

ABSTRACT BOOK

9th International Conference on Operations and Supply Chain Management (OSCM)

15 – 18 December 2019 Ho Chi Minh City, Vietnam

ABSTRACT BOOK

9th International Conference on Operations and Supply Chain Management (OSCM)

15 – 18 December 2019 Ho Chi Minh City, Vietnam

The 9th International Conference on Operations and Supply Chain Management (OSCM) is hosted by the collaboration of RMIT University, Vietnam and Institut Teknologi Sepuluh Nopember (ITS), Indonesia

www.rmit.edu.vn www.its.ac.id

Message from the conference chairs

The 9th International Conference on Operations and Supply Chain Management (OSCM) is hosted in Vietnam by RMIT University, Vietnam in collaboration with the Institut Teknologi Sepuluh Nopember (ITS), Indonesia. The previous 8 conferences were held in Bali, Indonesia (2005), Thailand (2007), Malaysia (2009), Maldives (2011), New Delhi, India (2013), Bali, Indonesia (2014), Phuket, Thailand (2016), and Cranfield, UK (2018). "Emerging Technologies in Supply Chain: Opportunities and Challenges" is the theme for this year conference. As we all know, the development of new technologies has major impacts on operations and supply chain management. Technologies such as advanced robotics, drone, driverless trucks, cloud computing, 3D printing, Internet of Things (IoT), Blockchain, and many others have tremendously changing the way the products are manufactured, and the supply chains are managed, and the way we work.

This year we attracted over 180 submissions representing authors from almost 40 countries. Of these, 100 papers have been selected for presentations. This demonstrates a strong international network of the conference that has been maintained since 2005. The reviewers and the scientific committee also noted that many submissions are of high quality. A substantial number of them were recommended for journal publication with revisions. With a wide range of topics and authors coming from many different institutions, this conference will stimulate enriching discussions as well as productive networking environment.

We are also pleased to have two renowned keynote speakers. Professor Shuo-Yan Chou is the Director of the Center for Internet of Things Innovation and a distinguished professor at the Department of Industrial Management, National Taiwan University of Science and Technology (NTUST). Professor Chou will be presenting a topic on Smart Transformation Enabled by Digital Fusion and Industry 4.0, a highly relevance to the conference theme. The second one is Professor Kannan Govindan, who is the Head of the Center for Sustainable Supply Chain Engineering, University of Southern Denmark who will be presenting a topic on supply chain sustainability.

Finally, this conference will not be possible without the contribution of many parties, including the committee, the reviewers, the keynote speakers, the participants, and of course the host institutions and the sponsors. We would like to thank them all for their contribution.

Wishing you all a productive and enjoyable conference.

Conference Chairs,

Assoc. Professor Matthews Nkhoma, RMIT Vietnam Professor Nyoman Pujawan - ITS, Indonesia Asst. Professor Reza Akbari, RMIT Vietnam Assoc. Professor Imam Baihaqi, ITS Indonesia Professor Caroline Chan, RMIT Australia

About The OSCM Conference

The OSCM Conference was first held in Bali in December 2005, hosted by the Department of Industrial Engineering, Institut Teknologi Sepuluh Nopember (ITS), Indonesia. Subsequent OSCM conferences were successfully held in various locations: Bangkok (2007), Malaysia (2009), Maldives (2011), New Delhi (2013), Bali (2014), Phuket (2016), Cranfield (2018), and now in Ho Chi Minh (2019)

Keynote Speakers

Professor Shuo-Yan Chou

Professor Chou is the Director, Center for Internet of Things Innovation, and distinguished professor Department of Industrial Management, National Taiwan University of Science and Technology (NTUST). He has published over 60 SCI/ SSCI journal papers; PI or Co-PI of more than 80 projects. His research interests are in Internet of Things Innovation, Industrial Internet of Things, Big Data Analytics, Artificial Intelligence, Smart City Applications, Blockchain Application, Intelligent Transportation Systems, Entrepreneurship, Decision Theory, Digital Manufacturing, Computational Geometry.

Professor Kannan Govindan

Professor Govindan is the Head of the Center for Sustainable Supply Chain Engineering, University of Southern Denmark. He has published over 350 peerreviewed research articles in journals, conferences and books. His h-index is 66 and total citation 15482 (until 26 March 2019). His research areas, among others, are Sustainable Supply Chain Management, Sustainable Circular Economy, Corporate Social Responsibility, Sustainable Consumption and Production, Extended Producer Responsibility, Industry 4.0 with Sustainable Supply Chain focus.

Operations and Supply Chain Management: An International Journal.

In addition to organizing regular conferences, we also publish an international journal called **Operations and Supply Chain Management: An International Journal**, as the main outlet of the extended papers presented at OSCM conferences. The journal publishes high quality refereed articles in the field of operations and supply chain management. The journal is indexed in Scopus and Web of Science (Emerging Science Citation Index, by Clarivate Analytics).

We invite original contributions that present modelling, empirical, review, and conceptual works. For more information please visit the journal's website: http://journal.oscm-forum.org/

The Committee

General Chair General Co-Chair : Mathews Nkhoma, RMIT University, Vietnam

: Nyoman Pujawan, ITS, Indonesia

Program Chair:

- Imam Baihaqi, ITS, Indonesia
- Reza Akbari, RMIT University, Vietnam
- Caroline Chan. RMIT. Australia .

Conference Administrator:

- Vu Hoang Thuy Tien, RMIT University, Vietnam
- Dana Karningsih, ITS, Indonesia
- Dewanti Anggrahini, ITS, Indonesia
- . Gita Widi Bhawika, ITS, Indonesia

Arrangement Chair:

- Nguyen Thanh Thuy, RMIT University, Vietnam
- . Robert McClelland, RMIT University, Vietnam
- Hiep Pham, RMIT University, Vietnam .
- Quynh Nguyen, RMIT University, Vietnam
- Hung Nguyen, RMIT University, Vietnam
- Victor Gekara, RMIT University, Australia
- Prem Chhetri, RMIT University, Australia
- Booi Kam, RMIT University, Australia

International Committee:

- Kamrul Ahsan, RMIT University, Australia
- The Jin Ai, University of Atmajaya, Jogjakarta, Indonesia
- Thunyarat (Bam) Amornpetchkul, NIDA Business School, Thailand
- Watcharavee Chandraprakaikul, University of the Thai Chamber of Commerce, Thailand
- . Imam Baihagi, Sepuluh Nopember Institute of Technology (ITS), Indonesia
- Hing Kai Chan, The University of Nottingham Ningbo China
- Paul Childerhouse, Massey University, New Zealand
- Ajay Das, Baruch College, The City University of New York, USA
- Kanchan Das, East Carolina University, USA
- Rene De Koster, Erasmus University, The Netherlands
- Per Engelseth, Molde University College, Norway
- Javad Feizabadi, Malaysia Institute for Supply Chain Innovation, Malaysia
- Yudi Fernando, Universiti Malaysia Pahang, Malaysia
- Dimitris Folinas, Alexadrion Technological Educational Institute of Thessaloniki, Greece
- George Hadjinicola, University of Cyprus
- Per Hilletofth, Jönköping University, Sweden
- Petros Ieromonachou, University of Greenwich, UK
- Takashi Irohara, Sophia University, Japan
- Sakun Boon-Itt, Thammasat University, Thailand
- Vipul Jain, Victoria University of Wellington, New Zealand
- Sanjay Jharkharia, Indian Institute of Management Kozhikode, India
- Ferry Jie, Edith Cowan University, Australia
- Yasutaaka Kainuma, Tokyo Metropolitan University, lanan
- Kap Hwan Kim, Pusan National University, Korea
- Duangpun Kritchanchai, Mahidol University, Thailand
- Reza Lashkari, University of Windsor, Canada
- Kun Liao, Central Washington University, USA
- Ming K. Lim, Chongqing University, China

