47 research outputs found

    Supercomputing futures : the next sharing paradigm for HPC resources : economic model, market analysis and consequences for the Grid

    Get PDF
    À la croisée des chemins du génie informatique, de la finance et de l'économétrie, cette thèse se veut fondamentalement un exercice en ingénierie économique dont l' objectif est de contribuer un système novateur, durable et adaptatif pour le partage de resources de calcul haute-performance. Empruntant à la finance fondamentale et à l'analyse technique, le modèle proposé construit des ratios et des indices de marché à partir de statistiques transactionnelles. Cette approche, encourageant les comportements stratégiques, pave la voie à une métaphore de partage plus efficace pour la Grid, où l'échange de ressources se voit maintenant pondéré. Le concept de monnaie de Grid, un instrument beaucoup plus liquide et utilisable que le troc de resources comme telles est proposé: les Grid Credits. Bien que les indices proposés ne doivent pas être considérés comme des indicateurs absolus et contraignants, ils permettent néanmoins aux négociants de se faire une idée de la valeur au marché des différentes resources avant de se positionner. Semblable sur de multiples facettes aux bourses de commodités, le Grid Exchange, tel que présenté, permet l'échange de resources via un mécanisme de double-encan. Néanmoins, comme les resources de super-calculateurs n'ont rien de standardisé, la plate-forme permet l'échange d'ensemble de commodités, appelés requirement sets, pour les clients, et component sets, pour les fournisseurs. Formellement, ce modèle économique n'est qu'une autre instance de la théorie des jeux non-coopératifs, qui atteint éventuellement ses points d'équilibre. Suivant les règles du "libre-marché", les utilisateurs sont encouragés à spéculer, achetant, ou vendant, à leur bon vouloir, l'utilisation des différentes composantes de superordinateurs. En fin de compte, ce nouveau paradigme de partage de resources pour la Grid dresse la table à une nouvelle économie et une foule de possibilités. Investissement et positionnement stratégique, courtiers, spéculateurs et même la couverture de risque technologique sont autant d'avenues qui s'ouvrent à l'horizon de la recherche dans le domaine

    Web technologies for environmental big data

    Get PDF
    Recent evolutions in computing science and web technology provide the environmental community with continuously expanding resources for data collection and analysis that pose unprecedented challenges to the design of analysis methods, workflows, and interaction with data sets. In the light of the recent UK Research Council funded Environmental Virtual Observatory pilot project, this paper gives an overview of currently available implementations related to web-based technologies for processing large and heterogeneous datasets and discuss their relevance within the context of environmental data processing, simulation and prediction. We found that, the processing of the simple datasets used in the pilot proved to be relatively straightforward using a combination of R, RPy2, PyWPS and PostgreSQL. However, the use of NoSQL databases and more versatile frameworks such as OGC standard based implementations may provide a wider and more flexible set of features that particularly facilitate working with larger volumes and more heterogeneous data sources

    On-demand distributed image processing over an adaptive Campus-Grid

    Get PDF
    This thesis explores how scientific applications, which are based upon short jobs (seconds and minutes) can capitalize upon the idle workstations of a Campus-Grid. These resources are donated on a voluntary basis, and consequently, the Campus-Grid is constantly adapting and the availability of workstations changes. Typically, to utilize these resources a Condor system or equivalent would be used. However, such systems are designed with different trade-offs and incentives in mind and therefore do not provide intrinsic support for short jobs. The motivation for creating a provisioning scenario for short jobs is that Image Processing, as well as other areas of scientific analysis, are typically composed of short running jobs, but still require parallel solutions. Much of the literature in this area comments on the challenges of performing such analysis efficiently and effectively even when dedicated resources are in use. The main challenges are: latency and scheduling penalties, granularity and the potential for very short jobs. A volunteer Grid retains these challenges but also adds further challenges. These can be summarized as: unpredictable re source availability and longevity, multiple machine owners and administrators who directly affect the operating environment. Ultimately, this creates the requirement for well conceived and effective fault management strategies. However, these are typically not in place to enable transparent fault-free job administration for the user. This research demonstrates that these challenges are answerable, and that in doing so opportunistically sourced Campus-Grid resources can host disparate applications constituted of short running jobs, of as little as one second in length. This is demonstrated by the significant improvements in performance when the system presented here was compared to a well established Condor system. Here, improvements are increased job efficiency from 60–70% to 95%–100%, up to a 99% reduction in application makespan and up to a 13000% increase in the efficiency of resource utilization. The Condor pool in use is approximately 1,600 workstations distributed across 27 administrative domains of Cardiff University. The application domain of this research is Matlab-based image processing, and the application area used to demonstrate the approach is the analysis of Magnetic Resonance Imagery (MRI). However, the presented approach is generalizable to any application domain with similar characteristics

