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ABSTRACT

Capriccio For Strings: Collision-Mediated Parallel Transport in Curved Landscapes

and Conifold-Enhanced Hierarchies Among Mirror Quintic Flux Vacua

Kate Eckerle

This dissertation begins with a review of Calabi-Yau manifolds and their moduli

spaces, flux compactification largely tailored to the case of type IIb supergravity, and

Coleman-De Luccia vacuum decay. The three chapters that follow present the results

of novel research conducted as a graduate student.

Our first project is concerned with bubble collisions in single scalar field theories

with multiple vacua. Lorentz boosted solitons traveling in one spatial dimension are

used as a proxy to the colliding 3-dimensional spherical bubble walls. Recent work

found that at sufficiently high impact velocities collisions between such bubble vacua

are governed by “free passage” dynamics in which field interactions can be ignored

during the collision, providing a systematic process for populating local minima with-

out quantum nucleation.

We focus on the time period that follows the bubble collision and provide evidence

that, for certain potentials, interactions can drive significant deviations from the free

passage bubble profile, thwarting the production of a new patch with different field

value. However, for simple polynomial potentials a fine-tuning of vacuum locations is

required to reverse the free passage kick enough that the field in the collision region

returns to the original bubble vacuum. Hence we deem classical transitions mediated

by free passage robust.

Our second project continues with soliton collisions in the limit of relativistic

impact velocity, but with the new feature of nontrivial field space curvature. We

establish a simple geometrical interpretation of such collisions in terms of a double



family of field profiles whose tangent vector fields stand in mutual parallel transport.

This provides a generalization of the well-known limit in flat field space (free passage).

We investigate the limits of this approximation and illustrate our analytical results

with numerical simulations.

In our third and final project we investigate the distribution of field theories that

arise from the low energy limit of flux vacua built on type IIb string theory compact-

ified on the mirror quintic. For a large collection of these models, we numerically

determine the distribution of Taylor coefficients in a polynomial expansion of each

model’s scalar potential to fourth order. We provide an analytic explanation of the

proncounced hierarchies exhibited by the random sample of masses and couplings

generated numerically. The analytic argument is based on the structure of masses

in no scale supergravity and the divergence of the Yukawa coupling at the conifold

in the moduli space of the mirror quintic. Our results cast the superpotential vev

as a random element whose capacity to cloud structure vanishes as the conifold is

approached.
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Chapter 1

Introduction

The widespread view is that the Standard Model of particle physics is a low energy

effective field theory. In the more fundamental theory the strong and electroweak

forces would unify into a single interaction at higher energy. Theories that accom-

plish this are called Grand Unified Theories (GUTs). It is believed that at an even

higher energy scale gravity, the only remaining fundamental force, is also unified and

described within the framework of quantum field theory. A theory that accomplishes

this would be a Theory Of Everything.

String/M-theory is an attractive candidate. It is also a theory in more than the

four spacetime dimensions we observe. This is not disqualifying however because of

the suggested abundance of metastable solutions in which the extra spatial dimensions

(six for superstring theory) are wrapped up into a manifold of finite — and moreover

very small — volume. The compact manifolds, one located at each point in the large

dimensions, have special structure. For example, compactifications of superstring

theory to flat Minksowski space (which our universe is a weak but nontrivial departure

from) that maintain supersymmetry require the internal space to be a Calabi-Yau 3-

fold1.

These manifolds come in continuous families. Each family has a unique identifier;

a set of numbers that contain only topological information. The parameters that

vary across a given family are complex valued, and are called moduli. There are

typically a very large number of them, on the order of hundreds, and in these large-

1Orientifolds in the case of IIb.
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dimensional moduli field spaces there are a tremendous number of local minima of

the potential energy. This vast space of possibilities — the ways of wrapping up the

extra dimensions — and the undulating potential energy density they correspond to

is termed the string landscape.

The moduli enter the effective field theory that results upon compactification

— supergravity — as dynamical complex valued scalar fields: they describe how

the Calabi-Yau vary from one 4-dimensional spacetime location to the next. Field

configurations that are spatially homogeneous and locally minimize the energy density

are stable at the classical level. Whether or not the absolute minimum energy density

of the theory is attained is irrelevant in determining stability. A basic result of

quantum field theory, on the other hand, is that only quantum states with field

expectation values that globally minimize the potential are arbitrarily long lived2.

The quantum state underlying a homogeneous field configuration that only locally

minimizes the energy density is metastable — quantum fluctuations inevitably cause

it to decay.

Loosely speaking, quantum fluctuations in a given spatial volume can violate

energy conservation and change the field value(s) there to value(s) inside the basin

of attraction of a new local minimum of the potential, and particularly one of lower

energy density. Just as a quantum mechanical system in its ground state can be

observed at a classically forbidden location, the field in a given spatial volume can

tunnel through a potential barrier from a false vacuum configuration to one of lower

energy.

In the first of the Fate of The False Vacuum papers [1], Sidney Coleman draws

an analogy between vacuum decay in quantum field theory and phase transitions in

ordinary fluids; from the superheated liquid phase to the vapor phase. The super-

2Gravitational effects on vacuum decay are outside the scope of the research that appears in this
document, so we neglect uptunneling throughout.
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heated liquid phase is not arbitrarily long lived, despite the fact that it corresponds

to a local minimum of the free energy (as a function of density). Bubbles of the vapor

phase with various sizes appear within the fluid due to thermal fluctuations. Bubbles

smaller than some critical size collapse due to their surface tension. Though large

bubbles are of course less likely to appear than small ones, bubbles that are larger

than the critical size expand because their gain in volume energy overcomes their

loss to surface energy. These large bubbles mediate the phase transition. Similarly,

quantum fluctuations cause expanding regions — bubbles — of lower energy density

vacuum to appear in the initially homogeneous false vacuum field configuration. The

false parent vacuum decays away just as the superheated liquid boils away.

The picture to have in mind then is that our observable universe evolved from a

patch of a much larger cosmos in which a rich variety of bubble universes — vacua

in the string landscape — nucleate, expand and potentially interact with one an-

other. The goal, still beyond reach, is to compare our universe with the late time

demographics of such a multiverse. I believe such a comparison has the capacity to

explain observable features of our universe currently deemed mysterious by appealing

to dynamics.

1.1 Flux Compactification

The strength of interactions in quantum field theory (encoded by the associated cou-

plings) depends on the background energy scale. This is a consequence of renormaliza-

tion. The running of couplings is described by the renormalization group equations.

This enables unification of all the Standard Model gauge interactions. Supersymmet-

ric theories with the appropriate gauge group structure, namely those which can be

broken into the Standard Model gauge group, have been the the most popular GUTs

since the 1980’s (though there are also non-supersymmetric GUTs). For example, the
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frequently cited value of 1016 GeV for the GUT scale comes from the Minimal Super-

symmetric extension of the Standard Model (MSSM) which is based on SU(5) and

gives couplings that converge around that order. Quantum effects to gravitational

interactions on the other hand are expected at the Planck scale,
√

ℏc5/G ∼ 1019 GeV.

One reason gauge unification has predominantly been realized in supersymmetric

models is because the proposed symmetry between fermions and bosons has to poten-

tial to resolve what would otherwise be a fine-tuning of UV theory’s bare parameters

that leaves the small observed Higgs mass ∼ 102 GeV (small relative to the cut-off

energy scale, GUT or Planck). A “cut-off” is the scale at which a given effective

field theory ceases to be a valid description of the physics. The Higgs mass receives

loop corrections that individually diverge quadratically in the cut-off. For example,

the diagram consisting of a single top quark loop gives a contribution ∼ 1034 times

larger than the bare mass when the cut-off is taken at the Planck scale [2]. To yield

the comparably much smaller observed Higgs mass a tremendous coincidence would

need to take place wherein the large radiative corrections merely cancel off most of

the bare mass of near equal value.

This fine-tuning is avoided if supersymmetry is broken “softly” around a TeV.

Essentially, there is near cancellation between the divergent diagrams of SUSY part-

ners which renders the small Higgs mass technically natural. However, with the LHC

having found no SUSY at several TeV it is becoming clear that the soundness of this

expectation should be reevaluated. There are nevertheless different motivations for

SUSY which are unconcerned with however high the scale of SUSY breaking might

be. These more resilient considerations are rooted in quantum field theory (QFT),

particularly in aspects a QFT’s symmetry groups, and the implications this has for

theories of quantum gravity.

Coleman and Mandula proved a no-go theorem regarding how the spacetime sym-

metries and internal symmetries of a QFT can be combined. Specifically, the sym-
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metry group G of the S-matrix of a QFT is restricted to be the direct product of

the Poincaré group (global) an internal group (local) if G contains a subgroup that

is locally isomorphic to the Poincaré group, and the QFT is to have certain ba-

sic/reasonable attributes [3]. These characteristics include, for example, that the

QFT have finitely many different particle types below any finite energy scale. In

terms of the Lie algebra of G, the generators of the spacetime symmetries commute

with those of the internal symmetries (for example generators of gauge symmetries

in the Standard Model).

Coleman and Mandula did not allow for anti-commutators in the symmetry al-

gebra. Haag, Łopuszański, and Sohnius showed that if these are permitted you can

extend to supersymmetry, but go no further. So, supersymmetry becomes the only

nontrivial extension of Poincaré and internal [4], [5].

Superstring theory in flat or weakly curved Minkowski space only exists in ten

dimensions. There are five superstring theories: type I, type IIa, type IIb, heterotic

E8 × E8, and heterotic SO(32). They can be viewed as different limits of M-theory,

which itself is a supersymmetric theory of quantum gravity in one dimension higher,

eleven. All the different formalisms are related to one another by S and/or T-duality.

These identify the weak coupling regime of one theory with the strong coupling regime

of another (S-duality), or swap the compact length scale R in one theory with its

inverse 1/R in another. Finally, there is a formulation in 12 dimensions known as

F-theory. While the full extent of its interpretation is unsettled, it can cautiously be

thought of as a geometric formulation of IIb theory, in a particular sense.

A plausible explanation of the excess dimensions of these theories from the four

we observe is that the additional ones range over a compact and exceedingly small

space, Y . More precisely, the full spacetime is written as the direct product of Y

5



with an observed 4-dimensional Lorentzian manifold M4. For instance,

M10 =M4 × Y (1.1.1)

for the superstring theories. If the length scale of the compact manifolds, one located

at each point in M4, is much smaller than the distances the LHC is capable of probing

physics on, LLHC ∼ 10−19 m, they would not be detectable. The manifolds could

nevertheless be large compared to the string length, ℓs, the only free parameter in

string theory3. This is because, modulo the string coupling, the string length is the

Planck length, order 10−34 m, which is many orders of magnitude smaller than LLHC.

In this case classical notions of geometry are valid. Integrals over the compact space

can be performed unambiguously and effective field theories from compactification

retrieved. We proceed with Y such that,

LLHC ≈ 10−19 m ≫ Vol(Y )1/6 ≫ Lpl ≈ 10−34 m, (1.1.2)

though it should be noted the second assumption is made for the purposes of tractabil-

ity. There is no reason to expect this a priori.

The low energy approximation to string/M-theory is 10/11-dimensional super-

gravity. The mathematical structure of Y determines the characteristics of the

effective theory following compactification, for instance its symmetries. If the 4-

dimensional theory is to retain some amount of supersymmetry, a covariantly con-

stant spinor has to exist on the compact manifold [6]; in other words a spinor which

does not change upon parallel transport. For the 6-dimensional case we can make

use of the fact that the spin group Spin(6), the double cover of SO(6), and SU(4) are

isomorphic. In the 4-dimensional representation spinors transform under rotations of

the 6-space simply by matrix multiplication. Note that if the constant spinor exists,

3Equivalently the string tension T = 1
2πα′ , where α′ ≡ ℓ2s.
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we can always choose a basis in which it is given by



1

0

0

0


. (1.1.3)

All elements of Hol(Y ) have to act trivially on this vector, in other words, can only

act nontrivially on the bottom 3 components of a generic 4-vector. Thus they have

the form, 1 0⊤

0 A

 . (1.1.4)

Since the determinant of the full 4 × 4 has to be one, the matrices A have to be in

SU(3). Clearly this set of 4 × 4 matrices forms a group. We conclude, SU(3) this

is the largest subgroup of SO(6)4 that can serve as a holonomy group of compact

manifold Y and still yield a supersymmetric effective theory upon compactification.

Compact manifolds with SU(3) holonomy are Calabi-Yau 3-folds.

The 7-dimensional manifolds relevant to M-theory that satisfy the analogous con-

dition are those with G2 holonomy. Both are examples of manifolds with what is

known as special holonomy. Both admit Ricci-flat metrics. To summarize, the het-

erotic theories and type I on Calabi-Yau 3-folds, type II on Calabi-Yau orientifolds5

and M-theory on G2 holonomy manifolds yield effective field theories with N = 1

SUSY in Minkowski space [7]. The F-theory realization of IIb involves elliptically

fibered Calabi-Yau 4-folds.

Integrating the relevant higher-dimensional supergravity action over the compact

manifold gives rise to complex scalar fields in the lower-dimensional theory. One of

4The holonomy group filled out by a generic 6-dimensional manifold is SO(6).
5Orientifold planes reduce the N = 2 to N = 1 supersymmetry (SUSY).
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these is known as the “dilaton” ϕ and is associated with the string coupling by gs = eϕ.

Others — geometric moduli — of which there are typically very many, describe

how the compact manifolds smoothly vary from point to point in the four large

dimensions. They are intimately related to the cohomology classes of the compact

manifold. Before delving into further the intricate (decidedly elegant) details of these

manifolds we discuss a toy model of compactification that illustrates some of the basic

features of the procedure.

This is Kaluza-Klein reduction on a circle. Prior to compactification this is a

theory of pure gravity in empty 5-dimensional spacetime, so for its action we take

only the Einstein-Hilbert term,

S5 = − 1

16πG5

∫
d5x

√
−g̃ R̃ (1.1.5)

where G5 and R̃ are the 5-dimensional Newton constant, and scalar curvature, re-

spectively. In terms of a 5-dimensional Planck mass, the overall factor is 2M3
pl,5. The

curvature is computed from Ricci-tensor for the spacetime metric,

ds2 = g̃MNdx
MdxN (1.1.6)

g̃MN =

gµν g̃µ5

g̃5ν g̃55

 (1.1.7)

where the first four dimensions will serve as our non-compact directions using signa-

ture +−−−, and the fifth as our extra spatial dimension. To proceed with reduction

on a circle we make the identification y ≡ x5 ≃ x5 + 2πr and, for reasons that will

become apparent momentarily, relabel the components of the metric as follows

g̃MN =

gµν + κϕ2AµAν κϕ2Aµ

κϕ2Aν ϕ2

 . (1.1.8)
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By taking all fields in 1.1.8 independent of y it can be shown that reduction of

1.1.5 over the circle
∫
d5x→

∫
d4x

∫
S1 dy gives [8]

Seff = −
∫
d4x

√
−gϕ

(
1

16πG4

R +
1

4
ϕ2FµνF

µν +
2

3κ2
∂µϕ∂

µϕ

ϕ2

)
(1.1.9)

where R is the 4-dimensional Ricci scalar, and we’ve defined the field strength Fµν ≡

∂µAν − ∂νAµ, the 4-dimensional Newton constant G4 and related Einstein-Hilbert

constant κ as

G4 =
G5

2πr
, κ2 = 16πG4. (1.1.10)

Imposing the y-independence of all metric degrees of freedom, also known as

the “cylinder condition”, amounts to taking only the zero modes of a Fourier series

expansion (in y) of the fields with full 5-dimensional dependence; the idea being that

if the circle is very small all subsequent modes are above the cut-off of the theory, see

for instance [9]. Traditionally the scalar ϕ is set to a 1 to, somewhat miraculously,

give a theory of Einstein gravity coupled to Maxwell electromagnetism. The virtue of

this calculation is the simplicity with which it unifies electromagnetism with gravity;

deriving it from the vacuum of spacetime in one dimension higher6.

Some of the important results of actual supergravity compactifications can be

gleaned by keeping the scalar ϕ(xµ) in the toy example’s effective description. Com-

pactification of supergravity on Calabi-Yau manifolds results in the production of

scalar fields φi just as Kaluza-Klein on a circle. These fields φi parameterize the

internal geometry exactly like ϕ(xµ) does in the Kaluza-Klein example where the

circle is described by a single scalar, the radius rϕ. Continuing to suspend detailed

discussion of Calabi-Yau moduli until section 1.2, we simply note here that an overall

volume modulus can always be identified; a higher dimensional analog of the radius.

6It should be noted that this is meant as an illustrative example. There are incompatibilities
with observation, for example the mass of the electron it predicts.
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This volume modulous appears in the expression for the 4-dimensional Planck mass

in terms of the D-dimensional supergravity theory. The scaling is the straightforward

expectation,

MD−2
pl,D ∼M2

pl,4 Vol(Y ). (1.1.11)

The second important feature is the fact that in the absence of sources in the

D-dimensional theory, the scalars proliferated by compactification are massless, just

as in 1.1.9. Since massless scalars are not consistent with observations, an abundance

of them is problematic. Quantum corrections are of course expected to change this

classical triviality of the potential, but quantum corrections are — in a fundamental

sense — incapable on their own of curing the masslessness of the moduli. We follow

the explanation of this insufficiency, an instance of the Dine-Seiberg problem [10],

given by Denef in [7].

Quantum corrections are expected to be significant when the compactification

length scale ϱ ∼ (Vol(Y )/ℓ 6
s )

1/6 is small, and/or when the string coupling gs = eϕ is

large7. In the same breathe, corrections should vanish in the limit of large volume or

weak coupling, restoring the potential to zero.

Quantum corrections can contribute either positively or negatively to the energy

density. So, as a function of either one of the real dimensionless scalars ϱ or g, the

potential V can approach zero asymptotically either from above (positive corrections

at large value of the modulus) or from below (negative corrections). If the former

is the case, the potential decays to zero as the scalar grows and the modulus is un-

stabilized at large values; the direction ϱ → ∞ or 1/gs → ∞ is a runaway direction

in moduli space. If the latter is the case and leading order corrections are negative

then the modulus is pulled into the small ϱ, or strong coupling region. The essential

problem is that higher order corrections cannot be appealed to produce a local min-

7The overall volume is itself a function subvolumes of the manifold (the 2-cycle volumes for a
Calabi-Yau 3-fold) which might vary widely. For the heuristic description it suffices to consider the
behavior of corrections as the overall volume grows.
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imum at smaller ϱ or inverse coupling, because a term which produces a dip in an

otherwise monotonically decreasing/increasing function exceeds the bounds of what

can legitimately be deemed a higher order “correction.”

A significant step was realizing that turning on nontrivial background config-

urations for the higher-form fields allowed by the symmetries of supergravity can

generate a potential at tree-level for the moduli. Compactification in the presence of

these sources — flux compactification — involves p-form fluxes that wrap nontrivial

cycles of Y . These fluxes generate a superpotential W and in turn a scalar potential

V for the moduli. The local minima of this flux potential — flux vacua — would

correspond to optimal Calabi-Yau geometries for compactifying the extra dimensions.

The vacua can be either supersymmetric or non-SUSY.

For instance, IIb theory involves Ramond-Ramond (RR) and Neveu Schwartz-

Neveu Schwartz (NSNS) 3-form field strengths F(3) and H(3), each defined as the

exterior derivative of their associated 2-form potentials F(3) := dC(2) and H(3) :=

dB(2). The term in the supergravity action responsible for producing the moduli

potential at tree-level is

2π

ℓ8s

∫
1

Im(τ)
G(3) ∧ ∗G(3) ⊂ SIIb (1.1.12)

where we’ve defined the total 3-form flux G(3) := F(3) − τH(3) in terms of the axio-

dilaton τ , the complex scalar related to the dilaton by τ := C(0) + ieϕ, where the

“zero-form” is just a real constant. The 3-form field configurations that wrap internal

dimensions are quantized in units determined by the compact geometry.

The term 1.1.12 for such a wrapped configuration gives, upon integration over

the Calabi-Yau Y , a no scale N = 1 SUSY scalar potential. The set of scalars φm

this potential involves clearly includes the axio-dilaton for whom we reserve the zero

index, φ0 := τ , via G(3). The remaining scalars parametrize the Calabi-Yau geometry.
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Calabi-Yau manifolds are Kähler. They can be deformed smoothly by varying

the complex structure or by varying the Kähler form (or both). The independent

deformations of a given Calabi-Yau are tied to its cohomology groups — there are

h2,1 complex scalars zI needed to specify the complex structure, and h1,1 real scalars

vA, simply the volumes of 2-dimensional homology cycles, needed for the Kähler form.

The Kähler moduli (the second type) enter the tree-level scalar potential only in a

specific combination which, moreover, appears only as an overall multiplicative factor;

as the inverse square of the dimensionless Calabi-Yau 6-volume V0 := Vol(Y )/ℓ6s.