- Ioannis Manikas. University of Greenwich. UK
- Bimaraya Metri, Indian Institute of Management, Trichy, India
- Barbara Ocicka, SGH Warsaw School of Economics, Poland
- Shunichi Ohmori, Waseda University, Japan
- Rajesh Piplani, Nanyang Technological University, Singapore
- Daniel Prajogo, Monash University, Australia
- Ramayah, Universiti Sains Malaysia
- Violeta Roso, Chalmers University of Technology, Sweden
- Ruhul Amin Sarker, University of New South Wales, Australia
- Anders Segerstedt, Lule University of Technology, Sweden
- Togar Simatupang, Bandung Institute of Technology, Indonesia
- Mecit Can Emre Simsekler, Khalifa University, Abu Dhabi, UAE
- Himanshu Shee, Victoria University, Australia
- Harm-Jan Steenhuis, Hawaii Pacific University, USA
- Suprayogi, Bandung Institute of Technology, Indonesia
- Katsuhiko Takahashi, Hiroshima University, Japan
- Armagan Tarim, Hacettepe University, Turkey
- Benny Tjahjono, Coventry University, UK
- Blanka Tundys, University of Szczecin, Poland
- Jyri Vilko, Lappeenranta University of Technology, Finland
- Kun-Jeng Wang, National Taiwan University of Science and Technology, Taiwan
- Hui Ming Wee, Chung Yuan Christian University, Taiwan
- Gede Agus Widyadana, Petra Christian University, Indonesia
- Joel Wisner, University of Nevada, Las Vegas, USA
- Hartanto Wong, Aarhus University, Denmark
- Sha'ri Mohd Yusof, Universiti Teknologi Malaysia
- Yahaya Yusuf, University of Central Lancashire, UK
- . Suhaiza Zailani, University of Malaya, Malaysia

Contents

KEYNOTE ABSTRACTS 1
INDUSTRY 4.0 AND ITS IMPACT ON SUSTAINABLE SUPPLY CHAIN MANAGEMENT 1
Kannan Govindan
SMART TRANSFORMATION ENABLED BY DIGITAL FUSION AND INDUSTRY 4.0 1
Shuo-Yan Chou
A COMPOSITE COST-TIME TRADE-OFF MODEL FOR MULTI-STOREY PROJECT FAST TRACKING 2
Paul Amaechi Ozor, Charles Mbohwa
A DATA MINING APPROACH TO OPTIMISE LARGE-SCALE OPTIMISATION PROBLEM 2
Truong Van Nguyen, Li Zhou, Petros Ieromonachou
A DETERIORATING INVENTORY MODEL WITH LIMITED VEHICLE CAPACITY, STOCK DEPENDENT DEMAND AND UNAVAILABILITY SUPPLY
I Gede Agus Widyadana, Nyoman Sutapa
A FRAMEWORK FOR ORGANIZATIONAL CHANGE: PURPOSE
Dag Naslund, Andreas Norrman
A MULTI-OBJECTIVE TRANSPORTATION PROBLEM UNDER QUANTITY DEPENDENT COST STRUCTURE AND CREDIT PERIOD POLICY IN TRIANGULAR-INTUITIONISTIC FUZZY ENVIRONMENT
Raj Kumar Bera, Shyamal Kumar Mondal
A STUDY ON LOGISTICS RISK ASSESSMENT: THE CASE OF CONTAINER SHIPPING IN EGYPT 4
Sara Elzarka
ACCOUNTING FOR SUSTAINABILITY IN SUPPLY CHAIN VISIBILITY ASSESSMENT
Apeji Uje Daniel, Funlade T. Sunmola, Petros Khoudian
AN APPROACH TO DEPLOYMENT READINESS REVIEW IN MANUFACTURING
Alireza Javahernia, Funlade Sunmola
AN EMPLOYMENT-FOCUSED CURRICULUM FRAMEWORK TO CLOSE SKILLS GAPS AMONG SUPPLY CHAIN PROFESSIONALS
Caroline Chan, I Nyoman Pujawan, Mahendra Rianto
AN INVESTIGATION OF RELATIONSHIP AMONG STORE ATTRIBUTES, CUSTOMER SATISFACTION, REPURCHASE INTENTION AND ADVOCACY: CASE OF JEWELLERY STORES IN INDIA
Yash Daultani, Kshitij Goyal, Saurabh Pratap
ANALYSIS OF MANUFACTURING DATA USING QUALITY ANALYSIS PLATFORM
Sehwan An, Yongju Cho
APPLYING A SUSTAINABLE INDUSTRY 4.0 IN SOUTHEAST ASIAN AGRI-FOOD INDUSTRY, A LITERATURE STUDY TO THEIR CHALLENGES AND OPPORTUNITIES
Denny Satria Ika, Hui-Min Wee, Laurence
APPLYING FUZZY ANALYTICAL HIERARCHY PROCESS TO RESHORING DECISIONS WITH COMPLEXITY AND UNCERTAINTY
Movin Sequeira, Per Hilletofth

ASPECTS OF DIGITALIZING THE SUPPLY CHAIN SOURCING PROCESS: A CASE STUDY FROM THE NORWEGIAN INDUSTRY
Johannes Cornelis De Man, Emrah Arica
ASSESSING SUPPLY CHAIN MATURITY FOR RETAIL PHARMACY CHAIN
Sara Elzarka
AUTOMATIC GENERATION OF FUZZY INFERENCE RULES IN A RESHORING DECISION CONTEXT
Anders Adlemo, Per Hilletofth
BIO-PLASTIC PACKAGING AND PRODUCT CO-INNOVATION: CRITICAL ISSUES IN B2B COLLABORATION
Liliani, Benny Tjahjono
BIVARIATE CONTROL CHART FOR QUALITY CONTROL ANALYSIS IN BREAD PRODUCTION PROCESS, INDONESIA
Silvia Sagita Arumsari, Luh Putu Eka Yani, Tika Endah Lestari
BLOCKCHAIN FOR IMPROVEMENT OF EMERGENCY RESPONSE IN HUMANITARIAN LOGISTICS INDONESIA
Paulina Kus Ariningsih, Gregorios Yogas Sundara
BUSINESS AND SUPPLY CHAIN STRATEGY OF FLYING ABOVE THE DESSERT: A CASE STUDY OF EMIRATES AIRLINES
Niyazudeen Kamarudeen, Balan Sundarakani
CARRIAGE CHOICE SIMULATION MODEL IN RAILWAY TRANSPORTATION FOR CEMENT DISTRIBUTION SYSTEMS
Winda Narulidea, Oki Anita Candra Dewi
CASHEW NUTS IN VIETNAM: FROM THE FARM TO THE INTERNATIONAL MARKETPLACE 13
John Walsh, Nguyen Quang Trung
CIRCULAR ECONOMY ADOPTION IN THE AQUAFEED INDUSTRY 14
Niken Kusuma Wardani, Benny Tjahjono
CLOUD COMPUTING AND IOT APPLICATION: CURRENT STATUSES AND PROSPECT FOR INDUSTRIAL DEVELOPMENT
Onu Peter, Charles Mbohwa
CO-PRODUCTION OF VALUE BETWEEN FUNCTIONS FOR SUPPLY CHAIN PERFORMANCE 15
Umer Mukhtar, Tashfeen Azhar
COMPLEXITY IN HANDLING ORDERS OF SPARE PARTS 15
Per Engelseth, Brian E. White
CONNECTING SUPPLY CHAIN MANAGEMENT STRATEGIES, AGILITY AND PERFORMANCE IN SOUTH AFRICAN SMES
Welby-Vandrys Loury-Okoumba, Chengedzai Mafini, Joyendu Bhadury
CUSTOMER INFORMATION USAGE: IMPROVING SUPPLY CHAIN PERFORMANCE AND ADVANCING LOGISTICS SERVICES IN CONSTRUCTION PROJECTS
Jenny Bäckstrand, Anna Fredriksson, Árni Halldórsson & Ida Gremyr
CUSTOMER SATISFACTION AND REVERSE LOGISTICS IN E-COMMERCE: THE CASE OF KLANG VALLEY

