basically uncorrelated. More precisely, any functions of the two parts have correlation at most k(d1)/(d1)kk(d-1) / (\sqrt{d-1})^k, where kk denotes the distance of the subgraphs. This result can be considered as a quantitative version of the fact that factor of i.i.d. processes have trivial 1-ended tails.Comment: 18 pages, 5 figure

    Entropy inequalities for factors of iid

    Get PDF
    This paper is concerned with certain invariant random processes (called factors of IID) on infinite trees. Given such a process, one can assign entropies to different finite subgraphs of the tree. There are linear inequalities between these entropies that hold for any factor of IID process (e.g. "edge versus vertex" or "star versus edge"). These inequalities turned out to be very useful: they have several applications already, the most recent one is the Backhausz-Szegedy result on the eigenvectors of random regular graphs. We present new entropy inequalities in this paper. In fact, our approach provides a general "recipe" for how to find and prove such inequalities. Our key tool is a generalization of the edge-vertex inequality for a broader class of factor processes with fewer symmetries

    Cliques, Degrees, and Coloring: Expanding the ω, Δ, χ paradigm

    Get PDF
    Many of the most celebrated and influential results in graph coloring, such as Brooks' Theorem and Vizing's Theorem, relate a graph's chromatic number to its clique number or maximum degree. Currently, several of the most important and enticing open problems in coloring, such as Reed's ω,Δ,χ\omega, \Delta, \chi Conjecture, follow this theme. This thesis both broadens and deepens this classical paradigm. In Part~1, we tackle list-coloring problems in which the number of colors available to each vertex vv depends on its degree, denoted d(v)d(v), and the size of the largest clique containing it, denoted ω(v)\omega(v). We make extensive use of the probabilistic method in this part. We conjecture the ``list-local version'' of Reed's Conjecture, that is every graph is LL-colorable if LL is a list-assignment such that L(v)(1ε)(d(v)+1)+εω(v))|L(v)| \geq \lceil (1 - \varepsilon)(d(v) + 1) + \varepsilon\omega(v))\rceil for each vertex vv and ε1/2\varepsilon \leq 1/2, and we prove this for ε1/330\varepsilon \leq 1/330 under some mild additional assumptions. We also conjecture the ``mad\mathrm{mad} version'' of Reed's Conjecture, even for list-coloring. That is, for ε1/2\varepsilon \leq 1/2, every graph GG satisfies \chi_\ell(G) \leq \lceil (1 - \varepsilon)(\mad(G) + 1) + \varepsilon\omega(G)\rceil, where mad(G)\mathrm{mad}(G) is the maximum average degree of GG. We prove this conjecture for small values of ε\varepsilon, assuming ω(G)mad(G)log10mad(G)\omega(G) \leq \mathrm{mad}(G) - \log^{10}\mathrm{mad}(G). We actually prove a stronger result that improves bounds on the density of critical graphs without large cliques, a long-standing problem, answering a question of Kostochka and Yancey. In the proof, we use a novel application of the discharging method to find a set of vertices for which any precoloring can be extended to the remainder of the graph using the probabilistic method. Our result also makes progress towards Hadwiger's Conjecture: we improve the best known bound on the chromatic number of KtK_t-minor free graphs by a constant factor. We provide a unified treatment of coloring graphs with small clique number. We prove that for Δ\Delta sufficiently large, if GG is a graph of maximum degree at most Δ\Delta with list-assignment LL such that for each vertex vV(G)v\in V(G), L(v)72d(v)min{ln(ω(v))ln(d(v)),ω(v)ln(ln(d(v)))ln(d(v)),log2(χ(G[N(v)])+1)ln(d(v))}|L(v)| \geq 72\cdot d(v)\min\left\{\sqrt{\frac{\ln(\omega(v))}{\ln(d(v))}}, \frac{\omega(v)\ln(\ln(d(v)))}{\ln(d(v))}, \frac{\log_2(\chi(G[N(v)]) + 1)}{\ln(d(v))}\right\} and d(v)ln2Δd(v) \geq \ln^2\Delta, then GG is LL-colorable. This result simultaneously implies three famous results of Johansson from the 90s, as well as the following new bound on the chromatic number of any graph GG with ω(G)ω\omega(G)\leq \omega and Δ(G)Δ\Delta(G)\leq \Delta for Δ\Delta sufficiently large: χ(G)72ΔlnωlnΔ.\chi(G) \leq 72\Delta\sqrt{\frac{\ln\omega}{\ln\Delta}}. In Part~2, we introduce and develop the theory of fractional coloring with local demands. A fractional coloring of a graph is an assignment of measurable subsets of the [0,1][0, 1]-interval to each vertex such that adjacent vertices receive disjoint sets, and we think of vertices ``demanding'' to receive a set of color of comparatively large measure. We prove and conjecture ``local demands versions'' of various well-known coloring results in the ω,Δ,χ\omega, \Delta, \chi paradigm, including Vizing's Theorem and Molloy's recent breakthrough bound on the chromatic number of triangle-free graphs. The highlight of this part is the ``local demands version'' of Brooks' Theorem. Namely, we prove that if GG is a graph and f:V(G)[0,1]f : V(G) \rightarrow [0, 1] such that every clique KK in GG satisfies vKf(v)1\sum_{v\in K}f(v) \leq 1 and every vertex vV(G)v\in V(G) demands f(v)1/(d(v)+1/2)f(v) \leq 1/(d(v) + 1/2), then GG has a fractional coloring ϕ\phi in which the measure of ϕ(v)\phi(v) for each vertex vV(G)v\in V(G) is at least f(v)f(v). This result generalizes the Caro-Wei Theorem and improves its bound on the independence number, and it is tight for the 5-cycle