In particular, the no scale N = 1 SUSY scalar potential is

V (φ, φ̄) =
M2

pl

4π
eK KIJ̄ DIW DJ̄W. (1.1.13)

where indices run from zero to h2,1 only, with φI := zI for all natural number indices.

W is the Gukov-Vafa-Witten holomorphic superpotential generated by the 3-form

flux,

W (φ) =

∫
Y

G(3) ∧ Ω, (1.1.14)

Ω is the Calabi-Yau’s nowhere vanishing holomorphic 3-form, K is the Kähler poten-

tial for the full moduli space, DI is the Kähler covariant derivative defined from it,

DI :=
∂

∂φI
+
∂K
∂φI

(1.1.15)

and the contraction in 1.1.13 is taken with the inverse of the Kähler metric on moduli

space KIJ̄ := ∂I∂JK. Though excluded from the superpotential, the Kähler moduli

appear in the eK, specifically in the combination 1/V2
0 . Specifically, at the classical

level

K = − log (−i(τ − τ̄))−Kcs − log
(
V2
0

)
. (1.1.16)

Hence, the ∼ |DW |2 contains no dependence on the 2-cycle volumes. The term “no

12



Figure 1.1: The qualitative dependence of the scalar potential on the volume of a
Calabi-Yau manifold.

scale” refers to the volume-independence of 1.1.13’s global minima, zeros. These are

solutions to the SUSY condition DIW = 0. At generic points in moduli space, on

the other hand, the potential is nonzero and the direction of increasing Calabi-Yau

volume in moduli space is a runaway direction. A schematic illustration can be found

in figure 1.1.

The “no scale” structure found at tree-level is entirely a result of the Calabi-

Yau special geometry. In general, quantum corrections break this, resulting in the

standard expression for an N = 1 theory,

V (φ, φ̄) =
M2

pl

4π
eK
(
Kab̄ DaW Db̄W − 3|W |2

)
, (1.1.17)

where indices now include Kähler moduli; the complex indices for these refer to the

complexified Kähler moduli whose axionic parts come from the self dual 5-form F̃5.

A full derivation of the tree-level potential 1.1.13 from the term 1.1.12 in the IIb

supergravity action can be found in chapter 4 section 4.1, and Calabi-Yau moduli

space is reviewed in the following section of this chapter, section 1.2.
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The extremely large number of distinct consistent wrapped flux configurations

(the different quanta of RR and NSNS 3-form flux in 1.1.14 in the case of IIb) gives

rise to the notion of an enormous landscape, the earliest recognition of this being

[11]. Our universe would be identified with one of the great number of diverse string

vacua. Across the many patches of a much greater cosmos the effective actions that

describe nature vary, as they are expansions about different backgrounds, and along

with them the vacuum energy density, particle content/masses, types and strengths

of interactions that take place etc. This has implications for the naturalness of certain

observables. Our universe’s Cosmological Constant (CC), equivalently the vacuum

energy density, is unnaturally small; another problem of fine-tuning problem much

like the small electroweak scale, only many orders of magnitude more egregious.

The proper way to understand probability in the context of a landscape is un-

clear, but roughly speaking if life requires a CC within a small window and most

of the patches in the cosmos are thereby rendered barren, then the verdict of “un-

natural” would change by conditioning on the fact that we are around to observe

the exceedingly small CC. The judgement of whether a certain parameter is natural

or not depends not only on basic dimensional analysis using the vacuum’s observed

parameters, but also on whether the parameter’s taking on that value makes the uni-

verse inhospitable to observers. It’s even plausible the small electroweak scale might

fall into this category too, potentially a prerequisite for the infrastructure necessary

to support intelligent life, as some have suggested [2].

For this kind of Anthropic Principle [12] to be used, it is important to confirm

the expected diversity among string vacua, and that ones like ours with exceedingly

small CC are included. In other words, it is essential to show that the tools of

flux compactification and quantum corrections can be combined in such a way to

stabilize moduli while generating a nontrivial but small positive vacuum energy in a

controlled way. The KKLT scenario [13] is the best known procedure for achieving
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this. Important works leading up to KKLT include [14], [15], [16], [17], [18].

Next we turn to building some of the basic machinery — Calabi-Yau manifolds

and their moduli space.

1.2 Calabi-Yau Manifolds

Definition Of A Calabi-Yau

In this subsection we briefly review the essential background that is required to define

a Calabi-Yau manifold, following [19].

The following notions from complex geometry are necessary. First, a complex

manifold is an even-dimensional real manifold that admits a complex structure. A

complex structure J is a map from the tangent space at a point p in Y to itself such

that: 1. when applied twice each tangent vector maps to itself times negative one,

and 2. the Nijenhuis tensor vanishes. More precisely, a complex manifold consists of

the pair (J , Y ) such that

J : TpY → TpY, J 2 = −1 (1.2.1)

N ≡ [U, V ] + J [JU, V ] + J [U,J V ]− [JU,J V ] = 0 (1.2.2)

where the square braces denote Lie brackets, and U and V are any two vector fields

on Y . Or in component form,

J i
bJ b

c v
c = −vi ∀ v ∈ TpY (1.2.3)

N i
jk ≡ ∂jJ ℓ

kJ i
ℓ − J ℓ

j∂ℓJ i
k − ∂kJ ℓ

jJ i
ℓ + J ℓ

k∂ℓJ i
j (1.2.4)

A map J that satisfies the first without necessarily satisfying the second is called

an “almost complex structure.” In this more relaxed context, those which satisfy the
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second as well are referred to an integrable.

When both conditions are satisfied it means there is a manner to define com-

plexified coordinates which have the property that the transition functions (between

coordinates systems in overlapping patches) are holomorphic. This is a significantly

more stringent condition than the mere differentiability of the transition functions one

requires for a manifold to be smooth. For a generic even-dimensional real manifold

the complex-valued “transition functions” obtained by complexifying the coordinates,

say in the canonical manner,

ya = xa + ixn
2
+a, a = 1, . . . , n/2 (1.2.5)

typically will not happen to solve the Cauchy-Riemann equations. Throughout we will

distinguish between real coordinates and complex coordinates with indices i, j, k, . . .

and a, b, c . . . , respectively. We’ll take the real dimension n to be equal to 2d unless

otherwise stated.

On top of the differentiability of transition functions, the complex structure pro-

vides the requisite additional structure for the notion of a holomorphic function on

Y to be well-defined. This is analogous to the way smoothness enables notion of

differentiable functions on manifold, and at a more primitive level, the way satisfying

the conditions for being a topological space enables a notion of continuity.

Clearly, regardless of whether a complex manifold Y is viewed in real or complex

coordinates, the dimensionality in the sense of how many real numbers in an ordered

list are required to uniquely specify a point p in Y is the same, n = 2d. However, it

is worthwhile to expand the tangent space from the n-dimensional TpY spanned by

{∂/∂xi|p} when using complex coordinates. In particular we consider the C-linear

span of the (local) complex coordinate basis vectors without assuming any special

relation between coefficients of holomorphic and antiholomorphic components. This
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defines the complexified tangent space,

TpY
C =

{
w = wa

∂

∂ya

∣∣∣∣
p

+ wb̄
∂

∂ȳb

∣∣∣∣
p

: wa ∈ C and wb̄ ∈ C
}

(1.2.6)

which note has real dimension 2n.

Next, recall that a metric g(·, ·) consists of a set of inner products on the tangent

spaces of a manifold. A real manifold equipped with a smoothly varying (from point

to point in the manifold) metric or set of inner products is called a Riemannian

manifold. The metric g evaluated at an arbitrary point p ∈ Y is a symmetric bilinear

map from TpY ×TpY to the reals which allows one to compute distances along curves

on the manifold. The set of one-forms {dx1, dx2, . . . , dxn}, where we’ve suppressed

the “evaluated at point p” notation, are a local basis for the dual to the real tangent

space at a point p ∈ Y . The elements dxi⊗dxj then form a local basis for the metric.

Specifically we may write the metric as,

g = gijdx
i ⊗ dxj (1.2.7)

where the n× n matrix of coefficients gij is symmetric.

For Y a complex manifold, a complex version of the metric may be constructed

straightforwardly. The complex metric then is a map from TpY
C × TpY

C to C. Its

components in local coordinates can be obtained directly from the real metric. They

are symmetric under exchange of indices, whether of like or of mixed type, and respect

complex conjugation, i.e. gab = gāb̄ and gab̄ = gāb. Now, if all components of like-

index type, gab and gāb̄, vanish the metric is called hermitian. This is equivalent to

“compatibility” of the real metric and complex structure J in the following sense,

g(u,v) = g(Ju,J v). (1.2.8)
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From a hermitian metric we may build the (1, 1)-form J which we’ll call the Kähler

form,

J = igab̄ dy
a ∧ dȳb. (1.2.9)

A Kähler manifold is one for whom the Kähler form is closed, dJ = 0. A direct

consequence of this is that the metric components can be expressed as the partial

derivatives of a scalar function K,

gab̄ =
∂2K

∂yaȳb
. (1.2.10)

K(y, ȳ) is referred to as the Kähler potential.

On Kähler manifolds parallel transport using a connection compatible with the

metric — the unique procedure for moving tangent vectors along curves such that

the relative angles between any given pair of tangent vectors as well as the length

of each vector remain fixed — simplifies significantly owing to the restricted form of

the Kähler metric. In particular, the holomorphic and anti-holomorphic components

of all tangent vectors remain separate upon parallel transport along any curve in Y

because 1.2.10 implies the only nontrivial Christoffel symbols are those whose indices

are all of like-type.

Now, the holonomy group of a manifold consists of the entire set of possible lin-

ear transformations (matrices) that describe how tangent vectors are modified upon

parallel transport about closed paths in the manifold. For this reason the separation

between the holomorphic and anti-holomorphic subspaces of a Kähler manifold’s tan-

gent spaces can be stated precisely in terms of its holonomy group, Hol(Y ): the group

must be contained in U(d). While a generic Kähler manifold fills out all of U(d), a

Calabi-Yau manifold only fills out SU(d). This restriction completes the definition:

a Calabi-Yau d-fold is a compact Kähler manifold with SU(d) holonomy.

An equivalent statement can be given in terms of Chern classes. The condition
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of SU(d) holonomy is equivalent to vanishing of the first Chern class. We conclude

this subsection with a statement of Yau’s theorem: for a Calabi-Yau manifold with

Kähler form J there exists a form J ′ in the same cohomology class as J such that the

metric associated to J ′ is Ricci-flat [20]. In other words, the Kähler form constructed

from the metric on a Calabi-Yau in arbitrarily chosen coordinates differs from that

of a Ricci-flat metric merely by an exact form.

Moduli Space of Calabi-Yau Manifolds

A given Calabi-Yau manifold can be deformed continuously without violating any of

the conditions for being Calabi-Yau. There are two distinct types of deformations —

those associated with changing the complex structure J , and those associated with

changing the Kähler form, J . These parameters, or moduli, are complex-valued8. For

each Calabi-Yau there are finitely many moduli.

In this subsection we highlight key results, sometimes providing only abridged

derivations. We follow Candelas and de la Ossa mainly, and direct the reader to [21],

[22] for further detail. Other references include [23], [24]. In an effort to avoid confu-

sion, we’ll use indices a, b, c, . . . (ā, b̄, c̄ . . . ) to denote holomorphic (anti-holomorphic)

components. When we mean that an object is expressed in the real coordinates we’ll

use i, j, k, . . . . We’ll continue to label complex coordinates on the Calabi-Yau by ya

and real coordinates by xi.

Each set of moduli — those which vary the complex structure and those which

vary the Kähler class — spans an inner product space that is meaningfully thought of

geometrically. The full moduli space not only separates locally into the direct product

of these two subspaces (i.e. the metric on the moduli space in local coordinates does

8More precisely, the parameters that describe deformations of J alone are real scalars. They
are, quite literally, associated with changing the volumes of 2-cycles. These real moduli are “com-
plexified” by incorporating the NSNS 2-form potential B. The resulting complex scalars associated
with the 2-cycles of Y are then said to parameterize the complexified Kähler cone.
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not mix moduli of different type), but each subspace itself has significant structure.

Each subspace is Kähler.

Before proceeding a discussion of the moduli spaces, we briefly note some facts

about the homology/cohomology groups of Calabi-Yau 3-folds. The groups are of

prime importance to us here due to a one-to-one correspondence between the mod-

uli and the elements of particular cohomology groups, which we’ll shortly see are

H(2,1)(Y ) and H(1,1)(Y ). First, the dimension of the (p, q)th Dolbeault cohomology

group9 is labeled by the hodge number hp,q.

For Calabi-Yau d-folds h(d,0) = 1. Taking d = 3 we label the sole member of

H(3,0)(Y ) as Ω, the holomorphic 3-form. Due to the (precise) SU(d) holonomy we also

have h1,0 = 0. The hodge star duality, complex conjugation duality and holomorphic

duality for Calabi-Yau,

hp,q = h3−p,3−q, hp,q = hq,p, and h0,q = h0,3−q (1.2.11)

hold [24]. This leaves only two unspecified hodge numbers for a Calabi-Yau 3-fold,

h1,1, and h2,1. The relations among the hodge numbers are illustrated using the hodge

9The Dolbeault cohomology groups are the complex version/extension of the de Rham coho-
mology groups. The convention is to take the (p, q) Dolbeault cohomology group to be the set of
(p, q)-forms that are ∂̄ closed, with the equivalence relation ω ≃ ω+ ∂̄α. However, the same analysis
can be performed using ∂ closed forms and the analogous equivalence relation.
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diamond, formed by arranging the hodge numbers as,

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

(1.2.12)

For a Calabi-Yau the identities mentioned imply,

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

(1.2.13)

Also, note the number of nontrivial 2-cycles of the Calabi-Yau is h1,1 and the number

of nontrivial 3-cycles is 2(h2,1+1). This follows from using the Hodge decomposition

for Kähler manifolds which implies the complex order r de Rham cohomology group10

consists of,

Hr(Y,C) =
r⊕
p=0

H(p,q)(Y ) (1.2.14)

followed by the Poincaré duality, see for e.g. [24].

Returning to our main objective — the parameter space of Calabi-Yau manifolds

10The group of complex r-forms that are d-closed modulo d-exact forms.
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— recall that from Yau’s theorem we know each manifold is uniquely specified by

its Ricci-flat Kähler metric. So, begin with that of Calabi-Yau Y , labeling the com-

ponents in real coordinates {xi} as gij. That Y is a Calabi-Yau means that when

the complex coordinates {ya}n/2a=1 defined in terms of {xi}ni=1 which cast the complex

metric as a hermitian metric are used11 the Kähler form J this hermitian metric gab̄

defines is closed. Label the complex structure that defines these canonical {ya} as J .

We can smoothly deform Y into a nearby (a priori generic) manifold Y ′ by adding

a real and symmetric perturbation δgij to gij, and taking the resulting g′ij as the

metric on Y ′). We ask: of the variations that 1. maintain Ricci-flatness,

R
(Y )
ij ≡ Rij(g, ∂g, ∂

2g) = 0 (1.2.15)

gij → g′ij ≡ gij + δgij (1.2.16)

R
(Y ′)
ij ≡ Rij(g + δg, ∂(g + δg), ∂2(g + δg)) (1.2.17)

= R
(Y )
ij +

δg such that:

O (δg, ∂δg, ∂2δg)︸ ︷︷ ︸

=

0

(1.2.18)

what is the subset of variations for whom 2. there still exists a way to define complex

coordinates in terms of {xi} such that the Kähler form J ′ is closed? Note, the only

freedom we are allowing ourselves to check Kählerity after 1.2.18 is imposed is how the

potentially new canonical coordinates {y′a} are defined in terms of the {xi}, i.e. the

ability to select a new complex structure J ′. No subsequent holomorphic changes

of coordinates are allowed, as these would be changes of coordinates back on the

real side as well, and we must not undo the Ricci-flatness of g′ij. In light of Yau’s

theorem, the parameter space of this subset of variations δgij is the parameter space

of Calabi-Yau smoothly connected to Y .

Setting the leading order terms in the perturbed Ricci-tensor in 1.2.18 to zero

11All complex manifolds admit a hermitian metric.

22



results in the Lichnerowicz equation for the metric variation,

∇k∇kδgij + 2R ℓ m
i j δgℓm = 0 (1.2.19)

where ∇k is the covariant derivative and the connection is the Levi-Civita connection.

The solutions to this system of partial differential equations are organized in a useful

fashion by working in Y ’s canonical complex coordinates {y′a}, as the unperturbed

Riemann tensor has many zero entries in these coordinates due to the Kählerity of Y .

In general, a perturbation to the real metric alters the both mixed and pure entries

in Y ’s hermitian metric. That is, the real variations are linear combinations of δgab̄,

δgab, and δgāb̄.

We do however know the complex perturbations satisfy the relations

δgab = δgba, δgab̄ = δgb̄a, δgab = δgāb̄, and δgāb = δgab̄ (1.2.20)

because of the fact that the variation in real coordinates is real-valued and symmetric

(otherwise g′ij wouldn’t even be a metric on a manifold). Although the indices of the

real variation in 1.2.19 are summed over, the equations involving variations of mixed

type separate entirely from those involving those of pure type, due to the Kählerity

of Y .

So we may consider the cases one at a time. It can be shown that deformations of

Y that involve only mixed perturbations δgab̄ are such that 1.2.19 is satisfied if and

only if the (1, 1)-form

iδgab̄ dy
a ∧ dyb̄ (1.2.21)

built from it is harmonic (note this form is also real since δgab̄ = δgāb). Each coho-

mology class in H(1,1)(Y ) has a harmonic representative12. There furthermore is a

12By the hodge decomposition theorem every ∂̄ closed (p, q)-form α can be expressed as α = ω+∂̄β
where ω is harmonic. Hence each equivalence class in the Dolbeault cohomology group Hp,q(Y ) has
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real harmonic representative because ∆ = d†d = ∂†∂ + ∂̄†∂̄ so if ∆ω = 0 then ω̄ is

also harmonic. Hence, each of the h1,1 real harmonic forms defines an independent

metric variation of mixed type that maintains Ricci-flatness.

Do these maintain Kählerity? Notice the perturbed metric gab̄ + δgab̄ is still in

canonical form (i.e. with the original choice of complex structure), simply because

the pure components of the full metric still vanish. The new Kähler form J ′ differs

from the original one J precisely by the harmonic form 1.2.21, which is closed. The

real expansion coefficients of δJ in a basis of real 2-forms uniquely specifies each one

of these Calabi-Yau,

J = vA eA, vA =

∫
D2,A

J (1.2.22)

where A = 1, . . . h1,1.

Sending J → J + δJ corresponds to vA → vA + δvA. These real scalars are called

Kähler moduli. They are the volumes of the 2-cycles D2,A dual to the basis forms

eA
13. Finally, supersymmetry leads us to recognize that we ought to incorporate the

real NSNS 2-form B into the definition by integrate the combination B+ iJ over the

basis cycles. The reason is because this complexified Kähler form transforms under

supersymmetric transformations, not J alone. The now complexified Kähler moduli

wA defined by,

wA =

∫
D2,A

B + iJ (1.2.23)

have imaginary part equal to the 2-cycle volume. The contribution to wA from B,

which we’ll label uA, is referred to as an axion. This distinction will be discussed

momentarily. In sum, the real scalars vA parameterize all the Calabi-Yau obtained

by smoothly deforming the Kähler class alone (leaving J unchanged).

Turning to deformations involving only metric variations of pure type, these can

a unique harmonic representative.
13The Poincaré dual of the 4-form obtained by taking the hodge dual of eA.
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similarly be shown to maintain Ricci-flatness if and only if

Ωc̄
ab δgd̄c̄ dy

a ∧ dyb ∧ dyc̄ (1.2.24)

is harmonic [21], [22]. So variations of this sort are in one-to-one correspondence

with the cohomology classes in H(2,1)(Y ). Note however that the metric no longer

takes canonical form in the coordinates {ya} because of the newly nonvanishing pure

components. Instead, the coordinates which cast it as a hermitian metric (a priori, if

they exist) are defined by a new complex structure J ′ which satisfies the hermiticity

condition,

g′(v, w) = g′(J ′v,J ′w), ∀ v and w ∈ TpY
′ (1.2.25)

where g′ is the perturbed real metric.

The result is that there are indeed h2,1 independent pure-type metric perturbations

which correspond to deformations of J . The moduli that parameterize these are

defined in analogous manner as the vA; namely as the expansion coefficients of 1.2.24

in a basis for H(2,1)(Y ). In this case however the expansion coefficients, zI , are

complex. For instance, a pure anti-holomorphic perturbation is given by

δgāb̄ = − 1

∥Ω∥2
Ω

cd

ā χI,cdb̄ δz
I (1.2.26)

where ∥Ω∥2 ≡ 1
3!
ΩabcΩ

abc is constant, and the χI,abc̄ are the components of the Ith

basis element of H(2,1)(Y ). I labels an equivalence class of H(2,1)(Y ). Notice that

unlike in the case of mixed type, the perturbed metric is no longer a hermitian metric.