DESIGN RECOMMENDATIONS FOR THE FEASIBILITY OF AUTOMOTIVE PARTS REMANUFACTURING: A CASE STUDY IN INDONESIA
Didik Wahjudi, Benny Tjahjono, Shu San Gan, Yopi Yusuf Tanoto, Stefanus Hans
DESIGNING INTEGRATED RISK CATALOG FOR ENTERPRISE RISK MANAGEMENT OFFICE OF CEMENT INDUSTRY (A CASE STUDY)
Dewanti Anggrahini, Gita Widi Bhawika, I Gusti Ayu Putri Priyanka
DETERMINATION OF SUPPLY CHAIN LOCATION SEAWEED INDUSTRY WITH DYNAMIC PROGRAMMING
A. Harits Nu'man, L. Nurwandi, Yani. Khrishnamurti, Muhardi
DETERMINING THE IMPORTANT FACTORS OF PORT DIGITALIZATION: THE EMPIRICAL CASES OF INDONESIAN PORTS
Raja Oloan Saut Gurning
DEVELOPING BUSINESS MODEL OF PHYSICAL THERAPY TRICYCLE BY INTEGRATING LEAN CANVAS AND VALUE ENGINEERING
Putu Dana Karningsih, Dyah Santhi Dewi, Wilson Pasaribu, I Made London Batan
DEVELOPING NETWORK PROJECT SCHEDULING FOR ASSEMBLY OPERATIONS IN THE AIRCRAFT MANUFACTURING COMPANY USING ACTIVITY ON NODE (AON)
Dewanti Anggrahini, Nani Kurniati, Muhammad AbdanSyakura
DEVELOPING PERFORMANCE MEASUREMENT SYSTEM IN FOOD INDUSTRY: A LITERATURE REVIEW
Soksamnang Kong, Jirapan Liangrokapart
DIGITAL MUDA -THE NEW FORM OF WASTE BY INDUSTRY 4.0
Jamila Alieva, Robin Von Haartman
DISTRIBUTION CHALLENGES OF HEALTH COMMODITIES
Andrew-Vans Bray, Samuel Ofosu Awuah
DISTRIBUTION PROCESS DESIGN TO IMPROVE SUSTAINABILITY MANUFACTURING EFFICIENCY
Purnawan Adi Wicaksono, Heru Prastawa, Sri Hartini, M. Syarifudin Zain
DRIVERS AND BARRIERS FOR INLAND WATERWAY TRANSPORTATION-LESSONS LEARNT 24
Violeta Roso, Ceren Altuntas Vural, Anna Abrahamsson, Matilda Engström, Sara Rogerson And Vendela Santén
EFFECT OF RECYCLING IN AN IMPERFECT PRODUCTION SYSTEM WITH ACCEPTANCE QUALITY LEVEL DEPENDENT DEVELOPMENT COST
Shyamal Kumar Mondal
EMERGING TECHNOLOGIES IN SUPPLY CHAIN: MATURITY MODEL AND ASSESSMENT INSTRUMENT
Immarita Dinar Fajriyani, I Nyoman Pujawan
ENHANCING MANUFACTURING FLEXIBILITY FOR FINANCIAL PERFORMANCE: THE MEDIATING ROLE OF CULTURAL COMPATIBILITY
Hung Nguyen, Norma Harrison, Dothang Truong, George Onofrei
ENHANCING SUPPLY CHAIN CAPABILITIES IN AN ETOCONTEXT THROUGH "LEAN AND LEARN"

Jenny Bäckstrand, Daryl John Powell

ENHANCING SUPPLY CHAIN PERFORMANCE BY SUSTAINABLE SUPPLIER SELECTION AND ORDER SPLITTING STRATEGIES
Vipul Jain
EVALUATING THE IMPACT OF SAFETY CULTURE DIMENSIONS ON PATIENT SAFETY USING MACHINE LEARNING
M. C. Emre Simsekler, M. Alalami, Samir Ellahham, Al Ozonoff
EVALUATION OF ADOPTING E-PROCUREMENT AND ITS IMPACT ON PERFORMANCE IN APPAREL SUPPLY CHAIN
M.U.G. Jayawardhena, Pradeepa Jayaratne
EVALUATION OF THE GREEN SUPPLY CHAIN MANAGEMENT FOR ORGANIC PRODUCTS - THEORETICAL AND EMPIRICAL APPROACH
Blanka Tundys, Tomasz Wiśniewski
EXPLORING MACHINE LEARNING APPLICATIONS IN SUPPLY CHAIN MANAGEMENT
Luh Putu Eka Yani, I Made Alan Priyatna, Ammar Aamer
EXPLORING THE IMPACT OF INNOVATIVENESS OF HOSPITALITY SERVICE OPERATION ON CUSTOMER SATISFACTION
Ngan T. Truong, Duy Dang-Pham, Robert Mcclelland, Mathews Nkhoma
EXPLORING THE KEY FACTOR CATEGORIES FOR THE DIGITAL SUPPLY CHAIN
Chelinka Rafiesta Sahara, Jemica Damar Elyanto Paluluh, Ammar Mohamed Aamer
FACTORS AFFECTING IOT ADOPTION IN FOOD SUPPLY CHAIN MANAGEMENT
Ifadhila Affia, Luh Putu Eka Yani, Ammar Aamer
FACTORS OF KAIZEN TRANSFERABILITY IN NON-JAPANESE CULTURES
Silvia Sagita Arumsari, Yusril Maulana Rachim, Ammar Mohamed Aamer
FASHION PRODUCT DEMAND PREDICTION BASED ON ARTIFICIAL NEURAL NETWORK CONSIDERING PRODUCT VARIANCE
Andi Cakravastia, Karina Apriana
FEASIBILITY OF ANALYTICAL HIERARCHY PROCESS AS A TOOL FOR RESHORING DECISIONS34
Movin Sequeira, Per Hilletofth
FORWARD AND REVERSE SUPPLY CHAIN NETWORK DESIGN FOR NEW AND REFURBISHED PRODUCTS IN E-COMMERCE LOGISTICS
Yash Daultani, Naoufel Cheikhrouhou, Saurabh Pratap, Dhirendra Prajapati
FUZZY LOGIC IN A RESHORING DECISION-MAKING CONTEXT
Per Hilletofth, Movin Sequeira
GREEN PRODUCTION INVENTORY MODEL WITH CAP AND TRADE POLICY FOR GREENHOUSE GAS EMISSION
Amalesh Kumar Manna, Asoke Kumar Bhunia
GREEN SUPPLY CHAIN MANAGEMENT: A RESEARCH AGENDA
Alina Shamsuddin, Eta Wahab, Wan Nurul Karimah Wan Ahmad, Nor Hazana Abdullah
GREEN SUPPLY CHAIN MANAGEMENT MEASUREMENT IN DEFENSE COMPANY IN INDONESIA
HOW ECONOMIC INTEREST IMPACT ON SCM PERFORMANCE?
Seock-Jin Hong

