30 research outputs found

    Open problems on graph coloring for special graph classes.

    Get PDF
    For a given graph G and integer k, the Coloring problem is that of testing whether G has a k-coloring, that is, whether there exists a vertex mapping c:V→{1,2,…}c:V→{1,2,…} such that c(u)≠c(v)c(u)≠c(v) for every edge uv∈Euv∈E. We survey known results on the computational complexity of Coloring for graph classes that are hereditary or for which some graph parameter is bounded. We also consider coloring variants, such as precoloring extensions and list colorings and give some open problems in the area of on-line coloring

    Exploiting bounded signal flow for graph orientation based on cause-effect pairs

    Get PDF
    Background: We consider the following problem: Given an undirected network and a set of sender–receiver pairs, direct all edges such that the maximum number of “signal flows ” defined by the pairs can be routed respecting edge directions. This problem has applications in understanding protein interaction based cell regulation mechanisms. Since this problem is NP-hard, research so far concentrated on polynomial-time approximation algorithms and tractable special cases. Results: We take the viewpoint of parameterized algorithmics and examine several parameters related to the maximum signal flow over vertices or edges. We provide several fixed-parameter tractability results, and in one case a sharp complexity dichotomy between a linear-time solvable case and a slightly more general NP-hard case. We examine the value of these parameters for several real-world network instances. Conclusions: Several biologically relevant special cases of the NP-hard problem can be solved to optimality. In this way, parameterized analysis yields both deeper insight into the computational complexity and practical solving strategies. Background Current technologies [1] like two-hybrid screening ca

    Structural Rounding: Approximation Algorithms for Graphs Near an Algorithmically Tractable Class

    Get PDF
    We develop a framework for generalizing approximation algorithms from the structural graph algorithm literature so that they apply to graphs somewhat close to that class (a scenario we expect is common when working with real-world networks) while still guaranteeing approximation ratios. The idea is to edit a given graph via vertex- or edge-deletions to put the graph into an algorithmically tractable class, apply known approximation algorithms for that class, and then lift the solution to apply to the original graph. We give a general characterization of when an optimization problem is amenable to this approach, and show that it includes many well-studied graph problems, such as Independent Set, Vertex Cover, Feedback Vertex Set, Minimum Maximal Matching, Chromatic Number, (l-)Dominating Set, Edge (l-)Dominating Set, and Connected Dominating Set. To enable this framework, we develop new editing algorithms that find the approximately-fewest edits required to bring a given graph into one of a few important graph classes (in some cases these are bicriteria algorithms which simultaneously approximate both the number of editing operations and the target parameter of the family). For bounded degeneracy, we obtain an O(r log{n})-approximation and a bicriteria (4,4)-approximation which also extends to a smoother bicriteria trade-off. For bounded treewidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w}))-approximation, and for bounded pathwidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w} * log n))-approximation. For treedepth 2 (related to bounded expansion), we obtain a 4-approximation. We also prove complementary hardness-of-approximation results assuming P != NP: in particular, these problems are all log-factor inapproximable, except the last which is not approximable below some constant factor 2 (assuming UGC)

    The Complexity of Surjective Homomorphism Problems -- a Survey

    Get PDF
    We survey known results about the complexity of surjective homomorphism problems, studied in the context of related problems in the literature such as list homomorphism, retraction and compaction. In comparison with these problems, surjective homomorphism problems seem to be harder to classify and we examine especially three concrete problems that have arisen from the literature, two of which remain of open complexity

    Resolving Conflicts for Lower-Bounded Clustering

    Get PDF
    This paper considers the effect of non-metric distances for lower-bounded clustering, i.e., the problem of computing a partition for a given set of objects with pairwise distance, such that each set has a certain minimum cardinality (as required for anonymisation or balanced facility location problems). We discuss lower-bounded clustering with the objective to minimise the maximum radius or diameter of the clusters. For these problems there exists a 2-approximation but only if the pairwise distance on the objects satisfies the triangle inequality, without this property no polynomial-time constant factor approximation is possible, unless P=NP. We try to resolve or at least soften this effect of non-metric distances by devising particular strategies to deal with violations of the triangle inequality (conflicts). With parameterised algorithmics, we find that if the number of such conflicts is not too large, constant factor approximations can still be computed efficiently. In particular, we introduce parameterised approximations with respect to not just the number of conflicts but also for the vertex cover number of the conflict graph (graph induced by conflicts). Interestingly, we salvage the approximation ratio of 2 for diameter while for radius it is only possible to show a ratio of 3. For the parameter vertex cover number of the conflict graph this worsening in ratio is shown to be unavoidable, unless FPT=W[2]. We further discuss improvements for diameter by choosing the (induced) P_3-cover number of the conflict graph as parameter and complement these by showing that, unless FPT=W[1], there exists no constant factor parameterised approximation with respect to the parameter split vertex deletion set

    Shortest Path with Positive Disjunctive Constraints -- a Parameterized Perspective

    Full text link
    We study the SHORTEST PATH problem with positive disjunctive constraints from the perspective of parameterized complexity. For positive disjunctive constraints, there are certain pair of edges such that any feasible solution must contain at least one edge from every such pair. In this paper, we initiate the study of SHORTEST PATH problem subject to some positive disjunctive constraints the classical version is known to be NP-Complete. Formally, given an undirected graph G = (V, E) with a forcing graph H = (E, F) such that the vertex set of H is same as the edge set of G. The goal is to find a set S of at most k edges from G such that S forms a vertex cover in H and there is a path from s to t in the subgraph of G induced by the edge set S. In this paper, we consider two natural parameterizations for this problem. One natural parameter is the solution size, i.e. k for which we provide a kernel with O(k^5) vertices when both G and H are general graphs. Additionally, when either G or H (but not both) belongs to some special graph classes, we provied kernelization results with O(k^3) vertices . The other natural parameter we consider is structural properties of H, i.e. the size of a vertex deletion set of H to some special graph classes. We provide some fixed-parameter tractability results for those structural parameterizations.Comment: 14 page

    Fixed-Parameter Tractable Distances to Sparse Graph Classes

    Get PDF
    We show that for various classes C\mathcal{C} of sparse graphs, and several measures of distance to such classes (such as edit distance and elimination distance), the problem of determining the distance of a given graph G\small{G} to C\mathcal{C} is fixed-parameter tractable. The results are based on two general techniques. The first of these, building on recent work of Grohe et al. establishes that any class of graphs that is slicewise nowhere dense and slicewise first-order definable is FPT. The second shows that determining the elimination distance of a graph G\small{G} to a minor-closed class C\mathcal{C} is FPT. We demonstrate that several prior results (of Golovach, Moser and Thilikos and Mathieson) on the fixed-parameter tractability of distance measures are special cases of our first method
    corecore