New complex coordinates need to be defined to cast the metric in canonical form. In

other words, the change of variables that is required to cancel the newly introduced

pure components of the metric is not holomorphic. This is precisely what it means to
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change the complex structure. Indeed, smooth deformations of the complex structure

are given by varying the zI continuously.

The geometry of the moduli space can be ascertained writing the natural expres-

sion for the infinitesimal path interval ds2 associated with a general deformation δg,

ds2 =
1

2V0

∫
Y

√
g dx6gab̄ gcd̄ [δgac δgb̄d̄ + (δgad̄ δgcb̄ + δBad̄ δBcb̄) ] (1.2.27)

and expressing the metric perturbations in terms of moduli variations, δuA, δvA and

δzI . The contribution from variations of pure type in 1.2.27 is,

− 2i

V ∥Ω∥2
δzIδzJ̄

∫
Y

χI ∧ χJ̄ (1.2.28)

This is the only contribution to the path length from the infinitesimal complex struc-

ture deformations. So we recognize the components of the metric on this subspace

are given by,

GIJ̄ = −
∫
Y
χI ∧ χJ̄∫
Y
Ω ∧ Ω

(1.2.29)

where we’ve expressed the factor involving ∥Ω∥2 and dimensionless volume V in 1.2.28

as an integral over the Calabi-Yau. The reason for doing this is that the integral in the

numerator involving the χI can in fact be expressed in terms of the partial derivatives

of the integral involving Ω, taken with respect to the complex structure parameters.

Recall we are integrating over Calabi-Yau Y parameterized by the moduli, i.e. Y =

Y (z1, . . . , zh
2,1
, v1, . . . vh

1,1
).

The crucial step is recognizing that a basis for H(2,1)(Y ) can be generated via

partial differentiation of the holomorphic 3-form with respect the zI . In particular,

differentiating with respect to the Ith modulus generates a (2, 1)-form in the Ith

cohomology class plus an I-dependent multiple of Ω,

∂Ω

∂zI
= kIΩ + χI (1.2.30)
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Ultimately we find,

GIJ̄ = − ∂

∂zI
∂

∂zJ̄
log
(
i

∫
Y

Ω ∧ Ω

)
. (1.2.31)

This is very significant, as it means the space spanned by the complex structure

moduli is itself Kähler, its Kähler potential given by

Kcs = − log
(
i

∫
Y

Ω ∧ Ω

)
. (1.2.32)

A calculation, the technical details of this calculation can be found in [21], reveals

the constant kI in 1.2.28 as

kI = −∂IKcs. (1.2.33)

This motivates defining the operator DI := ∂I + Kcs
I , since it produces a basis for

H(2,1)(Y ) when applied to Ω (with I running from 1 to h2,1). This is the Kähler

covariant derivative. Then, a basis for the entire 3rd de Rham cohomology group is

given by {
Ω, D1Ω, . . . , Dh2,1Ω , D1̄Ω . . . , Dh̄2,1Ω, Ω

}
(1.2.34)

It is essentially just an expansion of a general 3-form G(3) (that maintains Poincaré

invariance in the large dimensions) in this basis which turns 1.1.12 into the no scale

N = 1 scalar potential. These steps are reviewed in chapter 4 section 4.1, following

[14].

There is yet more structure. The Kähler potential 1.2.32 can itself be expressed

in terms of a prepotential. This is can be understood as follows [25]. For Calabi-Yau,

there exists of an integral and symplectic basis for the 3-forms of the cohomology

group. Here the term integral means the Poincaré duals are true geometrical cycles

(actual 3-dimensional submanifolds not merely objects defined formally as the duals

of cohomology cycles).

Now, two 3-cycles intersect at points in a 6-dimensional manifold at points. “Sym-
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plectic” means the basis’ 3-cycles can be grouped into pairs; the members of each of

the h2,1 + 1 couples intersects one-another exactly once and no member of any other

pair. The intersection numbers have multiplicity ±1 because the cycles are oriented,

and when organized into the elements defining a linear map from H(3)(Y )×H(3)(Y )

to Z

Qij = Q(D3,i, D3,j) = ⟨D3,i ⌣ D3,i[Y ]⟩ (1.2.35)

form a symplectic matrix Q. This is of course viewed equally well as a map from two

copies of the (3)-cohomology groups,

Q̃ij = Q̃(αi, αj) =

∫
Y

αi ∧ αj, Q̃ij = Qij. (1.2.36)

In such a basis, the Kähler potential for the complex structure moduli 1.2.32 takes

the form,

Kcs(z) = − log
(
−iΠ†QΠ

)
(1.2.37)

where the Π is a vector whose 2(h2,1 + 1) components are holomorphic functions

Πi(z) defined as the integrals of the holomorphic 3-form Ω over the symplectic basis

3-cycles.

The Kähler moduli space similarly is also Kähler, in particular with its Kähler

potential given by,

Kkä = − log
(
4

3

∫
Y

J3

)
= −2 log (V0) (1.2.38)

= −2 log
(
1

6
DABC vA vB vC

)
(1.2.39)

where the V0 is the volume of the Calabi-Yau in units of ℓ6s , and DABC are the triple

intersection numbers. The dramatic simplification of the 6-volume to an expression

involving only the intersection numbers (topological information) and 2-cycle volumes

is a result of Kählerity.
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The topological information contained in the two hodge numbers h1,1 and h2,1

together with the list of triple intersection numbers uniquely identifies each smooth

family of Calabi-Yau. Different constructions can in fact give rise to the same family

Calabi-Yau. It is an interesting question whether there are infinitely many Calabi-

Yau 3-folds, that is valid sets of hodge and triple intersection numbers allowed. The

accumulation of known Calabi-Yau 3-folds in bounded regions of the (topological)

parameter space is notable, but it is also possible that the known methods of con-

structing Calabi-Yau are incomplete.

The independence of 1.2.39 from the B-axions, and consequently also that of the

Kähler metric components is significant. Axions are scalars that enter an effective

theory’s Lagrangian only via kinetic terms which can be cast in canonical form.

There is absolutely no dependence of the potential on axions, which persists through

the perturbative level. Only non-perturbative effects, for example from Dp-brane

instantons, break this continuous shift symmetry.

The special symmetry of these scalar degrees of freedom at the perturbative level

arises due to a specific symmetry present in the higher-dimensional theory. Anytime

a p-form potential enters the supergravity action, axions associated with it will be

present in the lower-dimensional theory. Note, this is not the higher-form version

of Maxwell theory which involves not the 1-form potential A but its filed strength

F = dA. It is essential that the potential itself enter the action for the continuous

shift symmetry to result.

For instance, in the IIb supergravity action the NSNS 2-form enters in the self-dual

5-form

F̃5 := F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 (1.2.40)

where the RR and NSNS p-form field strengths are defined as the exterior derivatives

of their p − 1 form potentials Fp := dCp−1 and Hp := dBp−1, and we’ve included

subscripts for clarity. The NSNS 2-form in the last term of 1.2.40 appears in the
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supergravity action due to the contribution,

−2π

ℓ8s

1

2
F̃5 ∧ ∗F̃5 ⊂ SIIb,(10). (1.2.41)

Axions are a generic feature of string theory. Once non-perturbative corrections

to the superpotential are included, the resulting effective potential has interesting

dependence on the axions. Essentially, these corrections have the qualitative form,

Wnp = AeicT (1.2.42)

where c and A are constants and T represents a modulus like the complefixied Kähler

moduli, having the form “axion plus i times volume.” We are being general because

other cycles can also give rise to axions, for example 4-cycles in the case of IIb. The

result is an overall factor that is exponentially suppressed in the modulus’ associated

cycle’s volume, and an oscillatory dependence on the axion. In certain limits this

can percolate through the terms of the scalar potential and manifest as contributions

periodic in the axions.

The properties of such effective theories are particularly relevant to cosmology, and

axions are often studied as potential candidates for the inflaton. In recent work with

collaborators T. Bachlechner, O. Janssen and M. Kleban [26] we present a systematic

procedure involving lattice reduction techniques to study random axion landscapes.

We find that these theories not only accommodate a small CC but, also generically

have both inflaton and dark matter candidates. We identify a mechanism that gen-

erates aligned “gentle slopes” along which slow-roll inflation can take place. The

enhancement of the invariant field space distance along these gentle slope directions

occurs due to the special combination of random charge matrices and large field space

dimension.

30



1.3 Cast of Moduli

It is useful to summarize the cast of moduli of the compactified IIb theory to give

a sense of scope. To distinguish between axionic and “size” components of certain

moduli we’ll count the real degrees of freedom.

We’ve seen there are a total of 2h2,1 associated with complex structure deforma-

tions (the zI), h1,1 “size” moduli associated with 2-cycles (the vA), h1,1 B-axions (the

uA), and the dilaton field ϕ. There are also C2 and C4 axions, associated with the

Calabi-Yau’s nontrivial 2-cycles and 4-cycles. Additionally, moduli that parameter-

ize the locations of dynamical stringy objects, in this case D3-branes, also enter the

effective description. Since the Calabi-Yau is 6-dimensional there are six real scalars

for each D3-brane, for a total of 6ND3. The effect of orientifolding is to break the

otherwise equal hodge numbers associated with axion and “size” moduli, the details

of which can be found in [7].

For comprehensive reviews of type II compactifications, including discussions of

the obstacles to and consequently strategies for stabilizing moduli to yield de Sitter

vacua, see for e.g. [7] (which emphasizes IIb and the geometric formulation compu-

tations often permit in the F -theory context), as well as [23], [27], [28]. Systematic

approaches to compactification of heterotic E8 ×E8 with stabilization of all complex

structure moduli can be found in the works [29], [30], [31]. An overview of string

cosmology, which discusses axions for instance, is [32].

Explicit examples of moduli stabilization include [33], [34]. The distributions and

statistics of supersymmetric and nonsupersymmetric vacua by taking the continuum

approximation of flux integers were analyzed in [35] and [36], respectively.

Finally, different randomized approaches are often employed to study effect of

large field space dimension in a tractable setting, as explicit computations from ac-

tual string compactifications often are not feasible. Calculations of the tunneling

rates for instance can be carried through, and potentially provide useful intuition.
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Figure 1.2: Double-well potential. A field configuration that is homogeneous with field
value ϕA decays into the true vacuum ϕB via the nucleation of expanding spherical
bubbles, according the Coleman-De Luccia decay rate Γ/V = Ae−B/ℏ(1 + O(ℏ)).
Since ϕA is not arbitrarily long lived we refer to it as a false vacuum.

Results vary depending on the construction. Landscapes with random potentials and

superpotentials designed by drawing independent identically distributed Taylor coef-

ficients were studied in [37], while examples of the Random Matrix Theory/Wigner

ensemble approach include [38]. Landscapes with some of the additional structure of

supergravity theories built in were studied in [39].

1.4 Vacuum Transitions

Field configurations that are spatially homogeneous and locally minimize the energy

density are stable at the classical level. Whether or not the absolute minimum energy

density of the theory is attained is irrelevant in determining stability. A basic result of

QFT however is that only quantum states with field expectation values that globally

minimize the potential are arbitrarily long lived. The quantum state underlying a

homogeneous field configuration that only locally minimizes the energy density is

metastable — quantum fluctuations inevitably cause it to decay.

Loosely speaking, quantum fluctuations in a given spatial volume can violate

energy conservation and land the field value(s) there in the basin of attraction of a
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new local minimum of the potential, and particularly one of lower energy density. Just

as a quantum mechanical system in its ground state can be observed at a classically

forbidden location, the field value in a given spatial volume can tunnel from a false

vacuum value through a potential barrier to a vacuum of lower energy.

Coleman draws a very illuminating analogy between vacuum decay in QFT and

phase transitions in ordinary fluids, for instance from the superheated liquid phase

to the vapor phase [1]. The superheated liquid phase is not arbitrarily long lived,

despite the fact that it corresponds to a local minimum of the free energy (as a

function of density). Bubbles of the vapor phase with various sizes appear within

the fluid due to thermodynamic fluctuations. Bubbles smaller than some critical

size collapse due to their surface tension. Though large bubbles are of course less

likely to appear than small ones, bubbles that are larger than the critical size expand

because their gain in volume energy overcomes their loss to surface energy. These

large bubbles mediate the phase transition. Similarly, quantum fluctuations cause

expanding regions — bubbles — of lower energy density vacuum to appear in the

initially homogeneous false vacuum field configuration. The false vacuum decays

away just as the superheated liquid boils away.

The quantitative analysis of this process in scalar field theories was first laid out

in [1], [40], [41]. This work involves the field theory extension of the semiclassical

analysis of barrier tunneling in single particle quantum mechanics in several spatial

dimensions, wherein a particle sits at the bottom of a potential well until it the instant

it tunnels. At this instant it appears on the other side of the barrier with zero kinetic

energy and thereafter propagates classically (according to the gradient of the poten-

tial). A decay rate and the location where the particle exits the barrier are computed

by using the WKB approximation. For the field theory the decay rate has units of

inverse four volume. Similarly the field is said to sit in the false vacuum configuration

ϕ = ϕA until the it changes instantaneously to the tunneled configuration with zero
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kinetic energy ϕ̇ = 0, after which it evolves classically. The field configuration upon

tunneling is analogous to the location at which particle exits barrier. Just as in the

semiclassical approximation the classical energy of the quantum mechanics particle

is the same before and after tunneling, the tunneled field configuration conserves the

classical energy.

Here I highlight some of the key results. Note that V (ϕA) is chosen to be zero in

this analysis. This can be relaxed, and I will point out how to do so in the context

of the Thin Wall Approximation at the end of this section. The decay rate takes the

form,

Γ/V = Ae−B/ℏ(1 +O(ℏ)) (1.4.1)

and is computed using the WKB approximation. This leads to the identification of

B with the action in the Euclidean theory (theory with imaginary time coordinate τ)

evaluated at a particularly special extremum of the Euclidean action, known as the

O(4) invariant “bounce.”

The Euclidean action for the scalar field theory is

SE =

∫
dτd3x

(
1

2

(
∂ϕ

∂τ

)2

+
1

2
|∇⃗ϕ|2 + V (ϕ)

)
. (1.4.2)

When O(4) symmetry is imposed the Euler-Lagrange equation becomes an ODE in

ρ =
√
τ 2 + |x⃗|2,

d2ϕ

dρ2
+

3

ρ

dϕ

dρ
=
∂V

∂ϕ
(1.4.3)

Taking the time at which the tunneling event occurs as t = 0, the boundary conditions

for the bounce are,

lim
ρ→∞

ϕ(ρ) = ϕA (1.4.4)

dϕ

dρ
(0) = 0 (1.4.5)

34



Figure 1.3: Inverted potential relevant for identifying the bounce solution.

The first of these ensures that decay be localized in space at finite time — the false

vacuum is not affected at spatial infinity and in the infinite past. Requiring that the

field tunnel with zero kinetic energy gives the second condition. It is useful to define

an auxiliary system in order to deduce the solutions to this boundary value problem.

If we associate ϕ with the position of a classical particle moving in one dimension and

ρ with time, then the above system describes the damped motion of a particle in the

inverted potential, −V (ϕ). The particle is released at ρ = 0 with zero kinetic energy

somewhere between ϕB and ϕA, and rolls towards ϕA, reaching it in the infinite future

ρ→ ∞. If there were no damping the particle would start off at the same energy level

as −V (ϕA), indicated by ϕ∗ in figure 1.3. Clearly the damped particle stops short

of ϕA if released from ϕ∗, and so must be released further up the inverted potential

closer to ϕB in order to account for the loss to dissipation and reach ϕA in the infinite

future. There is a unique value between ϕB and ϕ∗ such that this occurs.

Since 1.4.3 is invariant under ρ → −ρ an even solution to problem defined by

1.4.3, 1.4.4, and 1.4.5 can be defined for ρ ∈ (−∞,∞). We call this solution the

“bounce”, because it describes the auxiliary particle coming in from ϕA in the infinite

past, coming to rest somewhere in between ϕB and ϕ∗ at ρ = 0, and retreating toward

ϕA, approaching it in the infinite future. Let us denote this solution ϕbounce(ρ). Then

the coefficient in the decay rate, B, is the Euclidean action of the (full) bounce.
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In the semiclassical treatment the field configuration changes at an instant (t = 0)

from ϕ(x) = ϕA to the configuration obtained by evaluating the bounce at τ = 0,

namely ϕbounce(ρ = |x⃗|). This is a spherically symmetric configuration. The field

value in the center is the value at which the auxiliary particle bounces, ϕbounce(0).

The configuration’s radial profile changes monotonically from ϕbounce(0) to the parent

vacuum value, ϕA, as the distance from the center increases. In the semiclassical

approximation the evolution of the underlying quantum state is captured by evolving

this tunneled configuration by the classical equations of motion in Minkowski space.

The field value in the center of the tunneled configuration (which recall is in between

ϕ∗ and ϕB) is in the basin of attraction of ϕB in the original potential V (ϕ), and so it

relaxes to ϕB. In fact, the full classical evolution of the tunneled field configuration

can be obtained from the bounce solution alone.

The bounce solves the imaginary time version of the classical equations of mo-

tion in Minkowski space. Consequently the evolution of the bubble subsequent to

the instant it appears is simply given by the analytic continuation of the bounce

solution from imaginary time to real time. So we can define the bubble solution

by ϕbubble(t, x⃗) = ϕbounce(
√
|x⃗|2 − t2). Though in general we don’t have an analytic

expression for the bounce, the qualitative features of its analytic continuation can

nonetheless be gleaned.

The case of nearly degenerate bubble and parent vacua helps us with this, so we

review the approximations that can be made in this limit. Let us denote the small

difference in energy densities by V (ϕB) − V (ϕA) = −ϵ. Small ϵ has the effect of

pushing ϕ∗ in figure 1.3 towards ϕB, and so the place where the auxiliary particle

bounces closer to ϕB. This means that the extra energy the auxiliary particle has

when the bounce occurs in (order to account for the loss to damping) must be small.
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More precisely

−V (ϕB) > −V (ϕbounce(0)) > −V (ϕA) (1.4.6)

∆Edamping, aux = −V (ϕbounce(0)) + V (ϕA) (1.4.7)

ϵ = V (ϕA)− V (ϕB) > ∆Edamping, aux > 0 (1.4.8)

This means that dϕ
dρ

must stay small until the damping coefficient, 3
ρ

is small, i.e.

large ρ, in order to keep the net loss to dissipation less than ϵ. Putting this together,

the auxiliary particle is released near ϕB at ρ = 0, stays there until very large ρ ≈ R,

at which point it rolls quickly and approximately undamped through the inverted

potential and approaches ϕA asymptotically. When ρ ≈ R the bounce solution is

well described by the solution to the undamped problem, which itself happens to be

the definition of a 1-dimensional soliton that interpolates between ϕB and ϕA (in the

degenerate theory).

In particular the 1-dimensional soliton, which I shall denote f(x) is defined by the

solution to,

d2f

dx2
=
∂V

∂ϕ

∣∣∣∣
ϕ=f(x)

(1.4.9)

lim
x→−∞

f(x) = ϕB (1.4.10)

lim
x→∞

f(x) = ϕA (1.4.11)

Furthermore, let us choose to the center is soliton about x = 0. Now let us approxi-
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mate the bounce by,

ϕbounce(ρ) ≈ ϕB, ρ≪ R (1.4.12)

ϕbounce(ρ) ≈ f(ρ−R), ρ ≈ R (1.4.13)

ϕbounce(ρ) ≈ ϕA, ρ≫ R (1.4.14)

determine the value of R, and the precise condition under which the approximation

is valid. This approximation to the bounce describes a large 4-dimensional spherical

bubble of ϕB surrounded by a sea of ϕA, with a spherical boundary separating the

two. The value of R is obtained by computing the Euclidean action as a function

of R, and demanding that it be extremized (since recal the actual bounce solves

δSE = 0). The Euclidean action of an O(4) invariant function (expressed in spherical

coordinates and after integrating out the angular piece) is,

SE = 2π2

∫ ∞

0

ρ3dρ

[
1

2

(
dϕ

dρ

)2

+ V (ϕ)

]
(1.4.15)

Applying 1.4.12 we have

2π2

∫ R

0

ρ3dρ

[
1

2

(
dϕ

dρ

)2

+ V (ϕ)

]
≈ 2π2(−ϵ)

∫
0Rρ3dρ (1.4.16)

= −2π2ϵ
R4

4
(1.4.17)

In so far as the width of the 1-dimensional soliton is small, and condition we will

formulate momentarily, the contribution to the Euclidean action across the bound-

ary can be approximated by taking ρ3 as constant and equal to R3. This yields, a

contribution of 2π2R3S1 to the Euclidean action, where S1 is the 1-dimensional action

of the soliton,

S1 =

∫
dx

[
1

2

(
df

dx

)2

+ Ṽ (f(x))

]
(1.4.18)
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where Ṽ is the potential of the exactly degenerate theory.