HYBRID SIMULATION AND INTEGER LINEAR PROGRAMMING MODEL FOR INTERMODAL DISTRIBUTION: A CASE STUDY OF FERTILIZER COMPANY IN INDONESIA
Dody Hartanto, Rahmat H. Saleh
IMPACT OF ERP USAGE ON OPERATIONAL PERFORMANCE OF SRI LANKAN MANUFACTURING COMPANIES
Jayarathna B.C.P, Herath H.M.T.S, Kumudumali M.A.
IMPACT OF GLOBAL AGRI-FOOD COMMODITY FLOWS ON FOOD AND FEED SAFETY 40
Milena Zupaniec, Anneluise Mader, Robert Pieper, Helmut Schafft
IMPLEMENTATION TRAFFIC CONTROL ALGORITHM FOR MULTI-AGV SYSTEM
Pasan Dharmasiri, Ilya Kavalchuk, Mohammadreza Akbari
IMPROVEMENT OF INFORMATION FLOW FOR RAIL FREIGHT TRANSPORTATION
Nattakit Yuduang, Jirapan Liangrokapart
INFUSION OF DRY PORTS IN MALAYSIAN CONTAINER SEAPORT SYSTEM: A PREPARATION TOWARDS UNPREDICTABILITY IN GLOCALISATION-CENTRIC TRADE SYSTEM
Jagan Jeevan, Monizaihasra Mohamed, Violeta Roso
INTRODUCING TRAMP AND LINER SHIPPING MODEL TO PRODUCTION PLANNING
Qian Huang, Shunichi Ohmori, Kazuho Yoshimoto
INVOLVING SUPPLIERS IN A LEAN TRAINING PROGRAM
Peter Manfredsson, Per Hilletofth, Ewout Reitsma
JOINT PROMOTIONS AND INVENTORY DECISIONS
George Hadjinicola, Andreas Soteriou
KNOWLEDGE TRANSFER FOR THE NEXT GENERATION OF LOGISTICS EXPERTS
Sandra Eitler, Reinhold Schodl
LAST MILE DELIVERY AS A COMPETITIVE LOGISTICS SERVICE IN VIETNAM – A CASE OF DHL E-COMMERCE VIETNAM
Hiep Cong Pham, Dat Nguyen, Chau Doan, Quyen Thai, Ngoc Nguyen
LEADERSHIP AND PERFORMANCE: THE CASE OF AUSTRALIAN SMES IN THE SERVICES SECTOR
Sara Kasraie, John Burgess
LINER SHIPPING NETWORK DESIGN IN INDONESIA "SEA-TOLL" AGENDA: TANJUNG PERAK CORRIDOR
Muchammad Arya Zamal, Rommert Dekker
LOCAL DISTRIBUTION OF ORGANIC FOOD: A REVIEW AND RESEARCH AGENDA
Yinef Pardillo Baez, Movin Sequeira, Per Hilletofth
LOCKER FACILITY ALOCATION FOR DELIVERY OF GOODS IN THE E-COMMERCE BUSINESS 48
Oki Anita Candra Dewi, Siti Nurminarsih, Maulin Masyito Putri, Muhammad Faisal Ibrahim, Winda Narulidea
LOGISTIC PARTNERSHIP IN THE FOOD SUPPLY CHAINS MANAGEMENT IN THE CONTEXT OF INTERNATIONAL EXPANSION
Blanka Tundys, Marta Starostka-Patyk, Katarzyna Grondys, Paula Bajdor, Joanna Nowakowska-Grunt
LOGISTICS SETUPS IN A THIRD-GENERATION PORT
Yulia PANOVA, Per Hilletofth

MANAGEMENT AND DESIGN OF ROBOTIC SORTING SYSTEMS
René De Koster, Bipan Zou, Yeming Gong
MANAGEMENT OF CYBER SECURITY THREATS IN THE FACTORIES OF THE FUTURE SUPPLY CHAINS
Jukka Hemilä, Markku Mikkola, Jarno Salonen
MODELING OF THE AREA OF TRANSPORTATION MOVEMENT NETWORK POTENTIAL FLOOD FOR DISASTER MITIGATION CASE STUDY: BANDUNG RAYA AREA
Darwin, B.Kombaitan, Heru Purboyo Hidayat P, Gatot Yudoko
MULTI OBJECTIVE RELIEF DISTRIBUTION SYSTEM MODEL FOR VOLCANO DISASTER VICTIMS
Amelia Santoso, Dina N. Prayogo, Joniarto Parung, Calvin Soputra
NEW APPROACH TO ESTIMATE CUSTOMER SATISFACTION LEVEL
Mokh Suef
NEW FUTURE FOR SUSTAINABILITY AND INDUSTRIAL DEVELOPMENT: SUCCESS IN BLOCKCHAIN, INTERNET OF PRODUCTION, AND CLOUD COMPUTING TECHNOLOGY
Onu Peter, Charles Mbohwa
NEGOTIATING THE MULTI-NATIONAL SUSTAINABLE FOOD SUPPLY CHAIN: A CONCEPTUAL ROADMAP
John Wilkerson, Yuehe Cui, Yixin Jin, Yiqin Lin
PERFORMANCE EVALUATION OF PROFESSIONAL SERVICES SUPPLY NETWORK: A MULTI- CRITERIA DECISION-MAKING APPROACH
Omkarprasad S.Vaidya
PERFORMING SUPPLY CHAIN DESIGN ACTIVITIES DURING PRODUCT DEVELOPMENT PROJECTS: A SYSTEMATICNLITERATURE REVIEW
Ewout Reitsma, Per Hilletofth, Eva Johansson
PROPOSED DESIGN OF INTELLIGENT INSPECTION SYSTEM FOR QUALITY CONTROL PROCESS55
Yudha Prasetyawan, Alfia Khairani Simanjuntak, Azimatul Khusniah
PURCHASING AS A LEVER OF INNOVATIONS IN ERA OF DIGITAL TRANSFORMATION
Barbara Ocicka
REDUCING OCCURRENCE OF TRANSFORMER FAILURE FROM 0.75% TO 0.35% USING TOOLS OF LEAN SIX SIGMA
Shrinivas Repak, Mukund Madhav Tripathi
RELIABLE QUALITY MANAGEMENT IN ROAD FREIGHT OPERATIONS
Paul A. Ozor, Charles Mbohwa
RESCUE AND RELIEF OPERATION AFTER A DEVASTATING FIRE ACCIDENT: A HUMANITARIAN LOGISTICS-BASED MODELING APPROACH
Kanchan Das, R. S. Lashkari, Azizur R. Khan
RESEARCH ON COMPLEMENTARITY BUSINESS MODEL OF FRESH E-RETAILER DRIVEN BY CONSUMERS' DEMAND: A CASE STUDY BASED ON THE COOPERATION BETWEEN YIGUO AND XIACHUFANG
Zhang Xumei, Jiang Xiaoling, Deng Zhenhua, Wu Shengnan
RICE EXPORT VOLUME FORECASTING IN VIET NAM USING ARTIFICIAL NEURAL NETWORK 60