    Extremal problems on special graph colorings

    Get PDF
    In this thesis, we study several extremal problems on graph colorings. In particular, we study monochromatic connected matchings, paths, and cycles in 2-edge colored graphs, packing colorings of subcubic graphs, and directed intersection number of digraphs. In Chapter 2, we consider monochromatic structures in 2-edge colored graphs. A matching M in a graph G is connected if all the edges of M are in the same component of G. Following Łuczak, there are a number of results using the existence of large connected matchings in cluster graphs with respect to regular partitions of large graphs to show the existence of long paths and other structures in these graphs. We prove exact Ramsey-type bounds on the sizes of monochromatic connected matchings in 2-edge-colored multipartite graphs. In addition, we prove a stability theorem for such matchings, which is used to find necessary and sufficient conditions on the existence of monochromatic paths and cycles: for every fixed s and large n, we describe all values of n_1, ...,n_s such that for every 2-edge-coloring of the complete s-partite graph K_{n_1, ...,n_s} there exists a monochromatic (i) cycle C_{2n} with 2n vertices, (ii) cycle C_{at least 2n} with at least 2n vertices, (iii) path P_{2n} with 2n vertices, and (iv) path P_{2n+1} with 2n+1 vertices. Our results also imply for large n of the conjecture by Gyárfás, Ruszinkó, Sárkőzy and Szemerédi that for every 2-edge-coloring of the complete 3-partite graph K_{n,n,n} there is a monochromatic path P_{2n+1}. Moreover, we prove that for every sufficiently large n, if n = 3t+r where r in {0,1,2} and G is an n-vertex graph with minimum degree at least (3n-1)/4, then for every 2-edge-coloring of G, either there are cycles of every length {3, 4, 5, ..., 2t+r} of the same color, or there are cycles of every even length {4, 6, 8, ..., 2t+2} of the same color. This result is tight and implies the conjecture of Schelp that for every sufficiently large n, every (3n-1)-vertex graph G with minimum degree larger than 3|V(G)|/4, in each 2-edge-coloring of G there exists a monochromatic path P_{2n} with 2n vertices. It also implies for sufficiently large n the conjecture by Benevides, Łuczak, Scott, Skokan and White that for every positive integer n of the form n=3t+r where r in {0,1,2} and every n-vertex graph G with minimum degree at least 3n/4, in each 2-edge-coloring of G there exists a monochromatic cycle of length at least 2t+r. In Chapter 3, we consider a collection of special vertex colorings called packing colorings. For a sequence of non-decreasing positive integers S = (s_1, ..., s_k), a packing S-coloring is a partition of V(G) into sets V_1, ..., V_k such that for each integer i in {1, ..., k} the distance between any two distinct x,y in V_i is at least s_i+1. The smallest k such that G has a packing (1,2, ..., k)-coloring is called the packing chromatic number of G and is denoted by \chi_p(G). The question whether the packing chromatic number of subcubic graphs is bounded appears in several papers. We show that for every fixed k and g at least 2k+2, almost every n-vertex cubic graph of girth at least g has the packing chromatic number greater than k, which answers the previous question in the negative. Moreover, we work towards the conjecture of Brešar, Klavžar, Rall and Wash that the packing chromatic number of 1-subdivision of subcubic graphs are bounded above by 5. In particular, we show that every subcubic graph is (1,1,2,2,3,3,k)-colorable for every integer k at least 4 via a coloring in which color k is used at most once, every 2-degenerate subcubic graph is (1,1,2,2,3,3)-colorable, and every subcubic graph with maximum average degree less than 30/11 is packing (1,1,2,2)-colorable. Furthermore, while proving the packing chromatic number of subcubic graphs is unbounded, we also consider improving upper bound on the independence ratio, alpha(G)/n, of cubic n-vertex graphs of large girth. We show that ``almost all" cubic labeled graphs of girth at least 16 have independence ratio at most 0.454. In Chapter 4, we introduce and study the directed intersection representation of digraphs. A directed intersection representation is an assignment of a color set to each vertex in a digraph such that two vertices form an edge if and only if their color sets share at least one color and the tail vertex has a strictly smaller color set than the head. The smallest possible size of the union of the color sets is defined to be the directed intersection number (DIN). We show that the directed intersection representation is well-defined for all directed acyclic graphs and the maximum DIN among all n vertex acyclic digraphs is at most 5n^2/8 + O(n) and at least 9n^2/16 + O(n)
    corecore