Lastly, note that outside the boundary the contribution to the Euclidean action

is zero because V (ϕA) = 0. Putting everything together we have,

SE = −1

2
π2R4ϵ+ π2R3S1 (1.4.19)

and so
dSE
dR

= 0 = 2π2
(
−ϵR3 + 3R2S1

)
. (1.4.20)

Thus, R = 3S1/ϵ. The approximation is valid only if the width of the 1-dimensional

soliton is small compared to this value. Also note that the width of the 1-dimensional

soliton is affected by the height and width of the potential barrier between ϕA and

ϕB, not by ϵ. Tall and/or wide barriers yield thin solitons. Additionally not that if

V (ϕA) ̸= 0 then R is simply given by,

R =
3S1

V (ϕA)− V (ϕB)
(1.4.21)

1.5 Possibility of an Emergent Description

The work herein has been motivated by the desire to understand primordial dynamics

in the context of string compactifications. Broadly speaking, we would like to know

which field configurations a once roiling sea of a richly varied expanding bubble vacua

settles predominantly into at late time. When faced with the notoriously complicated

models that give rise to this scenario — flux compactification of string/M/F theory

which typically involve large numbers of degrees of freedom, for example the numerous

moduli parameterizing a Calabi-Yau compactification — one may be daunted.

However, the complexity present in such descriptions is not necessarily fatal. In

fact, quite the opposite may be the case. As often occurs in physical systems with
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many degrees of freedom, the system’s dynamics may give way to simple description

in terms of emergent parameters. I would like to investigate whether simple rules can

be used to identify vacuum solutions that are stable attractors of the theory, i.e. to

obtain the late-time demographic data of a multiverse governed by string theory.

To that end we ought to identify the processes that populate and depart vacua.

Clearly these include the quantum phenomenon of vacuum decay, Coleman-De Luccia

tunneling in the case of scalar degrees of freedom described semi-classically. The

relevant processes also include the classical evolution of vacuum bubbles following

their nucleation. Bubbles created in a parent vacuum whose cosmological constant is

sufficiently large with respect to their own will remain causally disconnected from one

another; the space between them swells faster than their expanding walls diminish

it. The parent inflates eternally keeping the bubbles always outside one another’s

cosmic horizon.

On the other hand, a bubble for whom this difference in energy densities is suffi-

ciently small will inevitably encounter other expanding bubbles. It is thus important

to understand the outcome of bubble collisions in addition to (quantum) decay rates,

specifically what the late time field configuration is in the collision region. Further-

more, because the wall of a single bubble accelerates outward reaching relativistic

speeds in time of the order of the bubble’s initial radius, the limit of ultrarelativistic

impact velocity is especially relevant.

This document consists of a description of the progress we’ve made developing

this emergent picture. In an effort to give the reader flexibility we’ve described each

project in self-contained chapters. We begin with two papers that focused on colli-

sions in scalar field theory, specifically their limiting behavior in the ultrarelativistic

regime. One finds that the nonlinear interaction between incoming bubble walls is

suppressed due to their tremendous Lorentz contraction. As a result the wall pro-

files effectively pass through one another; they merely linearly superimpose. This is
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known as the “free passage” approximation. In chapter 2 section 2.1 we show how

this simple behavior can result in the production of an expanding patch of offspring

vacuum upon collision. Our two projects investigated the robustness of this mecha-

nism and determined the mathematical generalization of the free passage procedure

to theories with nontrivial field space curvature, i.e. those with noncanonical kinetic

terms (chapter 3).

This latter result is cast elegantly in field space; amounting to the mutual parallel

transport of the tangent vector fields to the two soliton curves connecting the two

colliding bubble vacua with the parent they were initially nucleated in. Understand-

ing the role of curvature is crucial because it is a common feature of the effective

theories retrieved upon flux compactification (for example, Calabi-Yau moduli space

has Kähler geometry often rich with branch cuts and curvature singularities near

vacuum locations).

Our third project focused instead on the phenomenological features of vacua in

the landscape, as opposed to the capacity of collisions to move one around in moduli

space. We took the case of compactification of type IIb supergravity on the mirror

quintic in the limit of large volume, and obtained a random sample of near conifold

no scale vacua. We calculated the masses and coupling coefficients to quartic order

for the random collection of effective field theories obtained by expanding the scalar

potential about these minima. Indeed a simple description emerged due to the mirror

quintic complex structure’s moduli space geometry. The pronounced hierarchy among

these physical constants that we found was explained analytically in terms of the

limiting behavior of the Yukawa coupling for the mirror quintic near the conifold

point.
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Chapter 2

Collisions in Flat Field Space

We began in [42] by using the simplest of these models, ones involving a single scalar

field, and focused on the detailed dynamics of bubble collisions. Earlier work [43], [44]

revealed the dramatic simplification that emerges at ultrarelativistic impact velocity

mentioned in the introduction — free passage — in which the two colliding bubble

walls merely superpose. The higher the Lorentz factor of the incoming bubble walls

the better the field configuration in the collision region is approximated by the parent

configuration plus the change across each wall. We can immediately see how this can

provide a (classical) means for transitioning between vacua, and so is consequential

to our project. Consider the simple case of colliding two identical bubbles with field

configuration ϕB nucleated in parent ϕA. Free passage amounts to sending the field

in the region between the bubbles from the pre-collision value, ϕA, to ϕA + 2∆ =

ϕA+2(ϕB−ϕA) = 2ϕB−ϕA, post-collision. Transitions are possible because the field

value in the collision region, 2ϕB − ϕA, could very well be in the basin of attraction

of an entirely different vacuum — neither bubble nor parent.

These results were found in models whose potentials enjoyed an nearly exact

symmetry about the bubble vacuum, and so had a new vacuum, we’ll call ϕC , located

extremely close to the free passage kicked location, 2ϕB − ϕA. Generically minima

are not nearly equally spaced, so a natural issue to investigate was one of robustness.

We sought to determine whether collisions for whom free passage landed the field

inside ϕC ’s basin of attraction always successfully spawned a bubble of ϕC , or instead

if there was a minimum distance the kicked field value 2ϕB − ϕA had to reach inside
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the basin of attraction to ensure success.

Free passage preserves the shapes of the spatial profiles of the walls of the two bub-

bles collided, merely shifting each profile by an overall constant amount. For generic

potentials these shifted profiles are not anything particularly special. So, although

the free passage obtained post-collision field configuration might no doubt consist of

a widening expanse of field value in the basin of attraction of ϕC , it’s outgoing walls

could be so different from the relevant stable profiles that they ultimately collapse.

To address this question of the robustness of transitions mediated by free passage we

followed the lead of [44] and considered the toy version of bubble collisions valid in

the case of nearly degenerate parent and bubble vacua — that of soliton–anti-soliton

collisions in 1 + 1 dimensions.

By means of heuristic reasoning we identified a mechanism that could thwart

transitions to ϕC despite having landed in it’s basin of attraction through a fully

realized free passage kick. This mechanism was formulated in terms of the growth of

an unstable mode, whose ability to destroy transitions depended on a competition of

time scales. This competition, expressed as an inequality, involved a free parameter

we obtained numerically. Although such “failures to transition” via the instability

we predicted heuristically were borne out by the numerics, they were rare, in a pre-

cise sense. The value of the aforementioned parameter is a threshold on how large

the magnitude of the potential’s ratio of second to first derivatives must be at the

free passage kicked field value in order for “failure” to be possible. The fact that

this parameter turned out to be large means that, at least in the case of standard

polynomial potentials, the mode’s ability to hinder transitions is only relevant when

free passage lands the field very close (but of course over) the barrier between ϕB and

ϕC . The proximity needed to the peak of the barrier to sufficiently excite the mode

in turn drastically limits the allowed distances between parent and bubble vacua. So,
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for usual polynomial potentials we deemed this behavior finely tuned1.

With this first paper providing further evidence that collisions can provide an

efficient means for transitioning between vacua (even those that are widely sepa-

rate), the natural next question was to determine how this process manifests in toy

models one step closer to those inhabiting the landscape — namely, models with a

nontrivial field space curvature, typical of Calabi-Yau compactifications. The gener-

alization of free passage to flat multifield theories (i.e. those with canonical kinetic

terms) is straightforward. The equations and analyses from the single scalar case

hold component-wise, and so the field in the collision region follows the straight line

trajectory in field space from the parent location ϕiA to ϕiA+∆i+∆̃i, where the deltas

are now the displacements between the parent and bubble vacuum locations.

2.1 Background: Free Passage

Recent works [43], [44], [45], [46] indicate that ultra-relativistic bubble collisions pro-

vide a mechanism for efficiently moving between vacua. Generally speaking, an accu-

rate description of the collision between two bubbles embedded in a parent false vac-

uum requires using the full nonlinear equations of motion. But the ultra-relativistic

limit offers a great simplification, as the nonlinearities become subdominant [43], and

so the solution is given by superposing two single bubble solutions. This is the free

passage approximation.

Qualitatively, free passage is accurate because in the large Lorentz factor limit, the

kinetic energy dominates the potential up until and for short time after the collision.

The reason is that before the collision, both spatial and time derivatives of the field

in the walls are large, but ∂V /∂ϕ ∼ 0 everywhere. And as the walls become ever

more Lorentz contracted the amount of time it takes for the walls to pass through

1An interesting exception to this judgement of non-genericity we touched upon briefly in the
paper, however, is when the barrier between ϕB and ϕC is exponentially flat.
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each other diminishes, and ∂V /∂ϕ is not large enough to produce an acceleration

great enough to significantly alter the field’s free evolution during the collision, and

so the walls simply superimpose and pass through each other.

More specifically, a collision is sufficiently relativistic for the free passage approx-

imation to be valid if the Lorentz factor of the walls measured by an observer in the

rest frame of the collision satisfies two inequalities [43], [44]. One of these comes from

energy conservation, and involves the ratio of the heights of the barriers between the

relevant vacua. The second condition comes from ensuring that the walls make it

past each other before deviations from the homogeneous solution have time to grow.

This latter condition is formulated in terms of the slope of the potential at the kicked

field value (the field value just after the bubble walls collide), and the rest width of

the solitons. In both of these minimum-Lorentz-factor-conditions, there are overall

dissipation coefficients which have yet to be related to parameters in the theory.

The authors of [43] claim that after free passage, the field in the collision region

rolls to the minimum of the basin of attraction to which it was propelled via the free

passage kick. If the kicked field value happens to be in the basin of attraction of a

new lower energy density vacuum, then the field in the collision region rolls to the

new local minimum, exhibiting a coherent transformation to a new expanding bubble

vacuum.

It is worth noting, however, that the specific models considered in [43], [44] respect

various non-generic symmetries which may be responsible, in part, for the clean tran-

sition to the new vacuum. Namely, the models considered involve a potential with

three nearly equidistant minima, which ensures that the free passage collision between

two “middle” vacuum bubbles propels the field almost exactly to a new vacuum value.

Moreover, the potential studied was (nearly) symmetric about the bubble vacuum.

Which raises the natural question: What is the post-free passage dynamics for a more

generic potential? When the simplifications/symmetries noted are no longer present,
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does the field continue to roll to the local minimum of the basin of attraction it lands

in via free passage?

To study this, we follow the approach taken by the authors in [44], and consider

soliton-anti soliton collisions in 1 + 1 dimensions, with more generic potentials. We

invoke the thin wall approximation, which is valid when the two neighboring minima

between which a bubble wall interpolates are nearly degenerate. In this case, the

initial solitons are expressed as

□ϕ = −∂V
∂ϕ

(2.1.1)

ϕ(0, x⃗) = f(|x⃗| −R) (2.1.2)

ϕ̇(0, x⃗) = 0 (2.1.3)

where f(r) is the soliton associated with the degenerate potential, and the initial bub-

ble radius is dependent on the potential — in particular three times the 1-dimensional

soliton’s action divided by the difference in energy densities of the bubble and parent

vacuum. Hence, for large R the collision of two bubbles (nucleated sufficiently far

apart that their walls reach relativistic speeds before colliding) looks effectively like

the collision of domain walls. So, the collision of a soliton and anti-soliton in 1 + 1

dimensions, each boosted to some constant relativistic speed, u, is a relevant problem

to consider. The initial value problem is as follows

∂2ϕ

∂t2
− ∂2ϕ

∂x2
= −∂V

∂ϕ

lim
t→−∞

ϕ(t, x) = f(γ(x− ut)) + f(−γ(x+ ut))− ϕA

lim
t→−∞

ϕ̇(t, x) = −γu (f ′(γ(x− ut)) + f ′(γ(x− ut)))

(2.1.4)

where γ is the Lorentz factor, the potential, V , has degenerate minima ϕA, and ϕB,

and the soliton f(x) approaches ϕB as x → −∞, and ϕA as x → ∞. To simplify
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notation in the following section, we now label the left moving and right moving

solitons as follows,

fR(t, x) = f(γ(x− ut)) (2.1.5)

fL(t, x) = f(−γ(x+ ut)) (2.1.6)

and define the free passage solution,

ϕFP(t, x) = fR(t, x) + fL(t, x) + ϕA (2.1.7)

Lastly, we note the the field in the region in between the walls before the collision,

which is approximately in ϕA, is shifted by the sum of the changes in field values

across each of the walls, here simply δϕ = 2(ϕB − ϕA). This field deviation is the

mathematical form of the free passage kick.

Let’s now turn to the post-free passage field dynamics.

2.2 Heuristic Analysis

To study the classical evolution of the system after the free passage kick, we write

the field as

ϕ(t, x) = ϕFP(t, x) + σ(t, x). (2.2.1)

Note that after the collision, ϕFP takes on the value 2ϕB − ϕA within the collision

region and ϕA outside of it, and so all the subsequent dynamics are encoded in σ.

Substituting this form into the original equation of motion for ϕ yields

□σ =
∂V

∂ϕ

∣∣∣∣
ϕFP+σ

− ∂V

∂ϕ

∣∣∣∣
fR

− ∂V

∂ϕ

∣∣∣∣
fL

. (2.2.2)
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Shortly after the collision σ remains small and so we expand to obtain

□σ =

(
∂V

∂ϕ

∣∣∣∣
ϕFP

− ∂V

∂ϕ

∣∣∣∣
fR

− ∂V

∂ϕ

∣∣∣∣
fL

)
+
∂2V

∂ϕ2

∣∣∣∣
ϕFP

σ +O(σ2). (2.2.3)

By dropping the term linear in σ we find that the field in the collision region is driven

by the term
∂V

∂ϕ

∣∣∣∣
ϕFP

. (2.2.4)

Note that we have dropped the other two zeroth order terms appearing in equation

(2.2.3) since they evaluate to zero within the collision region. The field dynamics is

then driven by the slope of the potential at 2ϕB − ϕA. During the bubble collision,

sufficiently high relative wall velocities ensure that the resulting field evolution will

be much smaller than the free passage kick. After the bubble collision, the natural

expectation is that if the field falls in the basin of attraction of another vacuum, the

field will subsequently roll to it. But this expectation relies on dropping the term

linear in sigma, and while σ may start out small, it can quickly grow2. We will focus

on cases in which a growing σ can significantly alter the post collision evolution.

Indeed, we will see that there are cases in which the term linear in σ drives the field

back toward ϕB thereby undoing the work of free passage.

To motivate this result, and to assess its genericity, let’s consider the relative

strength of the two lowest order terms in σ.

The First Order Term

Here we isolate the effect of the term linear in σ by dropping the zeroth order term

in equation (2.2.3) and considering the following equation of motion

−σ̈ = −∂
2σ

∂x2
+
∂2V

∂ϕ2

∣∣∣∣
ϕFP

σ. (2.2.5)

2This is of course not true when 2ϕB − ϕA happens to be near a local minimum.
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Figure 2.1: To the left is an example of a quantum analog potential after collision.
This example is typical of those models that permit unstable mode(s) after collision.
The particular collision this is associated with the one pictured in figures 2.3, and
2.4. The model’s potential for this collision is shown on the right, with a magnified
plot near the free passage field value also included in the upper right corner.

Our approach to analyzing the dynamics governed by 2.2.5 is informed by Coleman’s

proof of the stability of solitons [47]; we identify the right hand side as an ordinary

quantum mechanical Hamiltonian operator acting on σ, with an analog quantum

potential given by

VQM(t, x) =
∂2V

∂ϕ2

∣∣∣∣
ϕFP

. (2.2.6)

Qualitatively, this potential looks like a smoothed out finite square well (or bar-

rier) with value V ′′(ϕB) outside the collision region, and V ′′(2ϕB − ϕA) inside. In

the relativistic limit, the walls become Lorentz contracted and the potential looks

increasingly like a widening square well (or barrier, depending on the magnitudes of

V ′′(2ϕB − ϕA) and V ′′(ϕB)). An example of such an analog quantum potential is

shown in figure 2.1.

Of particular interest are cases where the field makes it into the basin of attraction

of a new local minimum — which we’ll call ϕC — but does not migrate sufficiently far

into the basin for the curvature of the potential to turn positive. In such cases, our

quantum potential is a widening square well with a negative bottom, which means

negative energy eigenstates are possible. While negative energies are not particularly
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special in the Schrödinger equation, here they are suggestive of exponentially growing

(and decaying) modes.

The instantaneous ground state of this system starts with energy V ′′(ϕB) > 0

immediately after the collision, and then decreases as the well widens, approaching

V ′′(2ϕB − ϕA) < 0 as t → ∞. Consider a time t0 > 0 when the ground state energy

is negative. Had our Hamiltonian been time independent, the ground state, ψ0(t0, x),

would have evolved exponentially according to exp(±
√

|E|(t − t0)). While the time

dependence of the system does factor in, we can still trust that a growing mode is

present as long as the ground state changes sufficiently slowly3. Note that implicitly

we assume the walls are boosted to a sufficiently large speed that linearization is still

valid at t0.

Of course, at time t0 the ground state component of the deviation from free passage

may be positive or negative. So the mode’s contribution to the field’s evolution post

free passage can be towards or away from ϕC . To clarify this we write

σ(t0 + dt, x) ∼ α0 exp(
√
|E0|dt) + β0 exp(−

√
|E0|dt)]ψ0(t0, x) + ... (2.2.7)

where the ellipses represents the contributions from the remaining modes. These

consist of scattering states, which are all stable, and additional bound states which,

though possibly unstable, are less unstable than the ground state. Hence we expect

dynamics (given by the EOM for σ in this subsection, obtained from keeping only

the first order forcing) to be dominated by the ground state. The ground state, like

any state, is not unique up to a phase. Let us take ψ0 to be real and positive. Then

α0 is real, and the ground state contributes a push toward ϕC if the sign of α0 is the

same as ϕC − (2ϕB −ϕA) (negative for us), and vice-versa (i.e. retreat to the original

3More precisely, as long as the overlap between two successive ground states is sufficiently close
to 1 so that the exponentially growing factor dominates it, the mode will grow. There is always a
t0 large enough such that this is the case. For a more thorough treatment consult the Appendix.
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bubble vacuum).

In terms of the deviation’s initial conditions (given at time t0 that satisfies the

above conditions), α0 is

α0 =

∫
ψ0(t0, x)[σ(t0, x) +

1√
|E0|

σ̇(t0, x)]. (2.2.8)

The initial conditions for σ are essentially the accumulated effect of the full zeroth

order forcing term on ϕ up until t0 (ignoring O(ϵ) terms in σ’s EOM is valid until

t0). Recall this term is given by,

−∂V
∂ϕ

∣∣∣∣
ϕFP (t,x)

+
∂V

∂ϕ

∣∣∣∣
fL(t,x)

+
∂V

∂ϕ

∣∣∣∣
fR(t,x)

. (2.2.9)

Here we demonstrate that our analysis reproduces the correct behavior in the limit

u → 1, where ϕC bubble nucleation is successful. The deviation the instant after

collision, which results from integrating the above forcing against the appropriate

Green’s function, vanishes in this limit because it is suppressed by u/γ (see eq. 16

in [44]). After this instant, the only non-negligible forcing in the collision region is

simply −V ′(2ϕB−ϕA). Consequently, α0 will have the same sign as ϕC− (2ϕB−ϕA),

since 2ϕB − ϕA is in the basin of attraction of ϕC . Hence, both zeroth and first

order forcing terms in σ’s EOM would result in the field being pushed toward ϕC

if treated independently. Also, note that qualitatively our analysis reproduces the

correct spatial dependence of the solution post collision — the distance the field rolls

toward ϕC is peaked in the center of the collision region and decreases to nearly zero

at the walls. So long as the contribution to σ(t0, x) and σ̇(t0, x) from the forcing after

the walls finish passing through each other dominates the contribution accumulated

until this time, we expect successful bubble ϕC bubble nucleation.