Dung Thi My Tran, Truc-Hung Ngo, Tham Thi Tran, Ton Hien Duc Truong, Vinh Thai

RISK ANALYSIS IN SUPPLY CHAIN AT SMALL MEDIUM ENTERPRISE FOR CLAM AND SEAWEED (KERULA) CRACKERS PRODUCTS
Eko Nurmianto, Dwi Endah Kusrini, Arino Anzip
RISK ASSESSMENT BASED ON BUSINESS CONTINUITY MANAGEMENT OF HARBOR TUG SHIPPING OPERATIONS
Eko Hariyadi Budiyanto, Raja Oloan Saut Gurning, Trika Pitana, Ingdiranta Zefanya Br Sebayang
RISK GOVERNACE FOR PROTECTING CRITICAL INFRASTRUCTURE SUPPLY CHAINS: TOWARDS A CONCEPTUAL MULTI-LEVEL FRAMEWORK
Victoria Ahlqvist, Andreas Norrman, Marianne Jahre
RISK POOLING AND STOCK ALLOCATION UNDER COST AND DEMAND UNCERTAINTY
RefikGullu
SIMULATION MODELING FOR AUTOMATED PHARMACY DISPENSING SYSTEM: A CASE STUDY IN HOSPITAL
Premrudee Soontranan, Duangpun Kritchanchai
STUDY OF VESSEL OPERATION IN INDONESIA "SEA – TOLL" AGENDA
Muchammad Arya Zamal, Senator Nur Bahagia
SUPPLY CHAIN COORDINATION UNDER VENDOR MANAGED INVENTORY SYSTEM CONSIDERING CARBON EMISSION FOR IMPERFECT QUALITY DETERIORATING ITEMS
Agustina Viani Trinanda Adi Nugroho, Hui Ming, Wee
SUPPLY CHAIN RISK MANAGEMENT OF FISHERY PRODUCTS IN SURABAYA TRADITIONAL MARKET
Ignatia Martha Hendrati, Achmad Room Fitriant, Indrawati Yuhertiana
SUPPLY-PROCESSING-DISTRIBUTION MODELSFOR HOSPITAL SUPPLY CHAIN –A CASE STUDY OF HOSPITAL SUPPLY CHAIN IN THAILAND
Daranee Senarak, Duangpun Kritchanchai
SUSTAINABLE DEVELOPMENT IN AN IMPERFECT PRODUCTION SYSTEM BY CONTROLLING GREENHOUSE GAS EMISSION
Madhusudan Dolai, Amalesh Kumar Manna, Shyamal Kumar Mondal
SYSTEM DYNAMIC MODELING FOR CARGO NON-KS DELIVERY REVENUE IMPROVEMENT IN CGD DRY-PORT
Asep Ridwan, Muhammad Iman Santoso, Ratna Ekawati, Reno Prasetyo
THE CHALLENGES OF EMERGING TECHNOLOGIES: THE EXPERIENCE OF PROCUREMENT PROFESSIONALS
Loo Saw Khuan
THE CONTAINER SHIPPING FLEET PLANNING PROBLEM UNDER TRADE DISPARITIES OF NATIONAL LOGISTICS SYSTEM IN INDONESIA
Siti Nurminarsih, Maulin Masyito Putri, Karina Virgiananda Sirsya
THE DEVELOPMENT OF ONLINE PLATFORM FOR HUMANITARIAN LOGISTICS
Raden Didiet Rachmat Hidayat, Sandriana Marina, Lira Agusinta, Aswanti Setyawati, Reza Fauzi Jayasakti, Aisyah Rahmawati
THE EFFECT OF PRICING STRATEGIES ON RETAILERS: AN AGENT-BASED MODELING APPROACH
Niniet I. Arvitrida, Adji Candra, Nurhadi Siswanto, Lila Yuwana

THE HALAL SUPPLY CHAINS MAPPING IN INDONESIAN TRADITIONAL MARKET AS EFFORT IN CREATING FOOD SECURITY ENVIRONMENT: AN INITIAL CONCEPT
Ah. Ali Arifin
THE IMPACT OF CULTURE OF QUALITY (COQ) ON THE ORGANIZATIONAL PERFORMANCE 71
Yu Han, Vikas Kumar, Ngân Tuyết Trương, Nhu Y Ngoc Hoang
THE IMPACT OF SUPPLIER INVOLVEMENT ON SUPPLY CHAIN RISKS AND RESILIENCE
Grażyna Wieteska
THE IMPLEMENTATION OF LOGISTICS INFORMATION TECHNOLOGY IN MITIGATING SMES LOGISTICS CHALLENGES IN VANDERBIJLPARK
O. Omoruyi
THE USE OF C4ISR IN SMART CITY FOR DISASTER MITIGATION IN ASYMMETRICAL WARFARE PERSPECTIVE
Luh Putu Ika Primayanti, Febyorita Amelia
TOWARDS SUSTAINABILITY IN SOURCING: A HYBRID MCDM APPROACH
Ahmed Mohammed
UNDERSTANDING THE INFLUENCE BETWEEN BLOCKCHAIN TECHNOLOGY AND TRUST IN SUPPLY CHAIN MANAGEMENT: A LITERATURE REVIEW
Abbas Batwa, Andreas Norrman
VEHICLE ROUTING MODEL FOR MILK RUN DELIVERY OF FRESH PRODUCE: THE CASE OF A 3PL SERVICE PROVIDER CATERING SUPERMARKETS
Hashini Kodippili, Nishal A. Samarasekera
WAREHOUSE OPERATION OPTIMIZATION THROUGH ON-SITE OBSERVATION AND SIMULATION
Hiep Cong Pham, Dat Nguyen
WASTE ELIMINATION ACTION EVALUATION USING MANUFACTURING SYSTEM VALUE ANALYSIS
Yudha Prasetyawan, Maudy Ramadhani Putri, Siti Qomariyah
WHAT ARE THE MOST PROMISING INNOVATIONS IN LOGISTICS?
Reinhold Schodl, Sandra Eitler
WHY YOUR PRODUCT VARIETY MANAGEMENT STRATEGYMAY FAIL: BARRIERS IN THE REDUCTION OF THE PRODUCT VARIETY

Loris Battistello, Alexandria Trattner, Lars Hvam

MULTI-OBJECTIVE RELIEF DISTRIBUTION SYSTEM MODEL FOR VOLCANO DISASTER VICTIMS

Amelia Santoso, Dina N. Prayogo, Joniarto Parung & Calvin Soputra

Industrial Engineering Study Program, University of Surabaya, Surabaya 60293 Indonesia, E-mail: <u>amelia@staff.ubaya.ac.id</u>

ABSTRACT

Because of its location in the ring of fire, Indonesia has around 30% of all volcanoes in the world. After the volcano erupted, the area around the volcano was damaged and many people lost their houses, jobs, and possibilities to live in there. Before the volcano erupts, people who live around the volcano must be evacuated as soon as possible to one of the available shelters. In the shelters, drinking water, food, and medicine are needed by victims who were evacuated to survive aftermath of a disaster. To distribute reliefs to all shelters effectively, we developed a multi-objective relief distribution model. This distribution system model aims to determine the allocation of various types of relief items to several shelters with a minimum total cost and balanced service level between locations. This multi-objective relief distribution model considered multi-item, multi-period, multi-vehicle, and multi-trip by using a pre-emptive goal programming approach. This optimization model was applied to the numerical example based on Semeru Mount as the highest active volcanoes in Indonesia, which is located in Lumajang, East Java.

