345,303 research outputs found

    Multi-Objective Relief Distribution System Model for Volcano Disaster Victims

    Get PDF
    Because of its location in the ring of fire, Indonesia has around 30% of all volcanoes in the world. After the volcano erupted, the area around the volcano was damaged and many people lost their houses, jobs, and possibilities to live in there. Before the volcano erupts, people who live around the volcano must be evacuated as soon as possible to one of the available shelters. In the shelters, drinking water, food, and medicine are needed by victims who were evacuated to survive aftermath of a disaster. To distribute reliefs to all shelters effectively, we developed a multi-objective relief distribution model. This distribution system model aims to determine the allocation of various types of relief items to several shelters with a minimum total cost and balanced service level between locations. This multiobjective relief distribution model considered multi-item, multi-period, multi-vehicle, and multi-trip by using a pre-emptive goal programming approach. This optimization model was applied to the numerical example based on Semeru Mount as the highest active volcanoes in Indonesia, which is located in Lumajang, East Java

    Semi-Automated SVG Programming via Direct Manipulation

    Full text link
    Direct manipulation interfaces provide intuitive and interactive features to a broad range of users, but they often exhibit two limitations: the built-in features cannot possibly cover all use cases, and the internal representation of the content is not readily exposed. We believe that if direct manipulation interfaces were to (a) use general-purpose programs as the representation format, and (b) expose those programs to the user, then experts could customize these systems in powerful new ways and non-experts could enjoy some of the benefits of programmable systems. In recent work, we presented a prototype SVG editor called Sketch-n-Sketch that offered a step towards this vision. In that system, the user wrote a program in a general-purpose lambda-calculus to generate a graphic design and could then directly manipulate the output to indirectly change design parameters (i.e. constant literals) in the program in real-time during the manipulation. Unfortunately, the burden of programming the desired relationships rested entirely on the user. In this paper, we design and implement new features for Sketch-n-Sketch that assist in the programming process itself. Like typical direct manipulation systems, our extended Sketch-n-Sketch now provides GUI-based tools for drawing shapes, relating shapes to each other, and grouping shapes together. Unlike typical systems, however, each tool carries out the user's intention by transforming their general-purpose program. This novel, semi-automated programming workflow allows the user to rapidly create high-level, reusable abstractions in the program while at the same time retaining direct manipulation capabilities. In future work, our approach may be extended with more graphic design features or realized for other application domains.Comment: In 29th ACM User Interface Software and Technology Symposium (UIST 2016

    Confessions of a live coder

    Get PDF
    This paper describes the process involved when a live coder decides to learn a new musical programming language of another paradigm. The paper introduces the problems of running comparative experiments, or user studies, within the field of live coding. It suggests that an autoethnographic account of the process can be helpful for understanding the technological conditioning of contemporary musical tools. The author is conducting a larger research project on this theme: the part presented in this paper describes the adoption of a new musical programming environment, Impromptu, and how this affects the author’s musical practice

    Heap Reference Analysis Using Access Graphs

    Full text link
    Despite significant progress in the theory and practice of program analysis, analysing properties of heap data has not reached the same level of maturity as the analysis of static and stack data. The spatial and temporal structure of stack and static data is well understood while that of heap data seems arbitrary and is unbounded. We devise bounded representations which summarize properties of the heap data. This summarization is based on the structure of the program which manipulates the heap. The resulting summary representations are certain kinds of graphs called access graphs. The boundedness of these representations and the monotonicity of the operations to manipulate them make it possible to compute them through data flow analysis. An important application which benefits from heap reference analysis is garbage collection, where currently liveness is conservatively approximated by reachability from program variables. As a consequence, current garbage collectors leave a lot of garbage uncollected, a fact which has been confirmed by several empirical studies. We propose the first ever end-to-end static analysis to distinguish live objects from reachable objects. We use this information to make dead objects unreachable by modifying the program. This application is interesting because it requires discovering data flow information representing complex semantics. In particular, we discover four properties of heap data: liveness, aliasing, availability, and anticipability. Together, they cover all combinations of directions of analysis (i.e. forward and backward) and confluence of information (i.e. union and intersection). Our analysis can also be used for plugging memory leaks in C/C++ languages.Comment: Accepted for printing by ACM TOPLAS. This version incorporates referees' comment

    A Concurrent Language with a Uniform Treatment of Regions and Locks

    Full text link
    A challenge for programming language research is to design and implement multi-threaded low-level languages providing static guarantees for memory safety and freedom from data races. Towards this goal, we present a concurrent language employing safe region-based memory management and hierarchical locking of regions. Both regions and locks are treated uniformly, and the language supports ownership transfer, early deallocation of regions and early release of locks in a safe manner
    corecore