4,223 research outputs found

    Survey on Data-Centric based Routing Protocols for Wireless Sensor Networks

    Full text link
    The great concern for energy that grew with the technological advances in the field of networks and especially in sensor network has triggered various approaches and protocols that relate to sensor networks. In this context, the routing protocols were of great interest. The aim of the present paper is to discuss routing protocols for sensor networks. This paper will focus mainly on the discussion of the data-centric approach (COUGAR, rumor, SPIN, flooding and Gossiping), while shedding light on the other approaches occasionally. The functions of the nodes will be discussed as well. The methodology selected for this paper is based on a close description and discussion of the protocol. As a conclusion, open research questions and limitations are proposed to the reader at the end of this paper

    Techniques to Enhance Lifetime of Wireless Sensor Networks: A Survey

    Get PDF
    Increasing lifetime in wireless sensor networks is a major challenge because the nodes are equipped with low power battery. For increasing the lifetime of the sensor nodes energy efficient routing is one solution which minimizes maintenance cost and maximizes the overall performance of the nodes. In this paper, different energy efficient routing techniques are discussed. Here, photovoltaic cell for efficient power management in wireless sensor networks is also discussed which are developed to increase the lifetime of the nodes. Efficient battery usage techniques and discharge characteristics are then described which enhance the operational battery lifetime

    DESIGN OF MOBILE DATA COLLECTOR BASED CLUSTERING ROUTING PROTOCOL FOR WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless Sensor Networks (WSNs) consisting of hundreds or even thousands of nodes, canbe used for a multitude of applications such as warfare intelligence or to monitor the environment. A typical WSN node has a limited and usually an irreplaceable power source and the efficient use of the available power is of utmost importance to ensure maximum lifetime of eachWSNapplication. Each of the nodes needs to transmit and communicate sensed data to an aggregation point for use by higher layer systems. Data and message transmission among nodes collectively consume the largest amount of energy available in WSNs. The network routing protocols ensure that every message reaches thedestination and has a direct impact on the amount of transmissions to deliver messages successfully. To this end, the transmission protocol within the WSNs should be scalable, adaptable and optimized to consume the least possible amount of energy to suite different network architectures and application domains. The inclusion of mobile nodes in the WSNs deployment proves to be detrimental to protocol performance in terms of nodes energy efficiency and reliable message delivery. This thesis which proposes a novel Mobile Data Collector based clustering routing protocol for WSNs is designed that combines cluster based hierarchical architecture and utilizes three-tier multi-hop routing strategy between cluster heads to base station by the help of Mobile Data Collector (MDC) for inter-cluster communication. In addition, a Mobile Data Collector based routing protocol is compared with Low Energy Adaptive Clustering Hierarchy and A Novel Application Specific Network Protocol for Wireless Sensor Networks routing protocol. The protocol is designed with the following in mind: minimize the energy consumption of sensor nodes, resolve communication holes issues, maintain data reliability, finally reach tradeoff between energy efficiency and latency in terms of End-to-End, and channel access delays. Simulation results have shown that the Mobile Data Collector based clustering routing protocol for WSNs could be easily implemented in environmental applications where energy efficiency of sensor nodes, network lifetime and data reliability are major concerns

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    Hierarchical routing protocols for wireless sensor network: a compressive survey

    Get PDF
    Wireless Sensor Networks (WSNs) are one of the key enabling technologies for the Internet of Things (IoT). WSNs play a major role in data communications in applications such as home, health care, environmental monitoring, smart grids, and transportation. WSNs are used in IoT applications and should be secured and energy efficient in order to provide highly reliable data communications. Because of the constraints of energy, memory and computational power of the WSN nodes, clustering algorithms are considered as energy efficient approaches for resource-constrained WSNs. In this paper, we present a survey of the state-of-the-art routing techniques in WSNs. We first present the most relevant previous work in routing protocols surveys then highlight our contribution. Next, we outline the background, robustness criteria, and constraints of WSNs. This is followed by a survey of different WSN routing techniques. Routing techniques are generally classified as flat, hierarchical, and location-based routing. This survey focuses on the deep analysis of WSN hierarchical routing protocols. We further classify hierarchical protocols based on their routing techniques. We carefully choose the most relevant state-of-the-art protocols in order to compare and highlight the advantages, disadvantage and performance issues of each routing technique. Finally, we conclude this survey by presenting a comprehensive survey of the recent improvements of Low-Energy Adaptive Clustering Hierarchy (LEACH) routing protocols and a comparison of the different versions presented in the literature

    Energy Efficient Routing Protocols and algorithms for Wireless Sensor Networks a A Survey

    Get PDF
    Wireless Sensor Networks (WSNs) are an emerging technology for monitoring physical world. The sensor nodes are capable of sensing various types of environmental conditions, have some processing capabilities and ability to communicate the sensed data through wireless communication. Routing algorithms for WSNs are responsible for selecting and maintaining the routes in the network and ensure reliable and effective communication in limited periods. The energy constraint of WSNs make energy saving become the most important objective of various routing algorithms. In this paper, a survey of routing protocols and algorithms used in WSNs is presented with energy efficiency as the main goal
    corecore