Keywords: relief distribution model, multi-objective optimization, pre-emptive goal programming

1. INTRODUCTION

Indonesia is an archipelago, located in the Pacific Ring of Fire and also in the meeting of four tectonic plates, i.e., the Asian continental plate, the Australian continental plate, the Indian Ocean plate, and the Pacific Ocean plate (CFE-DM, 2018). Because of its location, Indonesia geographically is a vulnerable country facing natural disasters (Van Rossum and Krukkert, 2010). Natural disasters, such as earthquakes, volcanic eruptions, and tornados, are catastrophic events caused by nature and cannot be controlled by men (Shaluf, 2007). In Indonesia, volcanic eruptions frequently occurred because Indonesia has around 30% of all volcanoes in the world. According to the Indonesian National Board for Disaster Management (BNPB), during the last 5 years, Indonesia has 78 volcanic eruptions; thus, this paper focuses on the impacts of volcano eruptions.

Natural disasters have caused damage and destruction of property, infrastructure, and assets; people lost their jobs and the possibilities to live (Sahay et al., 2016). To reduce or minimize the impact of natural disasters, a disaster management planning is needed. According to Perez-Gallarce (2017), the disaster management cycle contains four phases, namely, mitigation, preparedness, response, and recovery as shown in Figure 1. Habib (2016) categorized mitigation and preparedness into pre-disaster phases, whereas response and recovery phases are categorized into post-disaster phases. Mitigation phase is the first phase of disaster management that includes the activity steps to reduce vulnerability to disaster impacts, either economy or human (Camacho-Vallejo, 2015). Preparedness phase refers to design activities or procedures to minimize the disaster impacts to people and property. Response phase is a phase of aftermath disaster that

includes all activities or operations to save lives and prevent further damage, whereas the recovery or reconstruction phase is a phase of aftermath disaster that includes rehabilitation activities (Altay and Green 2006).

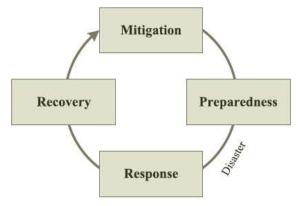


Figure 1. Four phases of the Disaster Management Cycle (Perez-Gallarce, 2017)

This paper focuses on the response phase of the disaster management cycle, a phase aftermath a volcanic eruption. Cozzolino (2012) divided the response phase into two sub-phases, namely, immediate response and restore, as shown in Figure 2. The immediate response sub-phase deals with how to rescue people, whereas the restore sub-phase deals with how to supply relief goods (medical attention, food, water, and shelter) to the refugees. Shaluf (2007) states that the worst consequence of volcanic eruption is when people have to be moved (evacuated) to shelters. Therefore, this paper deals on how to supply or distribute the relief goods to refugees in every shelter, especially to those who were affected by volcanic eruptions.

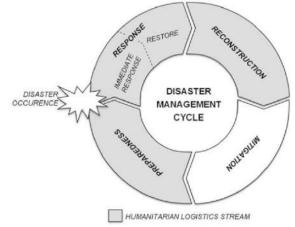


Figure 2. Response sub-phases in Disaster Management Cycle (Cozzolino, 2012)

Each shelter needs various relief (multi-item) and regional and provincial agencies (BNPD) have to distribute multi-relief to multi-shelter using multi-vehicle. Each vehicle can have multi-trip per period to supply a similar or a different shelter. Therefore, this paper proposed a model of distributing multi-reliefs to multi-shelters using multi-vehicle, in which each vehicle can have many trips in a period. The proposed relief distribution system model has multi-objectives. The objectives are, first, to minimize the total cost of relief distribution and, second, to balance the

service level of each shelter. Pre-emptive method is used to solve the multi-objective relief distribution system model. The pre-emptive methods solve the proposed model by completing each objective function in sequence (Winston, 2004).

2. RESEARCH FRAMEWORK

The research objectives can be achieved through systematic and structured steps. We started by defining the problem of distributing relief goods to each shelter. After the second step, which was to review literature, we began to develop the proposed model, which is a multi-objective distribution system model by considering multi-item, multi-vehicle, and multi-trip for each vehicle and multi-shelter. The next step was to create a scenario that consists of some actual data obtained in the field and some data assumptions. After completing the model using a pre-emptive approach and analyzing it, finally, conclusions and suggestions were done.

3. MODEL DEVELOPMENT

In the aftermath of a disaster, the basic needs of refugees must be met so the government through the BNPD distributes relief goods to each shelter where the refugees live. The proposed multi-objective distribution system model developed based on Lin et al. (2011) consists of two echelons, namely, the regional and provincial agency (BNPD) and multi-shelters. Regional and provincial agency (BNPD) is a government agency tasked to distribute the relief goods to multi-shelters. In each shelter, a lot of items are needed to be fulfilled during a certain period, and a corresponding penalty cost is imposed when the demand cannot be fulfilled within that period.

In the proposed distribution system model, one BNPD distributes relief items to many shelters. BNPD has multi-homogeneous vehicles to transfer multi-relief to shelters. In one period, vehicles can have many trips to the same or different shelter during a period as long as they have available time to transfer relief. At the same time (in one trip), a vehicle can only send multi-relief goods to one shelter, but the shelter can be visited by more than one vehicle that sends all requests for shelter in the same period. Each vehicle has weight and volume capacity restrictions. Certain relief demand at certain shelters in a period can be fulfilled by multiple vehicles and multiple trips using the same vehicle or not. This proposed model determined the number of reliefs that are distributed to a certain shelter using a certain vehicle in a certain trip at a certain period in order to minimize the total cost to meet the demand for relief goods and to minimize the gap in service level between shelters.

3.1. Mathematic Notation

Several mathematical notations that are used in this proposed multi-objective relief distribution system model can be classified become indexes, parameters, and decision variables as follows:

Index

i = Type of relief j = Shelter location l = Vehicle t = Period k = trip

Parameter

ξ_i	=	Transportation time to shelter location <i>j</i>
\acute{C}_{jl}	=	Transportation cost to location <i>j</i> using vehicle <i>l</i>
Ĥ	=	Total of available work time per period
W	=	Maximum load weight capacity of vehicle <i>l</i>
V	=	Maximum load volume capacity of vehicle <i>l</i>
М	=	A large number
D _{ijt}	=	Demand of relief <i>i</i> at location <i>j</i> in period <i>t</i>
$F\dot{P}_i$	=	Penalty cost of relief <i>i</i> if there is remaining unsatisfied demand
a_i	=	Unit weight of relief <i>i</i>
b_i	=	Unit volume of relief <i>i</i>