If, on the other hand, the speed is not sufficiently large that the contribution from

the forcing before/during collision is negligible it is possible for α0 to be of the opposite
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sign as −V ′(2ϕB −ϕA). In such a case there is a competition between the zeroth and

first order forcing terms. This raises a perhaps surprising prospect. The field could

realize enough of the free passage kick that the collision region is indeed taken into

the basin of attraction of ϕC , but fall short enough that α0 is sufficiently large in

magnitude that the first order forcing term dominates the dynamics. This would

mean that, despite having made it into the basin of attraction of a new vacuum via

free passage, the field in the collision region would nonetheless be pulled back uphill

towards the original bubble vacuum. If the effect is significant enough the field would

make it all the way back over the barrier, into the old bubble’s basin of attraction

thereby undoing the kick from free passage and preventing a bubble of new vacuum

from forming. In particular, this would mean that consideration of the post-collision

dynamics raises the minimum collision speed necessary to complete the free passage

transition.

Competition Of Time Scales

Whether the instability identified in the previous section is realized depends on how

the time scale associated with its growth compares with that associated with the

zeroth order term. If the slope at 2ϕB − ϕA is sufficiently large, the field in the

collision region accelerates quickly, and the window for exciting the growing mode

is lost. The time scale associated with the zeroth order term can be determined by

dropping the Laplacian of the deviation and explicitly solving the resulting differential

equation,

σ̈ ≈ V ′
2ϕB−ϕA → σ ∼

V ′
2ϕB−ϕA
2

t2 +O(t). (2.2.10)

Hence, the time scale associated with the zeroth order driving term is

tzeroth ∼ 1√
V ′
2ϕB−ϕA

. (2.2.11)
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The time scale associated with the first order term is roughly given by the time for

one e-folding, which in turn depends on the depth of the analog quantum potential,

tlinear ∼ 1√
|V ′′

2ϕB−ϕA|
(2.2.12)

This suggests that in models with

√
|V ′′

2ϕB−ϕA|
V ′
2ϕB−ϕA

≫ 1, (2.2.13)

the field in the collision region may not simply roll down towards ϕC , but rather be

significantly influenced by the unstable mode. As indicated previously, whether the

mode grows to drive the field toward ϕB or ϕC depends on the initial conditions for

the deviation.

In the following section we undertake a detailed numerical study of this issue and

try to determine the threshold value for the expression in equation (2.2.13) for which

the field returns to ϕB after the collision.

2.3 Numerical Survey

In the previous section we presented a heuristic argument for why the time evolution

after a free passage kick takes the field into the basin of attraction of new vacuum (ϕC)

may bring the field back to the original vacuum (ϕB), rather than causing it to roll to

ϕC . Again, even in such cases there exists a speed above which the “naive” picture of

dynamics — free passage followed by evolution according to −V ′ at the kicked field

value — will be realized. Our point, though, is that there can be potentials in which

this threshold speed is greater than one would naively expect, due to the instability

we’ve identified. For potentials in which 2ϕB − ϕA lies in the basin of attraction of a

new vacuum, the naive expectation is that the threshold will have been passed if the
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kicked field in the collision region is within a small enough distance of 2ϕB −ϕA that

it lies in the new minimum’s basin of attraction.

We want to study how the detailed features of the potential, such as the relative

size (and sign) of the first and second derivatives at 2ϕB−ϕA, determine whether the

free passage dynamics nucleates a bubble of new vacuum, ϕC . Thus, we numerically

simulate relativistic soliton-anti soliton collisions in models where V ′(2ϕB −ϕA), and

V ′′(2ϕB − ϕA) can be tuned. In particular, we studied the following two potentials,

each with degenerate local minima at ϕ = −2, 0, and 1:

V (ϕ) = ϕ2(ϕ− 1)2(ϕ+ 2)2
(
1 + k1 exp(−k2(ϕ+ .2)2) + k3 exp(−4(ϕ− .5)2)

)
(2.3.1)

and,

V (ϕ) = ϕ2(ϕ− 1)2(ϕ+ 2)2
(
1 + k1 exp(−k2(ϕ+ .2)2)(ϕ+ k4) + k3 exp(−4(ϕ− .5)2)

)
.

(2.3.2)

The same initial value problem laid out in section 2.1 is solved with the Cactus

Computational Toolkit utilizing a fourth order Runge-Kutta method. For each choice

of parameters {ki} we have determined whether the field in the collision region, after

receiving its free passage kick, rolls toward the new vacuum at ϕC = −2, or retreats

to the original bubble vacuum ϕB = 0. The figure below displays the results. Runs

are plotted in the V ′(2ϕB − ϕA)-V ′′(2ϕB − ϕA) plane, and the color indicates the

outcome: purple for those that retreat back toward ϕB = 0, and black for those that

roll toward ϕC = −2.

The runs naturally separate based on the relative magnitude of V ′′(2ϕB−ϕA), and

V ′(2ϕB − ϕA), as expected. The boundary between the two regions is approximately

linear, with slope ∼ −26.5. We thus find that the threshold for successful new bubble

nucleation via free passage may be increased above the level naively expected (that

54



Figure 2.2: The results of numerical simulations for various values of V ′(2ϕB − ϕA)
and V ′′(2ϕB − ϕA). Cases where the field retreats back toward ϕB are indicated by
a purple square while those that continue toward ϕC are indicated by black circles.
Note that there is a rough boundary that separates the two classes. We’ve unshaded
the simulations deemed to lie along this boundary, and plotted a least squares fit to
these points which has slope -26.5.

which lands the field in the basin of attraction of the new vacuum) for models with

|V ′′(2ϕB − ϕA)|
V ′(2ϕB − ϕA)

≳ 26.5. (2.3.3)

Snapshots of a collision in a model representative of those where the field in the

collision region in pulled back into the basin of attraction of ϕB are shown in figures

2.3 and 2.4. We do this to illustrate that the mechanism for this “failure to nucleate” is

indeed our unstable mode. Notice that the retreat begins in the center of the collision

region and eventually drags the rest of the interior back to ϕB. For this particular

simulation we used the potential given by 2.3.1, with parameters k1 = 1.85, k2 = 1.54,

and k3 = 15, along with a wall speed u = .999.

For a given model, the soliton used to construct initial conditions in 2.1.4 was

approximated as follows:

f(x) =
1√

1 + 3 exp(−x
√
V ′′(1))

(2.3.4)
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This is a modification of the exact soliton that interpolates between the same vacua,

ϕ = 0 and ϕ = 1, for the potential,

V (ϕ) = ϕ2(ϕ2 − 1)2 (2.3.5)

We chose the coefficient in the exponential to be
√
V ′′
ϕ=1 in order to send any waves

that developed from relaxation of the walls away from the collision region. The effect

of the approximation is minimal, as can be seen by comparing the plots in figures 2.3,

and 2.4 with the corresponding ones obtained for the same collision simulated using

the “true” soliton in the field’s initial conditions, pictured in figures 2.5, and 2.64.

2.4 Generality Of Instability

While we have demonstrated the existence of an instability, it is now important to

address the issue of generality. In particular, how finely tuned does a potential have

to be to exhibit the kind of first and second derivatives required by equation (2.3.3)?

More precisely we must have this inequality satisfied at 2ϕB − ϕA.

Consider the slope of the potential evaluated very close to 2ϕB − ϕA. As long as

the potential is well behaved near that point and derivatives of order higher than two

are not very large themselves, we may expand and write

V ′(2ϕB − ϕA + ϵ) ≈ V ′(2ϕB − ϕA) + V ′′(2ϕB − ϕA) ϵ. (2.4.1)

4We have recently developed an approach for more accurately constructing initial conditions. In-
stead of using the closed form approximate expression given in 2.3.4, we use a discrete approximation
to the “true” soliton obtained by numerical inversion of

x =

∫ f(x)

f(0)

dϕ√
2V (ϕ)

. (2.3.6)

By limiting the values of the upper bound to the interval between two neighboring vacua the above
is a definition for soliton f(x) equivalent to the usual definition given in terms of a BVP. We have
checked that this more precise form has only a marginal affect on our numerical survey of the soliton
collisions.
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Since the second derivative is so much larger in magnitude than the first derivative,

we can set the right hand side of this expression equal to zero by choosing a very small

ϵ ∼ 1/26.5. In other words, we must be very close to an extremum of the potential.

This places severe limitations on the types of potentials in which migration into the

basin of attraction via free passage is only temporary. In particular, the locations

of the minima of the potential must be so finely tuned that 2ϕB − ϕA is nearly at a

maximum of the potential.

Though our analysis is based on a first order Taylor expansion of V ′ about the

free passage field value being valid for at least some δ > ϵ ∼ 1/26.5, the results

suggest it might be worth considering potentials where the condition on the ratio of

the first and second derivatives is satisfied in a large interval around 2ϕB−ϕA, albeit

without requiring such a δ. For instance, if one inserted an exponential segment,

V ∼ exp[−Kϕ], into the standard three minima potentials we’ve considered thus far

in an interval around the free passage field value, then the ratio of first to second

derivatives everywhere in the interval will be −1/K. The size of the interval is

arbitrary, so the distance between the locations of the parent and bubble vacuum can

be moved liberally, without changing the ratio of the derivative at the kicked field

value.

Qualitatively, such a potential will have a plateau leading to a very steep cliff in

between the bubble and new vacua, since K must be chosen quite large. Preliminary

numerical results indicate that uphill retreat post collision via our unstable ground

state may in fact be realized for some potentials of this sort. To avoid a potential that

is defined piece-wise, we “carve out” two Gaussians from the plateau in the following

way:

V (ϕ) = 1− exp(−K(ϕ− η))− exp(−k1(ϕ− ϕA)
2)− exp(−k2(ϕ− ϕB)

2) (2.4.2)
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Once again, soliton-anti soliton collisions were simulated with ϕB as the bubble vac-

uum, and ϕA as the parent. We took η = −3.5, K = 20, k1 = 10, k2 = 5, ϕB = 0,

wall speed u = .99, and varied ϕA. We started with ϕA = 3, and observed retreat

toward the ϕB vacuum. In each successive run, ϕA was increased. This has the effect,

essentially, of leaving the potential in between η, and ϕB unchanged. As far as a

collision is concerned, moving ϕA toward 3.5 has the sole effect of moving the free

passage kicked field value leftward along the plateau, ever closer to the cliff, without

changing what the potential looks like between the cliff and the entrance to the basin

of attraction of the ϕB vacuum. A plot of the potential for an example one of these

simulations, that with ϕA = 3.25, can be found in figure 2.7.

Our goal was to determine how close to the cliff the free passage kicked field could

be (i.e. how large the magnitude V ′ could be), and yet still exhibit this retreat (in

the opposite direction of −V ′) to the original bubble vacuum. Essentially, at what

point do dynamics after collision switch from retreat to rolling off the cliff? We’ve

found that this threshold ϕA value lies in between 3.25 and 3.35, as all simulations

with ϕA ≤ 3.25 retreated, and that with ϕA = 3.35 fell off. Snap shots of an example

of a simulation in which retreat occurs, that with ϕA = 3.25, are displayed in figure

2.8.

Of course, the threshold ϕA value could be resolved further. These preliminary

results nonetheless suggest that the somewhat surprising behavior suggested by our

heuristic argument (based on linear analysis), observed in our corresponding numer-

ical survey, and deemed finely tuned for the usual potentials considered (resembling

those of simple polynomial form), may be quite general in other classes of models.

This is because the effect might extend to models where the condition 2.3.3 is satisfied

in a large (non negligible) neighborhood around the free passage kicked field location

(hence not finely tuned), but where linearization about the free passage solution in

the collision region is not valid in throughout the larger interval.
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2.5 Conclusion

In this chapter we have investigated bubble collisions in single scalar field theories

whose potentials admit multiple local minima. Motivated by the findings of [43],

where high velocity bubble collisions were shown to be governed by free passage dy-

namics, we’ve studied post-collision evolution to determine the efficacy of classical

nucleation of new bubble vacua. Specifically, we’ve used analytical and numerical

arguments to assess the post-collision deviation from free passage dynamics, and

identified potentials for which such deviations both rapidly grow and drive the field

away from producing bubbles of with new vacuum field values. An interesting ques-

tion touched on here, but deserving of more detailed study is the genericity of such

deviations.

A natural next step is to consider these questions in multi-field models. With an

eye toward applications to eternal inflation and the string landscape, we determined

the generalization of free passage to field theories with noncanoical kinetic terms, that

is field space curvature, in [48]. These results are presented in the following chapter.
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Figure 2.3: A representative case where the field retreats back to ϕB despite tem-
porarily migrating into basin of attraction of the minimum at −2 after the collision.
The solution to the field’s EOM, in red, is plotted over the free passage solution, in
green. (Note: solitons in the field’s initial conditions were approximated by 2.3.4,
whereas those used in the free passage solution were constructed by numerical inver-
sion as discussed in the footnote on page 56. As noted, the effect of using the more
exact numerical approach is minimal.)
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Figure 2.4: For each snapshot in figure 2.3 we plot the corresponding deviation from
free passage, merely computed as the difference between the actual field solution
and the free passage solution. Notice that the shape of the instability is similar to
the ground state of a finite square well thus supporting our heuristic argument in
section 2.2. The kinks at the wall locations indicate that the soliton approximation,
2.3.4, produces a slightly wider soliton than the true one. The persistence of the kinks
throughout the snapshots means that the approximate walls stay intact. Thus, retreat
to the original bubble vacuum does not result from collapse of the walls, but rather
from evolution of the field inside the collision region. The former behavior would
not be an example of our effect since the ground state is nearly zero at the walls.
Instead, it would be the “temporary excursion” observed by [43], [44] at insufficiently
relativistic speeds.
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Figure 2.5: Results of the same collision pictured in figure 2.3, only with solitons in
the field’s initial conditions constructed using the more accurate method described in
the footnote on 56. All parameter values, including initial wall locations, and speed,
were identical for the two runs. The solution to the field’s EOM is in red, and the
free passage solution is in green.
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Figure 2.6: The deviation from free passage for the snap shots in figure 2.5, computed
as the difference between the actual field solution and free passage solution.
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Figure 2.7: On the left is a plot of the potential given by 2.4.2 with parameter values
η = −3.5, K = 20, k1 = 10, k2 = 5, ϕA = 3.25 and ϕB = 0. On the right we include a
magnified plot of the potential near the free passage field location, 2ϕB − ϕA (circled
in red on the unmagnified plot). The results of a soliton-anti soliton collision for this
model are pictured in figure 2.8.
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Figure 2.8: Snapshots of the collision of two ϕB bubbles nucleated in parent ϕA for the
potential pictured in figure 2.7. The field is plotted in red, the free passage solution in
green, and the deviation in purple. The field in the collision region is kicked via free
passage to a location where −V ′ is negative, yet nonetheless retreats in the positive
direction — running through an entire interval where −V ′ is negative — ultimately
back to the original bubble’s basin of attraction.
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Chapter 3

Collisions in Curved Field Space

As we found in [48], the presence of field space curvature modifies this story nontriv-

ially. Again, we used the proxy of boosted solitons in 1 + 1D for expanding bubbles

in 1 + 3D. We made no restrictions on the field space dimension or its geometry

aside from smoothness, and did not take the solitons to be identical. By transform-

ing to an optimal set of variables the collision initial value problem takes the form

of a boundary value problem whose solution can be understood geometrically. The

collision of two solitons at ultrarelativistic impact velocity amounts to the mutual

parallel transport (in field space) of the colliding solitons’ tangent vector fields. Not

only does this analysis determine the field configuration in the collision region, but

also the spatial profiles of the outgoing walls. Unlike in the flat case, we found that

ultrarelativistic collisions in curved field space are not in general shape preserving.

These results are based on analytic calculations which we also verified in particular

examples through numerical studies.

The ultimate fate of the field configuration after a given collision depends crucially

on the potential in the neighborhood of field space targeted by parallel transport.

Such landing locations depend on the field space geometry throughout a submanifold

containing the parent, and bubble vacua, as well as on the shapes of the two solitons

collided. The curves these solitons trace out in field space set the boundary condi-

tions for the parallel transported vector fields. A natural and important step toward

determining the effectiveness of classical collisions in populating the landscape then

is to gain an understanding of the field space geometry, the shapes of soliton curves
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and the distribution of vacua in models from actual flux compactifications.

In this chapter we address key subtleties in bubble collisions, even at high relative

velocity, that arise from the inherent nonlinearity of nontrivial curvature, and find

a satisfying geometrical interpretation of our result. Specifically, in section 3.1 we

generalize the notion of the free passage approximation from flat to curved field spaces.

We derive a geometrical interpretation of the result in terms of the parallel transport

of integral curves on moduli space. In section 3.2 we argue that there always exists

a regime in which our generalized free passage approximation applies, and in section

3.3 we numerically study some bubble collision examples (in the setting of 1+1D)

and compare the results to those from our analytic expressions in section 3.1.

3.1 Generalization of Free Passage

We take as our starting point the action

S =

∫
d2x

(
1

2
gij∂µϕ

i∂µϕj − V (ϕ)

)
(3.1.1)

where gij is the generally curved metric on the field space. We assume the potential

V (ϕ) has three (or more) degenerate minima at the field space locations A, B, and C

(the minimum necessary to study collisions as a source of vacuum transitions). The

Euler-Lagrange equation takes the form,

□ϕi + Γij k∂
µϕj∂µϕ

k = −∂V
∂ϕi

(3.1.2)

The A vacuum will play the role of the parent vacuum, and B and C those of the two

bubble vacua we seek to collide. Static solutions to (3.1.2) that interpolate between

distinct yet degenerate local minima of the potential are solitons. We define f i(x),

and hi(x) as the components of those solitons centered at x = 0 with the following
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asymptotics,

lim
x→−∞

f i(x) = Bi (3.1.3)

lim
x→+∞

f i(x) = Ai (3.1.4)

lim
x→−∞

hi(x) = Ci (3.1.5)

lim
x→+∞

hi(x) = Ai (3.1.6)

Our intent is to work out the formalism to describe the collisions between these

solitons, taking into account the curved moduli space metric. Of particular interest

is the limiting behavior that emerges at ultrarelativistic impact velocity.

The collision of two initially widely separated solitons, say, right-moving f i, and

left-moving hi (that interpolate between the parent vacuum A and the other local

minima B and C, respectively) is described by an observer in the center of the rest

frame of the collision by the following initial value problem:

□ϕi + Γij k∂
µϕj∂µϕ

k = −∂V
∂ϕi

(3.1.7)

ϕi(−T, x) = f i(γ(x− u(−T ))) + hi(−γ(x+ u(−T )))− Ai (3.1.8)

∂tϕ
i(−T, x) = −uγ

(
f i

′
(γ(x− u(−T ))) + hi

′
(−γ(x+ u(−T )))

)
(3.1.9)

where we’ve shifted the time coordinate so that the observer’s clock is zero when the

trajectories of the centers of the colliding solitons (given by xR,0 = ut for right-moving

f i, and xL,0 = −ut for left-moving hi) coincide.

In order to be a legitimate representation of a soliton collision, the solitons must

be widely separated at the initial time, −T . Thus, valid values of T are those for

which uT is much much greater than the width of all components of both Lorentz

contracted solitons (so the observer measures field value ϕi = Ai to an exceedingly

good approximation initially, since outside this width the solitons approach their
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asymptotic values as decaying exponentials). To make this precise we’ll define a

positive constant w such that all components of the solitons we wish to collide, f i(x)

and hi(x), differ from the relevant vacuum value by an insignificant amount outside

of x ∈ [−w/2, w/2]. That is,

|Bi − f i(−w/2)|
|Ai −Bi|

≪ 1 (3.1.10)

|Ai − f i(w/2)|
|Ai −Bi|

≪ 1 (3.1.11)

|Ci − hi(−w/2)|
|Ai − Ci|

≪ 1 (3.1.12)

|Ai − f i(w/2)|
|Ai − Ci|

≪ 1. (3.1.13)

So, the initial time −T is any time such that uT > w/2γ. We’ll view the colli-

sion as commencing at time tstart = −w/2γ, and lasting until tend = +w/2γ. The

“usefulness” then of an approximation to the actual solution to the collision initial

value problem (defined by 3.1.7, 3.1.8, and 3.1.9), at given impact velocity u, is pro-

portional to the fraction of the collision for which the approximation remains valid.

Labeling the time until which an approximation accurately captures the dynamics

by tapprox, the approximation’s usefulness is gleaned from tapprox/tend. The greater

this is the more useful the approximation is, and it will be deemed “fully realized” if

tapprox ≥ tend.

The task of understanding the dynamics of collisions in the ultrarelativistic limit

amounts to finding a one parameter family of approximations — “free passage field

configurations” we’ll denote by {ϕiFP (t, x;u)}u∈(0,1) — that are ever more useful ap-

proximations to the collision initial value problem’s true solution as u is taken to

1. After constructing {ϕiFP (t, x;u)}u∈(0,1) we conclude this section with a proof that

there always exists an impact velocity close enough to 1 to ensure that the free passage

configuration is fully realized.
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We first perform a change of variables from t and x to the natural dynamical

variables of the problem, namely the spatial coordinates of the boosted observers

riding on the soliton walls, σ := γ(x − ut), and ω := γ(x + ut), which we’ll refer to

as the Lorentz variables. This choice of variables enables us to isolate the effect of

one soliton, say, left-moving h, on the field at a fixed location on the other soliton, in

this case f . By holding σ constant and letting ω vary from minus infinity to infinity

one focuses on a fixed location on the right-moving soliton and follows how the field

evolves under the influence of the collision with the left-moving soliton.