    Web technologies for environmental Big Data

    No full text

    Optimization techniques for adaptability in MPI application

    Get PDF
    The first version of MPI (Message Passing Interface) was released in 1994. At that time, scientific applications for HPC (High Performance Computing) were characterized by a static execution environment. These applications usually had regular computation and communication patterns, operated on dense data structures accessed with good data locality, and ran on homogeneous computing platforms. For these reasons, MPI has become the de facto standard for developing scientific parallel applications for HPC during the last decades. In recent years scientific applications have evolved in order to cope with several challenges posed by different fields of engineering, economics and medicine among others. These challenges include large amounts of data stored in irregular and sparse data structures with poor data locality to be processed in parallel (big data), algorithms with irregular computation and communication patterns, and heterogeneous computing platforms (grid, cloud and heterogeneous cluster). On the other hand, over the last years MPI has introduced relevant improvements and new features in order to meet the requirements of dynamic execution environments. Some of them include asynchronous non-blocking communications, collective I/O routines and the dynamic process management interface introduced in MPI 2.0. The dynamic process management interface allows the application to spawn new processes at runtime and enable communication with them. However, this feature has some technical limitations that make the implementation of malleable MPI applications still a challenge. This thesis proposes FLEX-MPI, a runtime system that extends the functionalities of the MPI standard library and features optimization techniques for adaptability of MPI applications to dynamic execution environments. These techniques can significantly improve the performance and scalability of scientific applications and the overall efficiency of the HPC system on which they run. Specifically, FLEX-MPI focuses on dynamic load balancing and performance-aware malleability for parallel applications. The main goal of the design and implementation of the adaptability techniques is to efficiently execute MPI applications on a wide range of HPC platforms ranging from small to large-scale systems. Dynamic load balancing allows FLEX-MPI to adapt the workload assignments at runtime to the performance of the computing elements that execute the parallel application. On the other hand, performance-aware malleability leverages the dynamic process management interface of MPI to change the number of processes of the application at runtime. This feature allows to improve the performance of applications that exhibit irregular computation patterns and execute in computing systems with dynamic availability of resources. One of the main features of these techniques is that they do not require user intervention nor prior knowledge of the underlying hardware. We have validated and evaluated the performance of the adaptability techniques with three parallel MPI benchmarks and different execution environments with homogeneous and heterogeneous cluster configurations. The results show that FLEXMPI significantly improves the performance of applications when running with the support of dynamic load balancing and malleability, along with a substantial enhancement of their scalability and an improvement of the overall system efficiency.La primera versión de MPI (Message Passing Interface) fue publicada en 1994, cuando la base común de las aplicaciones científicas para HPC (High Performance Computing) se caracterizaba por un entorno de ejecución estático. Dichas aplicaciones presentaban generalmente patrones regulares de cómputo y comunicaciones, accesos a estructuras de datos densas con alta localidad, y ejecución sobre plataformas de computación homogéneas. Esto ha hecho que MPI haya sido la alternativa más adecuada para la implementación de aplicaciones científicas para HPC durante más de 20 años. Sin embargo, en los últimos años las aplicaciones científicas han evolucionado para adaptarse a diferentes retos propuestos por diferentes campos de la ingeniería, la economía o la medicina entre otros. Estos nuevos retos destacan por características como grandes cantidades de datos almacenados en estructuras de datos irregulares con baja localidad para el análisis en paralelo (big data), algoritmos con patrones irregulares de cómputo y comunicaciones, e infraestructuras de computación heterogéneas (cluster heterogéneos, grid y cloud). Por otra parte, MPI ha evolucionado significativamente en cada una de sus sucesivas versiones, siendo algunas de las mejoras más destacables presentadas hasta la reciente versión 3.0 las operaciones de comunicación asíncronas no bloqueantes, rutinas de E/S colectiva, y la interfaz de procesos dinámicos presentada en MPI 2.0. Esta última proporciona un procedimiento para la creación de procesos en tiempo de ejecución de la aplicación. Sin embargo, la implementación de la interfaz de procesos dinámicos por parte de las diferentes distribuciones de MPI aún presenta numerosas limitaciones que condicionan el desarrollo de aplicaciones maleables en MPI. Esta tesis propone FLEX-MPI, un sistema que extiende las funcionalidades de la librería MPI y proporciona técnicas de optimización para la adaptación de aplicaciones MPI a entornos de ejecución dinámicos. Las técnicas integradas en FLEX-MPI permiten mejorar el rendimiento y escalabilidad de las aplicaciones científicas y la eficiencia de las plataformas sobre las que se ejecutan. Entre estas técnicas destacan el balanceo de carga dinámico y maleabilidad para aplicaciones MPI. El diseño e implementación de estas técnicas está dirigido a plataformas de cómputo HPC de pequeña a gran escala. El balanceo de carga dinámico permite a las aplicaciones adaptar de forma eficiente su carga de trabajo a las características y rendimiento de los elementos de procesamiento sobre los que se ejecutan. Por otro lado, la técnica de maleabilidad aprovecha la interfaz de procesos dinámicos de MPI para modificar el número de procesos de la aplicación en tiempo de ejecución, una funcionalidad que permite mejorar el rendimiento de aplicaciones con patrones irregulares o que se ejecutan sobre plataformas de cómputo con disponibilidad dinámica de recursos. Una de las principales características de estas técnicas es que no requieren intervención del usuario ni conocimiento previo de la arquitectura sobre la que se ejecuta la aplicación. Hemos llevado a cabo un proceso de validación y evaluación de rendimiento de las técnicas de adaptabilidad con tres diferentes aplicaciones basadas en MPI, bajo diferentes escenarios de computación homogéneos y heterogéneos. Los resultados demuestran que FLEX-MPI permite obtener un significativo incremento del rendimiento de las aplicaciones, unido a una mejora sustancial de la escalabilidad y un aumento de la eficiencia global del sistema.Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: Francisco Fernández Rivera.- Secretario: Florín Daniel Isaila.- Vocal: María Santos Pérez Hernánde

    High Performance Network Evaluation and Testing

    Get PDF
    corecore