Decision Variable

X_{ijltk}	=	Amount of relief <i>i</i> delivered to shelter location <i>j</i> using vehicle <i>l</i> in period <i>t</i> trip <i>k</i>
w _{ijt}	=	Unsatisfied demand for relief item <i>i</i> at shelter location <i>j</i> in period <i>t</i>
S	=	Maximum difference of service level between two shelter locations
s _i	=	Service level of shelter location <i>j</i>
Y_{iltk}	=	Equal to 1 when relief are delivered to shelter location j using vehicle l at period t
		trip k, and 0 otherwise

3.2. Mathematic Formulation

This proposed aid distribution model has two objective functions. The first objective function (equation 1) is to minimize the total cost to meet the demand for relief goods, consisting of penalty cost and transportation cost. The penalty cost is the cost incurred because there is a demand for relief items that cannot be met. The second objective function (equation 2) is to minimize the gap of service level between shelters. This objective function aims to balance service level among shelters. Both objective functions are formulated as follows:

$$\min \sum_{i} \left(\left(\sum_{j} \sum_{t} D_{ijt} - \sum_{j} \sum_{l} \sum_{t} \sum_{k} X_{ijltk} \right) FP_{i} \right) + \sum_{j} \sum_{l} \sum_{t} \sum_{k} C_{jl} Y_{jltk}$$
(1)

min. S (2)

This proposed model has several constraints as follows:

$$s_j = \frac{\sum_i \sum_l \sum_k X_{ijltk}}{\sum_i \sum_t D_{ijt}} \qquad \forall j$$
(4)

$$\sum_{l} \sum_{k} (X_{ijltk} + w_{ijt}) = D_{ijt} \qquad \forall i, j, t$$
(5)

$$X_{ijltk} \le MY_{jltk} \qquad \forall i, j, l, t, k \tag{6}$$

$$\sum_{j} \sum_{k} \xi_{j} Y_{jltk} \le H \qquad \forall l, t$$
(7)

$$\sum_{i} \sum_{j} a_{i}(X_{ijltk}) \leq W \qquad \forall l, t, k$$
(8)

$$\sum_{i} \sum_{j} b_{i}(X_{ijltk}) \leq V \qquad \forall l, t, k$$
(9)

$$\sum_{j} Y_{jltk} \le 1 \qquad \forall l, t, k \tag{10}$$

$$Y_{ltk} = \sum_{j} Y_{jltk} \qquad \forall l, t, k$$
(11)

$$Y_{ltk} \ge Y_{jlt(k+1)} \qquad \forall l, t, k; k < \overline{k}$$
(12)

$$S^+, S^- \ge 0 \tag{13}$$

$$S^+, S^- \le S \tag{14}$$

$$w_{ijt} \ge 0 \qquad \forall i, j, t$$
 (15)

$$X_{ijltk} \ge 0 \qquad \forall i, j, l, t, k \tag{16}$$

$$Y_{jltk} \in \{0,1\} \quad \forall j,l,t,k \tag{17}$$

Equations (3) and (4) are used to determine the gap in service levels to meet the needs of all relief items at the shelter. The level of service for fulfilling all relief items at the shelter is calculated from the ratio between the total demand for all relief goods that are fulfilled at the shelter and the total demand for all relief goods at the shelter. Equation (5) ensures that the total demand for each item of relief goods in a period is fulfilled within that period. Equation (6) guarantees that the relief goods are delivered using the assigned vehicle, whereas equation (7) ensures that in each period, each vehicle can be used only in the available working hours in that period. Equations (8) and (9) limit the total weight and total volume of loading of relief goods to not exceed the capacity of the vehicle. Equations (10) and (11) ensure that each vehicle on the same trip only sends relief goods to one shelter, whereas equation (12) guarantee that all trips of each vehicle are done in sequence order. Equations (13) and (14) guarantee that the values of the gap are absolute. Equations (15) and (16) guarantee non-negative decision variables, whereas equation (17) ensures binary decision variables.

4. RESULTS & DISCUSSION

The proposed multi-objective distribution system model is implemented using Mount Semeru data. Mount Semeru is one of the most active volcanoes in East Java, Indonesia, exactly located in Lumajang city. The height of Mount Semeru is 3,676 m above sea level, making it the highest mount in East Java. In the aftermath of a disaster, relief goods are distributed to the victims. Distributed relief goods have to be suitable for their needs. Mount Semeru data can be obtained from BPBD Lumajang. All data are collected as shown in Table 1. - Table 4.

Number of **Breastfeeding** Toddler Capacity Location Refugee mothers (person) (kid) (person) (person) GOR Wira Bakti & Lapangan 20,000 18,413 3,995 1,149

Table 1. Shelter Location and Number of Refugee

^{9th} International Conference on Operations and Supply Chain Management, Vietnam, 2019

Location	Capacity (person)	Number of Refugee (person)	Breastfeeding mothers (person)	Toddler (kid)
Stadion Semeru	30,000	29,642	5,640	1,209
Barak/Aula Yonif 527	7,500	6,826	700	-
Asrama Nakertrans	1,000	808	428	272
Kantor Diklat	1,000	809	429	273
Total	59,500	56,498	11,192	2,903

Table 2. Amount of Relief Sent For Each Location Each Period

		Location of shelter					
Relief goods	Dimension	GOR Wira Bakti & Lapangan	Stadion Semeru	Barak/Aula Yonif 527	Asrama Nakertrans	Kantor Diklat	
Mineral water 600 ml	box	2,878	4,739	1,423	90	90	
Prepared food	box	864	1,422	342	27	27	
Medicine	box	185	297	68	8	8	
Toddler food	pack	575	605	-	136	137	
Sanitary napkins	pack	160	226	28	18	18	

 Table 3. Weight, Volume and Penalty Cost of Each Relief

Relief good 1	Weight (kg) 2	Volume (m ³) 3	Penalty cost (Rp) 4
Mineral water 600 ml	15	0.0239	1,500,000,-
Prepared food	3	0.0217	1,500,000,-
Medicine	5	0.006	1,500,000,-
Toddler food	0.12	0.0008	1,500,000,-
Sanitary napkins	1.5	0.0078	1,500,000,-

Table 4. Parameters					
Parameter	Amount				
1	2				
Number of vehicle	3 units				
Weight capacity of vehicle	5,895 kg				
Volume capacity of vehicle	13 m ³				
Travel time to each shelter location	0,5 hour				
Loading and unloading time of relief	1 hour				
Number of trips	6 trips				
Operation time	10 hours				
Planning periods	7 days				

Using a pre-emptive approach, relief goods sent to the shelter location can be shown in Table 5 and the unfulfilled demand can be shown in Table 6.