Similarly, the impact of right-moving f on h can be ascertained by holding ω

constant and varying σ. Expressing ϕ in terms of these, the equation of motion takes

the form,

− 4(1− ϵ)γ2
[
∂2ϕi

∂σ∂ω
+ Γij k

∂ϕj

∂σ

∂ϕk

∂ω

]
− 2γ2ϵ

[
∂2ϕi

∂σ2
+
∂2ϕi

∂ω2
+ Γij k

(
∂ϕj

∂σ

∂ϕk

∂σ
+
∂ϕj

∂ω

∂ϕk

∂ω

)]
= −∂V

∂ϕi
(3.1.14)

where we’ve expanded in ϵ = 1− u, since we are interested in the limiting dynamics

that emerge when u→ 1. Rearranging and using 1/γ2 = 2ϵ we have,

∂2ϕi

∂σ∂ω
+ Γij k

∂ϕj

∂σ

∂ϕk

∂ω
=
ϵ

2

∂V

∂ϕi
− ϵ

2

[
Γij k

(
∂ϕj

∂σ

∂ϕk

∂σ
+
∂ϕj

∂ω

∂ϕk

∂ω

)
+
∂2ϕi

∂σ2
+
∂2ϕi

∂ω2

]
.

(3.1.15)

The initial conditions take the form,

ϕi(σ, ω)

∣∣∣∣
∂Ωγ

=
(
f i(σ) + hi(−ω)− Ai

) ∣∣∣∣
∂Ωγ

(3.1.16)

γu

(
∂

∂ω
− ∂

∂σ

)
ϕi
∣∣∣∣
∂Ωγ

= −γu
[
f i

′
(σ) + hi

′
(−ω)

] ∣∣∣∣
∂Ωγ

(3.1.17)
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or,

ϕi(σ, ω)

∣∣∣∣
∂Ωγ

=
(
f i(σ) + hi(−ω)− Ai

) ∣∣∣∣
∂Ωγ

(3.1.18)(
∂

∂ω
− ∂

∂σ

)
ϕi
∣∣∣∣
∂Ωγ

= −
[
f i

′
(σ) + hi

′
(−ω)

] ∣∣∣∣
∂Ωγ

(3.1.19)

where ∂Ωγ is the surface in the σ-ω plane of constant time t = −T . This boundary

is simply the line, ω = σ − 2γuT , which note lies only in the first, third, and fourth

quadrants. Its ω-intercept, −2γuT , is less than −w for any valid choice of T . We

bisect ∂Ωγ at the point (γuT,−γuT ) and name the half that lies in the third and

lower fourth quadrants as ∂Ωf , and the half that lies in the first and upper fourth

quadrants as ∂Ωh. These are indicated in figure 3.1 by the highlighted yellow, and

blue rays, respectively. Since all points on ∂Ωf have σ < γuT < w/2, they satisfy,

ω
∣∣
∂Ωf

= (σ − 2γuT )
∣∣
∂Ωf

≤ −γuT ≤ −w/2

Similarly, all points on ∂Ωh have ω > −γuT > −w/2, so their corresponding σ

coordinate satisfies,

σ
∣∣
∂Ωh

≥ γuT ≥ w/2
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Figure 3.1: When a transformation from (t, x) to the Lorentz variables, σ := γ(x−ut)
and ω := γ(x + ut)) is performed, the initial conditions for the collision of solitons
boosted to impact velocity u are given by 3.1.18 and 3.1.19. The boundary where the
initial data is given, the surface of constant time t = −T , is a line in the σ-ω plane
with slope 1 and ω-intercept −2γuT . We denote this boundary, for a given Lorentz
factor and choice for T , by ∂Ωγ (note that for the collision at a given u the valid
T values are those such that the boundary lies below the line ω = σ − w, indicated
by the thin red line). The center of the f soliton in the shifted superposition in
the boundary conditions occurs at the ω-intercept, and that of the h soliton in the
superposition occurs at the σ-intercept. We’ve named the halves of ∂Ωγ as ∂Ωf and
∂Ωh according to which soliton’s center lies on it. These are indicated by the yellow
and blue rays, respectively. In fact, the f soliton in the superposition is almost
entirely contained within only the two red points on the yellow half– the points on
∂Ωγ with σ ∈ [−w/2, w/2]. That is, to the left of this interval (in the third quadrant)
f evaluates to very nearly B, and to the right evaluates to very nearly A. Similarly the
h soliton is almost entirely contained within the two red points on the blue half. As γ
is increased the boundary where the field and its derivatives are specified moves along
the diagonal with negative slope toward the fourth quadrant, indicated by the black
arrow. Consequently, the intervals where the f and h solitons in the superposition are
approximately supported move further and further away from each other. Thus, the
boundary data effectively splits into two independent pieces each involving a single
Lorentz variable. On the yellow half boundary the field in the initial data evaluates
ever more closely to f(σ), and on the blue to h(−ω). In the limit γ → 1 the ω values
on the yellow half go to −∞, and the σ values on the blue half go to +∞.
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The boundary conditions can then be rewritten as,

∂Ωf : σ ≤ w/2 → σ − 2γuT ≤ −w/2

ϕi(σ, σ − 2γuT ) = f i(σ) + hi(−(σ − 2γuT ))− Ai ≈ f i(σ) + Ai − Ai = f i(σ)(
∂

∂ω
− ∂

∂σ

)
ϕi(σ, ω) = −

(
f i

′
(σ) + hi

′
(−σ + 2γuT )

)
≈ −f i′(σ)

∂Ωh : ω ≥ −w/2 → ω + 2γuT ≥ w/2

ϕi(ω + 2γuT, ω) = f i(ω + 2γuT ) + hi(−ω)− Ai ≈ Ai + hi(−ω)Ai = hi(−ω)(
∂

∂ω
− ∂

∂σ

)
ϕi(σ, ω) = −

(
f i

′
(ω + 2γuT ) + hi

′
(−ω)

)
≈ −hi′(−ω)

Thus, the entire collision initial value problem stated in the Lorentz variables takes

the approximate form:

∂2ϕi

∂σ∂ω
+ Γij k

∂ϕj

∂σ

∂ϕk

∂ω
=
ϵ

2

∂V

∂ϕi

+
ϵ

2

[
Γij k

(
∂ϕj

∂σ

∂ϕk

∂σ
+
∂ϕj

∂ω

∂ϕk

∂ω

)
− ∂2ϕi

∂σ2
− ∂2ϕi

∂ω2

]
ϕi(σ, ω)

∣∣∣∣
∂Ωf

≈ f i(σ) (3.1.20)

∂

∂σ
ϕi(σ, ω)

∣∣∣∣
∂Ωf

≈ f i
′
(σ) (3.1.21)

ϕi(σ, ω)

∣∣∣∣
∂Ωh

≈ hi(−ω) (3.1.22)

∂

∂ω
ϕi(σ, ω)

∣∣∣∣
∂Ωh

≈ −hi′(−ω) (3.1.23)

Now we’ll obtain the limiting form of these equations when γ → 1. First we’ll

turn our attention to the boundary conditions. As γ is increased the boundary ∂Ωγ

is pushed along the diagonal with negative slope toward the fourth quadrant. This

causes the ω values of points on ∂Ωf to become increasingly negative, and the σ

values on ∂Ωh to become increasingly positive. Consequently, the approximations

made in the boundary conditions (3.1.20, 3.1.21, 3.1.22, 3.1.23) become ever more
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accurate.

This can be seen visually as well. The center of the f soliton occurs, by definition,

at the ω-intercept of ∂Ωγ, and the center of the h soliton occurs at the σ-intercept.

As ∂Ωγ is pushed along the diagonal toward the fourth quadrant the intercepts move

away from each other. The distance between the center of each soliton and the place

where the boundary is bisected (the endpoint of both half boundaries) increases,

resulting in ever more of the f soliton fitting on ∂Ωf , and the h soliton fitting on

∂Ωh.1

Thus, the limiting form of the boundary conditions is obtained by replacing the

approximate equalities in 3.1.20, 3.1.21, 3.1.22, and 3.1.23 with equalities. Further,

note that the two conditions involving the first derivatives (3.1.21, 3.1.23) no longer

contain any additional information than what is captured by the two conditions on

ϕi, (3.1.20, 3.1.22). Clearly the limit of the differential equation, 3.1.15, is obtained

by dropping the O(ϵ) term on the righthand side.

At the risk of stating the obvious we’ll identify this limiting set of equations with

the appropriate collision– that of the non-Lorentz contracted profiles f i and hi each

propagating toward one another with speed u = 1 in the free theory. To see why this

is the case, take the equation of motion and initial conditions associated with this

collision,

□ϕi + Γij k∂µϕ
j∂µϕk = 0 (3.1.24)

lim
t→−∞

ϕi(t, x) = f i(x− t) + hi(−(x+ t))− Ai (3.1.25)

1If one is uncomfortable with this argument for the splitting of the boundary where the initial
data is given into two independent pieces, a conformal map can be performed before limit that γ
goes to infinity is taken. Under a conformal transformation from σ and ω to α = tan−1(σ) and
β = tan−1(ω), the boundary ∂Ωγ becomes a hyperbola in the α-β domain (which is the square
[−π/2, π/2] × [−π/2, π/2]). As γ is increased the hyperbola is pushed further and further into the
lower right of the square, and ultimately becomes the union of the horizontal edge at β = −π/2 (σ
varying edge), and the vertical at σ = π/2 (ω varying edge). Though it provides a perhaps a more
visually satisfying argument in favor of the split, we do not view the conformal map as necessary.
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and transform to the characteristics, ξ = x− t, and η = x+ t. Doing so yields,

∂2ϕi

∂ξ∂η
+ Γij k

∂ϕj

∂ξ

∂ϕk

∂η
= 0 (3.1.26)

ϕi(ξ,−∞) = f i(ξ) (3.1.27)

ϕi(∞, η) = hi(−η) (3.1.28)

Since the righthand side of the resulting differential equation is identically zero, we

view this problem as the limit of the original one (the collision of boosted solitons in

the model with nontrivial potential, V ). So, the approximation to the true solution

of the u < 1 collision problem should be defined by obtaining the solution to the

free problem (3.1.26, subject to 3.1.27, and 3.1.28), and then evaluating it at the

Lorentz variables as opposed to the characteristics. If we denote the solution to the

free problem by Φi(ξ, η), we mean the approximation for impact velocity u ought to

be defined by,

ϕiFP (t, x;u) ≡ Φi(γ(x− ut), γ(x+ ut)) (3.1.29)

Turning our attention to Φi, we note that it maps R2 to a submanifold of the field

space manifold, N ⊂M .2 The submanifold is a patch of field space, bounded by four

curves. Two of these are simply the original soliton curves (traced out in field space)

that we are colliding, since Φi(ξ,−∞) = f i(ξ) for ξ ∈ R, and Φi(∞, η) = hi(−η) for

η ∈ R. Significant insight is gained by viewing Φi as the coordinates of two sets of

integral curves– those of one set obtained by varying the first argument and fixing the

second, and those of the second set obtained by fixing the first argument and varying

the second. Let us name the two vector fields these sets of integral curves define as

2Technically Φi should be viewed as a map from the square [−s/2, s/2]2 in the limit that s →
∞, with boundary conditions given on the edges of the square defined by (ξ, η) = (ξ,−s/2) for
ξ ∈ [−s/2, s/2], and (ξ, η) = (s/2, η) for η ∈ [−s/2, s/2].
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follows,

U ≡ ∂

∂ξ
=
∂Φi(ξ, η)

∂ξ
ei|Φ(ξ,η) (3.1.30)

W ≡ ∂

∂η
=
∂Φi(ξ, η)

∂η
ei|Φ(ξ,η) (3.1.31)

where we’ve expanded in the coordinate basis {ei} = { ∂
∂Φi}. Expressed in terms of

the vector fields U and W , the boundary conditions for Φi simply indicate that the

vector fields at the relevant two edges of the submanifold line up with the tangent

vectors to the two original soliton curves. In an effort to minimize confusion with

the negative signs, we explicitly point out where the vacuum locations are in the

submanifold, parameterized by ξ and η: Φ(∞,−∞) = A, Φ(−∞,−∞) = B, and

Φ(∞,∞) = C.

The differential equation takes the form,

0 =
∂2Φi

∂η∂ξ
+ Γij k

∂Φj

∂ξ

∂Φk

∂η
=
∂U i

∂η
+ Γij kU

j ∂Φ
k

∂η

=
∂Φℓ

∂η

∂

∂Φℓ
U i +

∂Φk

∂η
U jΓij k

=
∂Φℓ

∂η

(
eℓ[U

i] + U jΓij ℓ
)

= W ℓ
(
eℓ[U

i] + U jΓij,ℓ
)

Since the equality holds for each component we have,

0 = W ℓ
(
eℓ[U

i]ei + U jΓij ℓei
)

= W ℓ
(
∇eℓ(U

iei)
)

=
(
∇W ℓeℓ(U

iei)
)
= ∇WU (3.1.32)

Similarly, we obtain ∇UW = 0 by the analogous series of steps (when ξ and η

are swapped, since 3.1.26 is symmetric under exchange of these). We thus arrive
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at the geometrical description of bubble collisions in the ultrarelativistic limit: the

resulting field profiles post-collision are determined by the mutual parallel transport

of each soliton’s tangent vector field along that of the other soliton. That is, the

tangent vector fields of the soliton profiles are parallel transported along each other

everywhere in N .

The remaining two curves that together with Φi(ξ,−∞), and Φi(∞, η) form the

boundary of N are simply Φi(ξ,∞) and Φi(−∞, η). The first of these, Φi(ξ,∞), goes

between Ci when ξ = ∞, and the point Φi(−∞,∞) ≡ Di. The second, Φi(−∞, η),

has endpoint Bi when η = ∞, and the other at Di as well, when η = −∞. This is

shown schematically in figure 3.2.

This result agrees with heuristic expectations motivated by the flat field space

limit. Namely, note that in the flat limit, a right moving soliton that interpolates

between the parent vacuum A and a local minimum B leaves in its wake (to the left of

the soliton’s transition wall) a field value shifted by ∆L = B−A, while a left moving

soliton that interpolates between the parent vacuum A and a local minimum C leaves

in its wake (to the right of the soliton’s transition wall) a field value shifted by ∆R =

C−A. Thus, after free passage collision, the collision region – which, by definition is

to the left of the right-mover and to the right of the left-mover – is shifted by ∆L+∆R

(which equals B+C−2A). In the case of curved field space, we divide the field shifts,

both ∆L and ∆R, into infinitesimals, which geometrically are the tangent vector fields

of the soliton field profiles. Each such infinitesimal leaves in its immediate wake a field

whose value is parallel transported along the infinitesimal shift vector, thus resulting

in the geometrical picture we’ve described. When all tangent vectors of nontrivial

magnitude have been mutually transported, they leave a widening interior of field in

ϕ = D.

This type of reasoning indicates that 3.1.32 is the simplest partial differential

equation that reduces to free passage in the flat field space limit. Namely, in the flat
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Figure 3.2: The soliton collision initial value problem expressed in the Lorentz vari-
ables takes the form 3.1.26, with 3.1.27, 3.1.28 when the limit that the impact velocity
goes to 1 is taken. The solution to this limiting set of equations, denoted by Φi, maps
R2 to a submanifold N of the field space M . Since the map is smooth the images
of the ξ coordinate lines and the η coordinate lines are the integral curves of two
vector fields. The partial differential equation 3.1.26 indicates these two vector fields
are parallel transported along one another everywhere in N . The initial conditions
require that Φ(ξ, η) go to f(ξ) as η → −∞, and go to h(−η) as ξ → ∞. This is
shown in the schematic illustration above, where R2 is drawn as a (finite) square.
The purple horizontal line in the lower half of the ξ-η plane is mapped to the purple
curve with endpoints at B and A in the {ϕi} coordinate plane(f soliton), and the
green vertical line in the right half plane is mapped to the green curve with endpoints
C and A (h soliton). The remaining two curves that form the rest of the boundary
of N are shown in blue and pink. They are the images of the ξ coordinate line at
η → ∞ and the η coordinate line at ξ → −∞. These are, in a sense, the curves
obtained by completing the transport of h along f and f along h. At sufficiently high
impact velocity the field in the collision region takes on value D, and the outgoing
walls interpolate between D and the original bubble vacua, B to the right and C to
the left. For such a collision the parametric plot of the two walls differs negligibly
from the prediction via parallel transport– the blue and pink curves.
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limit, the infinitesimal description of free passage is clearly the requirement that the

vanishing of the directional derivatives of U with respect to W and W with respect to

U . The covariant version of these statements is just 3.1.32. This heuristic argument

is suggestive but not sufficient since it is insensitive to any terms in the limiting form

of the partial differential equation that vanish in the flat field space limit but which

could nonetheless be present in the curved case. The analysis we’ve performed so far,

together with that in the following section verifies that there are no such terms.

It is worth confirming that our free passage field configuration, 3.1.29, does

indeed have the qualitative features outlined above. First note that the configu-

ration correctly approaches the B vacuum asymptotically to the left, and the C

vacuum to the right for any finite time t, since this amounts to evaluating Φ at

(γ(x−ut), γ(x+ut)) → (−∞,−∞), and (∞,∞), respectively. At a fixed time before

collision, any time t ≲ −w/2γu, the free passage field differs from B vacuum by an

insignificant amount at x < ut−w/2γ since we’d effectively be evaluating Φi in 3.1.29

at (−∞,−∞). As we march rightward the first argument increases, and reaches zero

at x = ut while second argument remains essentially unchanged. Φ(0,−∞) is simply

the center of the f soliton. So, as one moves between the positions −ut−w/2γu, and

−ut+w/2γu in free passage field configuration they run through the f soliton’s field

configuration. If they continue moving rightward they’ll reach a stretch of x values

where both the arguments of Φi in 3.1.29 are effectively negative infinity, and so the

A vacuum is measured.

If we continue on rightward the analogous procedure leads us to realize that the

free passage field configuration interpolates between the A and C vacua by the (re-

flected) h soliton, centered at −ut. So, pre-collision the spatial profile of the free

passage field configuration looks like the usual linear superposition: a nearly homo-

geneous interior of diminishing size in the parent vacuum, separated from the bubble

vacua by the relevant solitons, whose centers lie at ut, and −ut.
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The same line of reasoning can be used to deduce that post-collision, any time

t ≳ w/2γu, the free passage configuration again consists of three approximately

homogeneous regions: a widening interior, or “collision region” with field components

≈ Di, separated from regions of original bubble vacua on either side, by walls whose

centers follow the same trajectories x = ±ut. The shapes however of the spatial

profiles of the field components across the walls are not in general the same as those

of the incoming solitons. A parametric plot of the free passage configuration at a

given time (with the spatial variable as the parameter) in the {ϕi} coordinate plane

would consist of the composition of a curve that interpolates between B and D,

together with the one between C and D. These would be nearly identical those

obtained by completing parallel transport, and approaches the union of these two

curves, Φi(−∞,∞), and Φi(∞,∞) asymptotically as t→ ∞.

We claim that there always exists an impact velocity sufficiently close to the speed

of light such that the actual solution to 3.1.7 is well approximated by the above free

passage evolution throughout the entirety of the collision– i.e. for longer than the

amount of time it would take for the incoming Lorentz contracted walls to fully pass

through each other. We prove this in the following section.

3.2 Realization of Free Passage

The solution to the parallel transport problem, Φi, and the free passage evolution

function defined from it, ϕiFP , is, of course, only useful in predicting the outcome of

a particular collision if deviations from ϕiFP remain sufficiently small throughout the

entirety of the collision (or longer). As we’ve mentioned previously, the amount of

time it takes the solitons to fully pass through each other is w/γu, and since we’ve

chosen to set our t = 0 at the middle of the collision we’re interested in the time

period, t ∈ [−w/2γu, w/2γu].
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We begin by expanding the actual solution (to 3.1.7) about the free passage con-

figuration,

ϕi(t, x;u) = ϕiFP (t, x;u) + ψi(t, x;u) (3.2.1)

Simply substituting 3.2.1 into the equation of motion and expanding in powers of ψ

yields,

□ψi = −∂V
∂ϕi

∣∣∣∣
ϕFP

− ∂2V

∂ϕℓ∂ϕi

∣∣∣∣
ϕFP

ψℓ +O(ψ2)−
[
□ϕiFP + Γijk|ϕFP

∂µϕ
j
FP∂

µϕkFP
]

− 2Γijk|ϕFP
∂µϕ

j
FP∂

µψk − Γijk,ℓ|ϕFP
ψℓ∂µϕ

j
FP∂

µϕkFP +O(ψ(∂ψ)) +O((∂ψ)2)

= −∂V
∂ϕi

∣∣∣∣
ϕFP

−
[
□ϕiFP + Γijk|ϕFP

∂µϕ
j
FP∂

µϕkFP
]
+O(ψ) (3.2.2)

We can write an implicit expression for ψi(t, x) by integrating the right hand side of

3.2.2 as follows,

ψi(t, x) =

∫ t

−w/2γu
dt′
∫ x+t′

x−t′
dx′Gi(t′, x′) (3.2.3)

We now truncate at zeroth order in ψ, and bound the above integral. The term in

the square brackets in 3.2.2 is,

−
[
□ϕiFP + Γijk|ϕFP

∂µϕ
j
FP∂

µϕkFP
]
= 4(1− ϵ)γ2

[
∂2Φi

∂σ∂ω
+ Γij k

∂Φj

∂σ

∂Φk

∂ω

]
(3.2.4)

− 2γ2ϵ

[
∂2Φi

∂σ2
+
∂2Φi

∂ω2
+ Γij k

(
∂Φj

∂σ

∂Φk

∂σ
+
∂Φj

∂ω

∂Φk

∂ω

)]

where we’ve expressed the operators □ and ∂µ in terms of the the Lorentz variables,

and retained terms up to first order in ϵ. This is identical to the step we took at the

outset to obtain 3.1.14. Note that the first term in square brackets on the righthand

side of 3.2.4 is, by definition, zero.

The second term, however, does not vanish. It results from the mismatch be-

tween the Lorentz variables and the characteristics. The nonvanishing piece can be
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expressed in terms of the vector fields U and W as follows,

−2γ2ϵ

[
∂2Φi

∂σ2
+ Γij k

∂Φj

∂σ

∂Φk

∂σ
+
∂2Φi

∂ω2
+ Γij k

∂Φj

∂ω

∂Φk

∂ω

]
= −2γ2ϵ

[
(∇UU)

i + (∇WW )i
]

A bound on the magnitude of ψi can now be computed straightforwardly,

|ψi(t, x)| ≤
∫ t

−w/2γ
dt′
∫ x+t′

x−t′
dx′|Gi(t′, x′)| (3.2.5)

≤
∫ t

−w/2γ
dt′
∫ x+t′

x−t′
dx′
∣∣∣∣∂V∂ϕi

∣∣∣∣+ 2γ2ϵ
∣∣∣(∇UU)

i
∣∣∣+ 2γ2ϵ

∣∣∣(∇WW )i
∣∣∣ (3.2.6)

where the terms involving the vector fields are evaluated at (γ(x′ − ut′), γ(x′ + ut′)).

Now, we’re only interested in the deviation at points x in the collision region (outside

of here the field persists very nearly equal to the bubble vacuum field values), and

times t ∈ [−w/2γu,+w/2γu]. For this time period the collision region is always

contained within [−w/γ,+w/γ]. This means the x′ interval we need to integrate over

in our expression for ψi(t, x) is always contained within [−3w/2γ,+3w/2γ]. So we

can write,

|ψi(t, x)| ≤
∫ t

−w/2γ
dt′
∫ 3w/2γ

−3w/2γ

dx′|Gi(t′, x′)| (3.2.7)

≤

{
sup
ϕ∈N

(∣∣∣∣∂V∂ϕi
∣∣∣∣)+ 2γ2ϵ sup

(σ,ω)∈R2

(∣∣∣(∇UU(σ, ω))
i
∣∣∣+ ∣∣∣(∇WW (σ, ω))i

∣∣∣)}∫ t

−w/2γu
dt′
∫ 3w/2γ

−3w/2γ

dx′

= (ki1 + 2γ2ϵki2)
w(t/T + 1/2)

γu

3w

γ

=

(
ki1
γ2

+ 2ϵki2

)
3w2 =

(
2ϵki1 + 2ϵki2

)
3w2

So,

|ψi(t, x)| ≤ kiϵ (3.2.8)
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where the positive constants,

ki ≡ 6w2

{
sup
ϕ∈N

(∣∣∣∣∂V∂ϕi
∣∣∣∣)+ 2γ2ϵ sup

(σ,ω)∈R2

(∣∣∣(∇UU(σ, ω))
i
∣∣∣+ ∣∣∣(∇WW (σ, ω))i

∣∣∣)}

are finite due to the smoothness of the potential and the field space manifold.

Since the difference in the coordinates of the true field configuration and free pas-

sage configuration can be made arbitrarily small, we conclude that the post collision

field (for any two solitons in any curved multi-scalar field theory) successfully real-

izes the late-time free passage field configuration, provided the impact velocity was

sufficiently relativistic. The threshold above which the impact velocity ought to be

is dependent on both the model and the choice of the two colliding solitons. This

threshold can be estimated by requiring that the distance in field space between the

free passage field (say for the center of the collision region) at time t, and the free

passage plus deviation location be much much smaller than the length of the path the

observer at the center of the collision region has through field space from the parent

vacuum until time t. Since the walls of bubbles nucleated via Coleman-De Luccia

tunneling accelerate as they move outwards, we expect our parallel transport proce-

dure to be a useful means of predicting the field configuration following the collision

of two bubbles, provided they were nucleated sufficiently far apart (and they’re radii

upon nucleation is sufficiently small compared to the separation distance such that

high enough impact velocity is reached upon collision).

3.3 Numerical Simulations

We simulated soliton collisions at a variety of impact velocities in three different mod-

els with actions of the form 3.1.1. Each model featured a different two dimensional

curved field space. We reiterate that the field space is curved in the sense that the

matrix of {ϕi} dependent functions, gij, in the noncanonical kinetic term in the La-

83



Table 3.1: Metric Components and Vacuum Locations

Geometry gij Parent and Bubble Vacua Free
Passage

A B C D

Sphere gθθ = 1 ( π
12
, 2π
15
) (5π

12
, 2π
11
) (3π

12
, 6π
13
) (1.77,1.08)

gϕϕ = sin2(θ)

Teardrop gθθ = cos2(θ) (7π
60
, π
13
) (118π

327
, −π

13
) (73π

327
, 35π
109

) (1.52,0.33)
+
(

sin(θ)
2

+ (θ − π)
)2

gϕϕ = sin2(θ)

Torus guu = (1+.7 cos(v))2 (145π
654

, −20π
109

) (−145π
654

, 20π
109

) (−35π
654

, 235π
654

) (1.36,0.09)
gvv = .72

grangian is the coordinate representation of the metric on a curved manifold (clearly

the field components {ϕi} are identified as coordinates on the manifold). The par-

ticular manifolds we considered were the sphere, the ring torus, and the “teardrop”–

our own creation named for obvious reasons.

For both the sphere and teardrop we used the polar angle and azimuthal angle

as our two coordinates. For the torus we used the angles about the major axis, and

the minor axis. To minimize the possibility for confusion we adopt standard naming

conventions used for these coordinate systems, and refer to the field components

(ϕ1, ϕ2) as (θ, ϕ) for the sphere and teardrop, and as (u, v) for the torus. For the

explicit form of the metric components, as well as vacuum locations refer to table,

3.1.

We numerically approximated the solutions to the initial value problem 3.1.7

associated with the collision of two non-identical solitons in the given theory, as well

as solutions to the mutual parallel transport of two tangent vector fields problem,

3.1.26-3.1.28, using Mathematica’s finite difference partial differential equation solver,

NDSolve. The potential was engineered to have three degenerate vacua with generic
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looking wells and barriers by using the product of two trigonometric functions, and

then isolating only three minima by multiplying by a superposition of hyperbolic

tangents which served as smooth approximations to characteristic functions and hat

functions. For the explicit form of the three potentials see table 3.2.

We wanted the potential to be flat outside the neighborhood immediately sur-

rounding the three vacua so as to minimize the influence of the potential on field

dynamics, both throughout the collision and after, so that the free passage behavior

could feasibly be extracted. Though we absolutely assert that parallel transport is

generic (there always exists a speed high enough such that it is fully realized), we

wanted to design a nontrivial scenario where the boost needed was small enough, and

so the grid size large enough, that we’d have a hope of resolving this in Mathematica,

and on a desktop computer. There is a final step to designing a potential that en-

ables us to extract the free passage dynamics– the placement of a fourth degenerate

Figure 3.3: Plot of the potential for the teardrop model. Note the cylindrical well
carved out of the plateau at D. This addition does not change the solitons f , and h.
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vacuum at the free passage location D which of course is not known a priori. Had

the potential been left as a plateau outside the three vacua the post collision field

dynamics would be tainted by the pressure gradient across outgoing walls resulting

from the energy density in the collision region differing from that in the surrounding

region (which is still simply that of the degenerate bubble vacua). In order to pro-

long the amount of time after which free passage would remain a good approximation,

without unduly biasing the field toward the free passage field location we carved a

cylindrical well out of the plateau at the free passage field location, for each model.

Clearly then, the parallel transport solution for each geometry was obtained before

any collisions were simulated, so that each of their potentials could be modified in

the manner described.

Note that the parallel transport solution Φ is by definition independent of the

potential provided that the soliton curves between the parent and two bubble vacua

remain unchanged (since these are the boundary conditions in the parallel transport

problem). Clearly the potential in the neighborhood of the three original vacua is

unaffected by the addition of the narrow cylindrical well placed out on the plateau

away from the original three vacua. A plot of the potential in the teardrop model is

included as an example in figure 3.3, and the explicit form of the potentials used for

all three geometries can be found in table 3.2.

Lastly it is necessary to discuss how the initial conditions and boundary conditions

were formulated. Both are defined in terms of the components of the two solitons

we are colliding. Solitons are, by definition, static solutions to the equations of mo-

tion 3.1.2 that approach two distinct (obviously degenerate) minima of the potential

asymptotically. In a multi-scalar field theory solitons are unique to the vacua they

interpolate between, and furthermore are the minimum energy field configurations

that satisfy the given pair of boundary conditions. Since the coupled ordinary dif-

ferential equations that define the solitons are nonlinear, analytic solutions generally
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Table 3.2: Below is the explicit form of the potentials we used in our simulations of
solitons collisions for each of the field space geometries we considered.

Model Potential

Sphere

V (θ, ϕ) = V0 sin(6θ) sin
(
(3θ − 4π)ϕ

π

)
χsphere(θ, ϕ)

− V0
2

tanh(40((θ −Dθ)
2+(ϕ−Dϕ−.3)2))+ 2.5)

+
V0
2

tanh(40((θ −Dθ)
2 + (ϕ−Dϕ − .3)2)− 2.5)

Teardrop
V (θ, ϕ) = V0 sin(4ϕ− 1.2θ + .3π) sin(6θ − 1.5π + 1.8ϕ) χtear(θ, ϕ)

− V0
2

[
tanh(2.7− 60(((θ −Dθ)

2 + (ϕ−Dϕ)
2))) + 1

]

Torus
V (u, v) = V0 sin(2v − .6u) sin(3u+ .9v) χtorus(u, v)

− V0
2

[
tanh(3− 30((u−Du)

2 + (v −Dv)
2))) + 1

]

χsphere(θ, ϕ) = (1− tanh((θ − .25ϕ− 5π/12− .2)30)))

(1− tanh((ϕ+ 1.5θ − 3.2)30))/4

χtear(θ, ϕ) =
1

26
(1 + tanh[40(−0.05 + (−1.56 + u)2 + (0.06 + v)2)])

∗ (1 + tanh[20(−0.5 + (−2.42 + 2u)2 + (−2.3 + 2v)2)])

∗ (1 + tanh[20(−0.75 + (−0.07 + 2u)2 + (−2 + 2v)2)])

∗ (1 + tanh[10(−3.2 + (−3.87 + 2u)2 + 1/2(−1.9 + 2v)2)])

∗ (1 + tanh[20(−1 + (−2.27 + 2u)2 + (−1 + 2v)2)])

∗ (1 + tanh[10(2.1− (−1.77 + 2u)2 − 1/2(−0.8 + 2v)2)])

χtorus(u, v) =
1

26
(tanh(10(2.1− (v − .8)2/2− (u− .2)2)) + 1)

∗ (1− tanh(30((.15v + u)− .9)))

∗ (tanh[10((v − 1.9)2/2 + (u− 2.3)2 − 3.2)] + 1)

∗ (tanh[20((v − 1)2 + (u− .7)2 − 1.2)] + 1)

∗ (tanh(20((v − 2.3)2 + (u− .85)2 − .5)) + 1)

∗ (tanh[20((v − 2)2 + (u+ 1.5)2 − .75)] + 1)
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cannot be found. However, if an initial profile that satisfies the boundary conditions

is evolved in time by the equations of motion plus a damping term, the profile ulti-

mately settles down to the soliton, provided the initial guess was sufficiently close to

the true soliton and the damping coefficient was not too large. We performed this

relaxation procedure numerically, once again with NDSolve in Mathematica.3

Note that analytic expressions for the four soliton components, f i, and hi, were

needed in order for simulations of the collision to be feasible. At such small grid

spacing time evolving initial conditions constructed out of the interpolating functions

relaxation yielded was not possible. So the final step was to engineer analytic expres-

sions that approximated each of the soliton components from relaxation (four total,

f 1, f 2, h1, h2). All were modifications of (scaled and shifted) hyperbolic tangents,

typically with the addition of small gaussians and nonlinear terms in the argument

of the hyperbolic tangent.

The free passage field configuration was indeed fully realized in all three models

at sufficiently large impact velocity. Snapshots of the spatial profile of each field

components during such collisions can be found in figures 3.4. Note that each field

3It is important to mention how the initial guesses for the soliton components in relaxation
were chosen. Since the (true) soliton is defined by both the geometry and the potential, we sought
to allow both to play a role in our guesses. For a given pair of vacua we first parameterized the
geodesic connecting them by writing one field component in terms of the other (for instance, in the
case of the sphere the geodesics were great circles and the polar angle was parameterized in terms
of the azimuthal). The potential was then evaluated along the geodesic, and the resulting function
was approximated as a double well potential, which has a single free parameter after the distance
between the minima is fixed. This parameter was tuned such that the approximate potential not
only qualitatively resembled the true one along the geodesic, but also so that their integrals of the
inverse square root of the difference between the vacuum value, −V0, and the potential, between the
minima were nearly identical for the. For example, for the sphere initial guess we’d compute∫ ϕB

ϕA

dϕ/
√

Vsphere(cgeo,AB(ϕ), ϕ) + V0 (3.3.1)

numerically and tune the double well potential’s curvature parameter until its integral matched
this. The double well approximation then provides us with an initial guess, a (scaled and shifted)
hyperbolic tangent, for one of the two soliton components– that which the geodesic is parameterized
in terms of. To obtain a guess for the remaining component the expression for the geodesic was
simply evaluated at the guess function that was just obtained for the former component– resulting
in a spatial profile.
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Figure 3.4: Here we show snapshots of each field component of the configuration
during a collision simulated in the teardrop model at impact velocity u = .995 (the θ
component is on the top row, and the ϕ on the bottom row). The prediction of each
component’s value inside the collision region obtained by parallel transport, Di are
indicated by the dashed teal and purple horizontal lines for θ, and ϕ, respectively.
Note both the homogeneity of the field in the collision region, and its extraordinarily
strong agreement with the free passage prediction.

component’s collision region is homogenous, with the precise value predicted by the

parallel transport solution, indicated by the contrasting dashed line. Furthermore,

the shapes of the outgoing soliton profiles matched the prediction as well, as shown

in figures 3.5, 3.6, and 3.7.
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Figure 3.5: A comparison the results of a collision at impact velocity u = .995 in
the sphere model with the prediction from parallel transport. On the left we plot
the field configuration at various times throughout the collision parametrically in the
{ϕi} coordinate plane (by treating the spatial variable as the parameter) with solid
purple curves. We identify the field at the origin, x = 0, throughout the collision
with the dot-dashed dark purple line. This is the path taken through field space
over the course of the collision by an observer at the center of the collision’s rest
frame. The solution to the parallel transport problem is shown with dashed lines.
Those in pink are lines of constant η, those in orange are lines of constant ξ, i.e. the
integral curves of the vector fields U and W . The curves that form the boundary
of the submanifold are drawn brighter and are overlaid so that they can easily be
compared to the results of the collision. On the right these results are plotted on the
field space manifold embedded in three space (the {ϕi} coordinate lines are shown
in light green). The field configuration in the collision problem is again shown in
solid purple for a variety of times. The post collision prediction made by parallel
transport (that is, the integral curves obtained by completing the parallel transport
procedure which yields the remaining two curves that form the boundary of N) are
shown in dashed orange. The path taken through field space by an observer at the
origin is shown in dashed pink. The fact that the boundary of N lines up nearly
perfectly with the parametric plots of the initial and final field configuration in the
collision problem indicates that there is extraordinarily good agreement between the
prediction, computed via parallel transport, and the actual outcome of the collision.
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Figure 3.6: Comparison of the results of a collision simulation at impact velocity
u = .995 in the teardrop model with the prediction from parallel transport. The
same coloring scheme is the same as that in figure 3.5.

Figure 3.7: Comparison of the results of a collision simulation at impact velocity
u = .985 in the torus model with the prediction from parallel transport. The same
coloring scheme is the same as that in figure 3.5.
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Chapter 4

Vacua In The Mirror Quintic Moduli Space

An accessible setting conducive to making progress on these issues is offered by com-

pactifying type IIb supergravity on the mirror quintic — a particular Calabi-Yau

notable for its single complex structure modulus and the well-understood moduli

space associated with it. Of course, this feature is only beneficial from the standpoint

of tractability if the manifold’s 101 Kähler moduli in some sense separate from the

complex structure at level of effective action, and thus enable the latter’s stability to

be analyzed independently from the former.

The large volume limit accomplishes precisely this. Without going into too much

extraneous detail, the key is that the classical expressions for the Gukov-Vafa-Witten

superpotential and Kähler potential for the Kähler moduli (which otherwise would

receive both α′ and gs corrections) are valid in this regime. Backreaction of fluxes on

the compact geometry is also suppressed. Consequently, the holomorphic superpo-

tential, is independent of the Kähler moduli. Since it is defined as the integral of the

wedge product of the total 3-form flux with the Calabi-Yau’s holomorphic 3-form, the

superpotential is given by a linear combination of the Calabi-Yau’s period integrals.

These are the integrals of the holomorphic 3-form over a basis of nontrivial 3-cycles,

of which there are 2(h(2,1) + 1) = 4 in the case of the mirror quintic. Their only

dependence is on the complex structure.

An essential feature of one parameter models like the mirror quintic is that the

periods are known explicitly in terms of Meijer-G functions. Hence, for effective

theories expressed solely in terms of the periods, exact calculations may be carried
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out without any reliance on toy models or stand-ins for the Calabi-Yau geometry.

Using an integral and symplectic basis of periods we write the pure flux superpo-

tential, W , as

W = W (z, τ) =
4∑
i=1

(Fi − τHi) · Πi(z). (4.0.1)

where z is the complex structure, τ is the axio-dilaton, and the integer valued param-

eters Fi and Hi indicate the amount of flux Ramond–Ramond and Neveu-Schwartz–

Neveu-Schwartz flux wrapping each of the basis 3-cycles. In [49] we studied the

effective field theories arising from the expansion of the scalar potential about near

conifold no scale vacua generated by randomly scanning through a large number of

3-form flux configurations; that is by randomly selecting the above eight integers.

The characteristics of the ensemble of field theories was analyzed statistically.

Our effective action involved two complex degrees of freedom, z and τ . The ability

to set aside the Kähler moduli is a simple consequence of the superpotential’s inde-

pendence from them and the Calabi-Yau special geometry’s formula for the Kähler

moduli’s Kähler potential.

To see this note first that compactification on a generic manifold would yield an

effective potential describing the complex scalars {φa} (the axio-dilaton and all mod-

uli parameterizing the internal geometry) with N = 1 supersymmetry1. In particular,

V (φa) = eK(Kab̄DaWD̄b̄W̄ − 3|W |2) (4.0.2)

where Da denotes the Kähler covariant derivative Da = ∂a+Ka = ∂a+(∂aK). In the

special case of a Calabi-Yau there is an exact cancellation between the Kähler moduli’s

contribution to the term ∼ |DW |2 and the −3|W |2 term because the contraction

KaKa with the index running only over Kähler moduli is precisely equal to +3.

The action retrieved upon compactifying the 10-dimensional supergravity theory

1Orientifold planes must be included in the compactification to satisfy a tadpole condition for
the 3-form fluxes. They break the N = 2 to N = 1 supersymmetry
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then takes the form,

Seff =
M2

pl

2

∫
d4x

(
KIJ̄∂µφ

I∂µφ̄J −
M2

pl

4πV2
0

eK KIJ̄ DIW D̄J̄W

)
(4.0.3)

where capital letter indices take values 0 or 1 corresponding to τ and z, respectively,

K is the sum of the Kähler potentials associated with each, KIJ̄ ≡ ∂I∂J̄K is the

corresponding Kähler metric on the z-τ field space, and V0 is the dimensionless volume

of the Calabi-Yau (the volume in natural units, namely the string length to the sixth

power).