Relief	Shelter	Period						
Kener	Location	1	2	3	4	5	6	7
Mineral water 600	GOR Wira Bakti & Lapangan	1709.9 3	1709.9 3	1709.9 3	1709.9 3	1273.36	2102.9 3	1709.93
ml	Stadion	3126.1	2340.1	3126.1	2910.7	3126.16	2565.4	3126.16

Table 5. Number of Relief Goods Sent

D.P.f	Shelter				Period			
Relief	Location	1	2	3	4	5	6	7
	Semeru	6	6	6	4		8	
	Barak/Aula Yonif 527	692.13	1423	108.13	692.13	1423	692.13	672.15
	Asrama Nakertrans	0	90	90	0	0	57.071	90
	Kantor Diklat	90	90	0	90	90	0	90
	GOR Wira Bakti & Lapangan	864	864	864	864	864	864	864
D	Stadion Semeru	1422	1422	1422	1422	1422	1422	1422
Prepared food	Barak/Aula Yonif 527	342	342	342	342	342	342	342
	Asrama Nakertrans	27	27	27	27	0	27	27
	Kantor Diklat	27	27	0	27	27	27	27
	GOR Wira Bakti & Lapangan	185	185	185	185	185	185	185
	Stadion Semeru	297	297	297	297	297	297	297
Medicine	Barak/Aula Yonif 527	68	68	68	68	68	68	68
	Asrama Nakertrans	8	8	8	8	0	8	8
	Kantor Diklat	0	8	0	0	0	8	0
	GOR Wira Bakti & Lapangan	575	575	575	575	575	575	575
Toddler	Stadion Semeru	605	605	605	605	605	605	605
food	Barak/Aula Yonif 527	0	0	0	0	0	0	0
	Asrama Nakertrans	136	136	136	136	0	136	136
	Kantor Diklat	137	99,303 61	0	137	137	137	137
<i>a</i>	GOR Wira Bakti & Lapangan	160	160	160	160	160	160	160
	Stadion Semeru	226	226	226	226	226	226	226
Sanitary napkins	Barak/Aula Yonif 527	28	28	28	28	28	28	28
	Asrama Nakertrans	18	18	18	18	0	18	18
	Kantor Diklat	0	0	0	18	0	18	18

|

	Table 6. Unfulfilled Demand Shelter Period							
Relief	Location	1	2	3	4	5	6	7
	GOR Wira							
	Bakti &	1168.0	1168.0	1168.0	1168.0	1604.6	775.06	1168.0
	Lapangan	67	67	67	67	45	67	67
	Stadion	1612.8	2398.8	1612.8	1828.2	1612.8	2173.5	1612.8
Mineral	Semeru	4	4	4	6	4	15	4
water 600	Barak/Aula	730.86	0	337.87	730.87	0	730.87	750.85
ml	Yonif 527	/30.80	0	557.07	/30.87	0	/30.8/	730.83
	Asrama	90	0	0	90	90	32.93	0
	Nakertrans		Ŭ	Ŭ			02000	Ű
	Kantor	0	0	90	0	0	90	0
	Diklat							
	GOR Wira	0	0	0	0	0	0	0
	Bakti &	0	0	0	0	0	0	0
	Lapangan Stadion							
	Semeru	0	0	0	0	0	0	0
Prepared	Barak/Aula							
food	Yonif 527	0	0	0	0	0	0	0
	Asrama	0	0	0	0	27	0	0
	Nakertrans	0	0	0	0	27	0	0
	Kantor	0	0	27	0	0	0	0
	Diklat	0	0	27	0	0	0	0
	GOR Wira	0	0	0	0	0	0	0
	Bakti &							
	Lapangan							
	Stadion	0	0	0	0	0	0	0
Math	Semeru							
Medicine	Barak/Aula Yonif 527	0	0	0	0	0	0	0
	Asrama							
	Nakertrans	0	0	0	0	8	0	0
	Kantor						_	
	Diklat	8	0	8	8	8	0	8
-	GOR Wira							
	Bakti &	0	0	0	0	0	0	0
	Lapangan							
	Stadion	0	0	0	0	0	0	0
Toddler	Semeru	0	0	0	0	0	0	0
food	Barak/Aula	0	0	0	0	0	0	0
	Yonif 527	-	-	-	-		-	
	Asrama	0	0	0	0	136	0	0
	Nakertrans Kantor							
	Diklat	0	37.69	137	0	0	0	0
	GOR Wira							
	Bakti &	0	0	0	0	0	0	0
	Lapangan	-	-		-		-	-
Sanitary	Stadion	0	0	0	0	0	0	0
napkins	Semeru	0	0	0	0	0	0	0
	Barak/Aula	0	0	0	0	0	0	0
	Yonif 527							
	Asrama	0	0	0	0	18	0	0

 Table 6. Unfulfilled Demand

Relief	Shelter				Period			
Kellel	Location	1	2	3	4	5	6	7
	Nakertrans							
	Kantor Diklat	18	18	18	0	18	0	0

Table 7 shows the level of service for each number of shelters 0.74811. This value recognizes the percentage of fulfillment of 74,811% of the total shelter demand. In addition, the percentage of fulfillment of each demand is the same, and this means that each shelter is served equally. The results of model gave the first objective function, the total cost amount Rp.38,009,100 and the second objective function is no gap of service level between all shelter locations.

Table 7. Service Level of each Shelter					
Shelter Location	Service Level				
GOR Wira Bakti & Lapangan	0,74811				
Stadion Semeru	0,74811				
Barak/Aula Yonif 527	0,74811				
Asrama Nakertrans	0,74811				
Kantor Diklat	0,74811				

5. CONCLUSION

During the restore sub-phase, BNPD distributes multi-reliefs to multi-shelters using multivehicles which each vehicle has multi-trips. The proposed relief distribution model gave result with minimal cost as well as balanced service level. The future research should develop metaheuristic algorithm in order to solve the proposed model faster.

6. ACKNOWLEDGEMENT

This research is part of Disaster research funded by the Directorate General of Higher Education. We grateful thanks for their support in this research funding.

7. REFERENCES

- Altay, N. and Green, W. G. (2006) OR/MS research in disaster operations management. European Journal Operation Research. Vol. 175 (1), 475-493
- Habib, M.S., Lee, Y.H. and Memon, M.S. (2016).³ Mathematical models in humanitarian supply chain management: a systematic literature review. Mathematical Problems in Engineering Vol. 2016, Article ID 3212095, http://dx.doi.org/10.1155/2016/3212095
- Camacho-Vallejo, J.F., Gonzalez-Rodriguez, E. and Almaguer, F.J. (2015) A bi-level optimization model for aid distribution after the occurrence of a disaster. *Journal of Cleaner Production* Vol. 105, 134-145
- CFE-DM (The Center for Excellence in Disaster Management and Humanitarian Assistance) (2018), Indonesia disaster management reference book. https://www.cfe-dmha.org
- Cozzolino, A. (2012), *Humanitarian logistics: cross-sector cooperation in disaster relief management*. Springer, New York.
- Lin, Y.H., Batta, R., Rogerson, P. A., Blatt, A., & Flanigan, M. (2011)₃₂ A logistics model for emergency supply of critical items in the aftermath of a disaster. *Socio-Economic Planning Sciences* 45(4), 132-145.
- Sahay,B.S., Menon, V.C., and Gupta, S. (2016)₂₇ Humanitarian logistics and disaster management: the role of different stakeholders, in Sahay,B.S., Gupta, S., and Menon, V.C. (ed), *Managing Humanitarian Logistics*, Springer, India.

- Shaluf, I.M. (2007).⁵ An overview on disasters. *Disaster Prevention and Management: An International Journal*, Vol. 16 (5), 687-703
- Perez-Galarce, F., Canales, L.J., Vergara, C. and Candia-Vejar, A. (2017). An optimization model for the location of disaster refuges. *Socio-Economic Planning Sciences* Vol. 59, 56-66
- Van Rossum, J. and Krukkert, R. (2010).⁵ Disaster management in Indonesia : logistical coordination and cooperation to create effective relief operations. *Jurnal Teknik Industri* Vol. 12(1), 25-32
- Winston, W.L. (2004) *Operations research applications and algorithms*, 4th Edition. Thomson Learning, Inc., Canada.