Although V0 has Kähler dependence, specifically via the combination of Kähler

moduli known as the “volume modulus”, this only translates to Kähler dependence

in the scalar potential at (z, τ) locations where its value is nontrivial. At zeros the

potential is flat in the direction of the volume modulus. Thus the stability of these

“no scale” minima may be studied in terms of z and τ alone. Such vacuum locations

(z, τ) are global minima of the potential. They satisfy the SUSY conditions,

DzW = DτW = 0. (4.0.4)

To search for such vacua numerically a “guess” location is required. We chose to

target our search near a known accumulation point for vacua — the conifold point.

This location in moduli space corresponds to a mirror quintic with one of its 3-cycles

shrunken to zero size. It’s intersecting partner in a symplectic and integral basis

experiences a monodromy transformation, picking up one copy of the shrinking cycle

for each revolution around the conifold. This manifests as a logarithm in the period

associated with the intersecting partner, a branch point singularity in the period’s

first derivative, and ultimately divergences in the curvature and Kähler metric Kzz̄.

Series expansions of the periods about the confiold enable leading order solutions

to 4.0.4 in terms of the set of eight flux integers that specify W to be obtained;
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i.e. the calculation of a starting/guess vacuum location for each flux configuration.

Our computation proceeded in three major steps — 1. assemble a random sample

of flux vacua by drawing the integers {Fi, Hi} from a flat measure and employing

a numerical search algorithm, 2. evaluate the Taylor coefficients to fourth order of

the relevant scalar potential expanded about each vacuum, 3. report the coefficients

in the appropriate field coordinates so as to endow the coefficients with physical

significance. Though straightforward in principle this computation was riddled with

technical obstructions, owing largely to the multiple-valued period associated with

the collapsing cycle’s the intersecting partner. In an effort to avoid paralyzing the

reader with boredom I direct them to [49] for a detailed discussion of these hurdles

and the efficient numerical schemes we designed to resolve them.

We found a pronounced hierarchy in the masses and coupling coefficients which

was entirely attributable to the proximity of vacua to the conifold point. The com-

plex symmetric matrix of second covariant derivatives, ZIJ = DIDJW , is useful in

expressing the masses. When evaluated at vacua satisfying the SUSY condition it’s

entries take the form,

ZIJ = FIJKZ̄
0K . (4.0.5)

in canonically normalized coordinates, where FIJK are the Yukawa couplings defined

in terms of the Calabi-Yau prepotential.

For us there is a single Yukawa coupling, F111, and it diverges at the conifold

point. The SUSY conditions imply Z00 vanishes resulting in

Z =

 0 Z01

Z10 F111Z̄
01

 = aeiθ

 0 1

1 beiδ

 , (4.0.6)

with a and b real, and b ≫ 1. The positive definite matrix ZZ̄ in turn has one large

and one small eigenvalue, Λ2
+ and Λ2

− .
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The masses in no scale supergravity theories consist of pairs mi± given in terms

of the eigenvalues λ2i of the ZZ̄ matrix as follows,

m2
i± = eK(λi ± |W |)2. (4.0.7)

In our case the divergence in |F111| at the conifold resulted in a heavy and light mass

pair because the superpotential vev was subdominant to Λ+, but typically greater

than Λ−. The vev of the superpotential was not correlated with either of the pa-

rameters that control the magnitude of Λ±, namely the vacuum-to-conifold distance

and the magnitude of the off-diagonal entry in Z. We developed a Random Matrix

Model that replicated the mass data accurately, and confirmed our interpretation of

the superpotential vev as a random element that slightly clouds the rigid structure

imposed by the Yukawa coupling. The naive extension of these hierarchies was found

at cubic and quartic order as well, indicating that there are not countervailing effects

that subdue the Yukawa coupling’s dominance at higher order.

4.1 Background

Review IIb Flux Compactification

The low energy dynamics of the type IIb string is governed by the type IIb super-

gravity action, which provides our starting point [14],

SIIb =
2π

ℓ8s

[∫
d10x

√
−g10R10 − 1

2

∫
dτ ∧ ∗dτ̄
(Im(τ))2

+
G(3) ∧ ∗Ḡ(3)

Im(τ)
+
F̃ 2
(5)

2
+ C(4) ∧H(3) ∧ F(3)

]
+Sloc,

(4.1.1)
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where R10 is the 10d Ricci Scalar in the Einstein frame, G(3) is the combined 3-form

flux,

G(3) = F(3) − τH(3), (4.1.2)

τ is the axio-dilaton related to the dilaton, ϕ, by

τ = C(0) + ie−ϕ (4.1.3)

and F(p) and H(3) are obtained from potentials C(p−1) and B(2),

F(p) = dC(p−1) (4.1.4)

H(3) = dB(2). (4.1.5)

This theory can be compactified on a Calabi-Yau 3-fold to yield an effective action

for the moduli fields, which describe how the compact manifold Y varies from one

spacetime location to another in the four large dimensions. Such parameters are

complex valued and change continuously across the given family of Calabi-Yau, so

they enter the 4-dimensional theory as complex scalar fields. It is instructive to sketch

the derivation of the effective action, and give a very brief review of the geometry of

Calabi-Yau moduli spaces. In the process we introduce notation and summarize our

strategy for generating an ensemble of random effective field theories. Experienced

readers may wish to skip this section.

Calabi-Yau moduli come in two different types: those associated with deforma-

tions of the manifold’s complex structure, and those associated with deformations of

its Kähler form, J . The former are in one-to-one correspondence with elements of

the (2, 1)-de Rham cohomology group, H(2,1)(Y ), and the latter with H(1,1)(Y ). We

denote the dimension of these vector spaces by their Hodge numbers, h2,1 and h1,1,
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respectively.

Complexifying the Kähler form, we deal with a moduli space of complex dimension

h(2,1) + h(1,1), itself a Kähler manifold that factors locally into the direct product of

two separate Kähler manifolds: one spanned by the complex structure moduli and

the other spanned by the complexified Kähler moduli, with Kähler potential of the

form,

Kcs(z1, . . . , zh
2,1

) +Kkä(v1, . . . , vh
1,1

). (4.1.6)

Lowercase indices (a, b, c, ...) will refer to Calabi-Yau moduli. They are ordered from

1 to h2,1 + h1,1 running through all the complex structures first, followed by those of

Kähler type. However, their range in certain expressions may be restricted to moduli

of one of the two types. Most often this will be obvious from the context, but where

there is the possibility for ambiguity we will state which if any moduli are excluded.

The Kähler potential for the complex structure moduli is,

Kcs(z1, ..., zh
2,1

) = − log
(
−i
∫
Y

Ω ∧ Ω̄

)
(4.1.7)

where Ω is the holomorphic 3-form of the Calabi-Yau manifold. It can be shown

that differentiating Ω with respect to any of the complex structure moduli yields a

component proportional to Ω, and a remaining closed (2, 1)-form. That is,

∂Ω

∂za
= kaΩ + χa (4.1.8)

with χa ∈ H(2,1)(Y ). In particular the proportionality constant ka turns out to be,

ka = −Ka = −∂aK. (4.1.9)

This allows us to construct a basis for H(2,1) by acting on the holomorphic 3-form
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with a Kähler covariant derivative, Da, whose action on Ω is defined by,

DaΩ ≡ χa = ∂aΩ +Kcs
a Ω. (4.1.10)

Furthermore, since ∫
Y

Ω ∧ ∂Ω

∂za
= 0, (4.1.11)

such (2, 1)-forms are orthogonal to Ω.

We can now compute the term proportional to G(3) ∧ ∗Ḡ(3) in the supergravity

action upon compactification. This process amounts to taking the 10-dimensional

spacetime to be the direct product of a 4-dimensional (noncompact) Lorentzian man-

ifold, M4, and a compact Riemannian one, Y , which for us is a Calabi-Yau 3-fold.

We write,

M10 =M4 × Y (z1, . . . , zh
2,1

, v1, . . . , vh
1,1

), (4.1.12)

and perform the integration over Y in the action. Since Y is parameterized by the

aforementioned moduli, and since the Calabi-Yau are allowed to vary across locations

in M4, performing the integral over Y will yield an effective field theory involving

moduli fields, φa(xµ).

Requiring Poincaré invariance in M4 implies only G(3)’s components with all in-

dices in the compact dimensions may be nontrivial, and so

∫
Y

G(3) ∧ ∗Ḡ(3) =

∫
Y

G(3) · Ḡ(3). (4.1.13)

This is essentially a norm of a (for now general) closed 3-form on Y . We may expand

G(3) and Ḡ(3) in an orthogonal basis for

H(3)(Y ) = H(3,0)(Y )⊕H(2,1)(Y )⊕H(1,2)(Y )⊕H(0,3)(Y ), (4.1.14)
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namely,

Ω , {χa}h
2,1

a=1
, {χ̄a}h

2,1

a=1
and Ω̄ (4.1.15)

allowing us to write,

∫
Y

G(3) · Ḡ(3) =
i∫

Y
Ω ∧ Ω̄

(∫
Y

G(3) ∧ Ω̄

∫
Y

Ḡ(3) ∧ Ω +Kab̄

∫
Y

G(3) ∧ χ̄a
∫
Y

Ḡ(3) ∧ χb
)
.

(4.1.16)

Each of these can be expressed in terms of covariant derivatives of the Gukov-

Vafa-Witten superpotential, W , defined in terms of the (3)-form flux as,

W (z, τ) =

∫
Y

Ω ∧G(3). (4.1.17)

The second term on the right hand side of eq. 4.1.16 involves Kähler covariant deriva-

tives of the superpotential with respect to the complex structure moduli (because it

is built out of (2, 1)-forms). It is proportional to,

Kab̄DaWD̄b̄W̄ . (4.1.18)

As is standard, we can define a “Kähler potential” for the axio-dilaton such that

the first term in on the right hand side of eq. 4.1.16 has the same form as eq. 4.1.18,

i.e. so it is ∼ |DτW |2. Specifically, we choose

Kax = − log(−i(τ − τ̄)), (4.1.19)

and

Kaxτ τ̄ = (Kax
τ τ̄ )

−1 = (∂τ∂τ̄Kax)−1. (4.1.20)
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One makes this choice because

1

(τ̄ − τ)

∫
G(3) ∧ Ω̄ =

(
∂τ −

i

τ − τ̄

)
W = (∂τ + ∂τKax)W ≡ DτW, (4.1.21)

and so first term in 4.1.16 is proportional to

|DτW |2 = Kaxτ τ̄DτWD̄τ̄W̄ , (4.1.22)

which parallels the form arising for the other complex structure moduli, reflecting the

relationship of type IIb string theory to F-theory in which the axio-dilaton explicitly

becomes another complex structure modulus.

Notationally, to include the axio-dilaton as as additional modulus we use new

indices — capital letters — that begin from zero, the index value reserved for the

axio-dilaton. We denote the full Kähler potential by K. It is the sum of all three

pieces, Kcs, Kax and Kkä. The result, then, of dimensionally reducing the 3-form flux

term is

2π

ℓ8s

i

2Im(τ)
∫
Y
Ω ∧ Ω̄

KIJ̄DIWD̄J̄W̄ =
2π

ℓ8s
eK

cs+KaxKIJ̄DIWD̄J̄W̄ (4.1.23)

where the Kähler moduli are excluded.

The kinetic terms for all the Calabi-Yau moduli come from the Einstein Hilbert

term in the 10-dimensional action. They are noncanonical. We identify where they

come from as well compute the total relative factor between the kinetic and potential

terms which will involve one remaining expression given in terms of the volume of

the compactification manifold. This is meant as a qualitative description. First

we decompose the 10-dimensional curvature scalar into the trace of the noncompact

component of the Ricci tensor, that of the compact component (which is zero because

Calabi-Yaus are Ricci flat), and the remaining terms which will involve products of
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the metric and its derivatives with indices in both the compact manifold and large

dimensions, which we label Rmix,

R10 = R4 +R6 +Rmix. (4.1.24)

Since R4 is a constant over the Calabi-Yau, integration of it over Y yields a

factor of the volume of the Calabi-Yau. The factor then in front of the resulting

4-dimensional Einstein-Hilbert term is

2π

ℓ8s
Vol(Y ) =

2π

ℓ2s
V0 =

M2
pl

2
4πV0 (4.1.25)

where we’ve defined the dimensionless constant V0, the volume of the Calabi-Yau

manifold in string units. Since the string length is the fundamental length scale at

which one will see string modes, the volume of the Calabi-Yau must be large compared

to ℓ6s for the direct compactification procedure we are employing to be valid.

In order to have a canonical Einstein-Hilbert term in the effective action one must

rescale the 4-dimensional metric so that the curvature rescales precisely with a factor

of 1
4πV0

. The new curvature term also comes with kinetic terms for the volume modulus

because the volume, and thus the factor by which the 4-dimensional spacetime metric

is rescaled, may be expressed in terms of the volume modulus2, ρ.

Incidentally, the term in eq. 4.1.1 which clearly yields kinetic terms for the axio-

dilaton, namely,

∼
∫
dτ ∧ ∗dτ̄
(Im(τ))2

, (4.1.26)

arises in precisely the same manner; specifically from transforming from the string

metric to the Einstein metric by rescaling the string metric by eϕ/2. The resulting

2The imaginary part of ρ cubed is proportional to the volume squared.
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kinetic terms for ρ and τ are noncanonical, specifically given by,

M2
pl

2

∫
d4x

3

(ρ− ρ̄)2
∂µρ∂

µρ̄+Kax
τ τ̄∂µτ∂

µτ̄ (4.1.27)

ρ is not itself one of the Calabi-Yau moduli denoted by our indices a, b, ... Rather it is a

specific function of all the Kähler moduli. We shall shortly see that their noncanonical

kinetic terms (involving the contraction with their Kähler metric) reside in that for

ρ in eq. 4.1.27.

The kinetic terms for the complex structure moduli come from integration of

Rmix over Y , and so are also generally noncanonical involving contraction with their

respective Kähler metric as follows,

M2
pl

2

∫
d4xKab̄∂µφ

a∂µφ̄b (4.1.28)

We can thus write the effective action describing the moduli,

Seff =
M2

pl

2

∫
d4xKIJ̄∂µφ

I∂µφ̄J −
M2

pl

4π

eK
cs+Kax

V2
0

(
KIJ̄DIWD̄J̄W̄

)
. (4.1.29)

Any consistent flux compactification of type II string theories on Calabi-Yau mani-

folds requires the addition of negative tension localized objects. This is necessary in

order to satisfy F̃(5)’s equation of motion which, when integrated over the Calabi-Yau,

yields the following tadpole condition,

1

ℓ4s

∫
Y

F(3) ∧H(3) +Qloc
3 = 0. (4.1.30)

This is effectively a statement of the consistency of the configuration of field lines

wrapping the Calabi-Yau 3-cycles (i.e. field lines in the small dimensions curl and

close onto themselves, while those in large dimensions end on mathematically valid
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sources).

It can be shown that the term in eq. 4.1.30 involving the RR and NSNS fluxes is

positive definite. Of the allowed localized objects that preserve Poincaré invariance

in the four large dimensions and can act as sources for the fluxes, only the O3-

planes contribute a negative charge to the total Qloc
3 , thus they must be included

in the compactifation in order to cancel all the remaining positive definite terms in

eq. 4.1.30. Though the O3-planes are not dynamical, they do in general impact

the moduli space geometry. We assume a model in which such effects are negligible.

O3-planes also reduce the N = 2 supersymmetry we began with to N = 1.

Generic theories with N = 1 supersymmetry involve complex scalars described

by a potential of the form,

V = eK
(
Kab̄DaWD̄b̄W̄ − 3|W |2

)
, (4.1.31)

where the superpotential, W , is a holomorphic function of the complex scalars {φa}.

Notice that the −3|W |2 term is absent in our effective action. This ‘no-scale’ form

arises from a simple but general cancellation inherent to Calabi-Yau compactifications

at the classical level. Namely, because the classical superpotential is independent of

the Kähler moduli, the Kähler dependence of the scalar potential arises solely from

the contribution to ∼ |DW |2 from

Kab̄ KaW Kb̄ W̄ = KaKa |W |2 (4.1.32)

with indices running over the Kähler moduli only. The classical expression for their
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Kähler potential (i.e. that which comes from the special geometry) is,

Kkä = −2 log
(∫

Y

J ∧ J ∧ J
)

(4.1.33)

= −2 log
(
1

ℓ6s

∫
Y

dV

)
= − log(V2

0 ) (4.1.34)

= −3 log (−i (ρ− ρ̄) ) . (4.1.35)

So,

KaKb̄Kab̄ = ∂a ρ ∂b̄ ρ̄KρKρ̄
1

∂ρ∂ρ̄K
∂ρ φ

a∂ρ̄ φ̄
b (4.1.36)

= KρKρ̄Kρρ̄ (4.1.37)

which gives,

KaKa =
−3

ρ− ρ̄

+3

ρ− ρ̄

−(ρ− ρ̄)2

3
= +3. (4.1.38)

This then yields the cancellation

Kab̄KaW Kb̄W̄ − 3|W |2 = 0. (4.1.39)

The resulting scalar potential is positive semi-definite, and so its zeros are its

global minima. Solutions of the SUSY condition, DIW = 0 for all I = 0, 1, ..., h2,1,

are the only zeros because the metric and eK are positive definite. In general, when

V ̸= 0 the scalar potential depends on the Kähler moduli through its overall di-

mensionful factor, M2
pl/4πV2

0 , but when V = 0, all such dependence drops out. The

flattening of the potential at a zero in the volume direction of parameter space is

shown schematically in figure 1.1.

We see too that the ρ-dependent factor in the kinetic term for the volume modulus

in eq. 4.1.27 is indeed its Kähler metric, Kρρ̄. We may identify this term as the net

kinetic term for the Kähler moduli in eq. 4.1.29, similarly by the chain rule. Finally,
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we recognize 1/V2
0 in eq. 4.1.29 as eKkä , and thus, the effective action we obtain upon

compactification as that of a theory with 1 + h2,1 + h1,1 complex scalars and N = 1

supersymmetry with an additional/non-generic feature. Namely, the cancellation

of the −3|W |2 in the potential by the contribution from a subset of the scalars,

specifically h1,1 of them. The feature is entirely due to the fact we’ve compactified

on a Calabi-Yau manifold and used only classical expressions.

These are, generally speaking, subject to both α′ and gs corrections. In type IIb,

the complex structure Kähler potential is protected from both types, but the Kähler

moduli are not shielded from either. However, as is well known, such corrections are

suppressed in the large volume limit,3 as are the instanton corrections the superpo-

tential receives. This setting also ensures backreaction of the fluxes on the geometry

of the manifold is subdominant. We will work in this regime and so now use the

formulae we’ve reviewed to set up explicit calculations on the mirror quintic.

Period Integrals

To search for local minima of the effective potential and compute its Taylor coefficients

in the expansion about these minima one must express the quantities in eq. 4.1.29

as explicit functions of the complex structure(s) and axio-dilaton. To accomplish

this we need only express W and Kcs in this fashion, as all terms in eq. 4.1.29

are obtained from them. Generally, the integrals over the compactification manifold

need not be computed directly. Rather they can be expressed in terms of a basis of

systematically calculable functions, the period integrals of the Calabi-Yau manifold,

which are solutions to differential equations (specific to the compactification manifold)

known as the Picard-Fuchs equations.

By the Poincaré dulaity H(3)(Y ) is isomorphic to H(3)(Y ), the space of nontrivial

3This limit is one in which not only the 6-volume but all subvolumes are large compared to the
natural sizes (involving the dimensionful constants).
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3-cycles. Thus, for any two closed 3-forms α(3) and β(3) there exist two 3-cycles A

and B such that, ∫
Y

α(3) ∧ β(3) =
∫
A

β(3) =

∫
B

α(3). (4.1.40)

If {Ci} are a basis of 3-cycles, the right hand sides of eq. 4.1.40 are a linear combi-

nation of the integrals of the relevant 3-form over the basis cycles.

∫
A

β(3) =
h3∑
i=1

Ai
∫
Ci

β(3) (4.1.41)

∫
B

α(3) =
h3∑
i=1

Bi

∫
Ci

α(3) (4.1.42)

where the Ai and Bi are real numbers (the components of A and B in the Ci basis).

Thus, W can be expressed as a linear combination of the integrals of the holomorphic

3-form over the basis cycles for H(3)(Y ). These are known as the period integrals, or

period functions. They are functions of the complex structure moduli only.

We note the existence of an integral and symplectic basis. The first of these

properties means Ci is a geometrical cycle (that is, a submanifold, not merely a

formal object defined as the dual to a 3-form). The second means each basis cycle

intersects only one other basis cycle, and does so exactly one time. We denote the

period functions in this basis as follows,

Πi(z
1, ...zh

2,1

) =

∫
Ci

Ω (4.1.43)

where the index i ranges from zero to 2h2,1+1 for a total of h3 different periods. The

symplectic basis is the one most natural for us because the period functions have well

defined expansions about special points in the moduli space where vacua accumulate,

as we shall discuss at greater length shortly.

The intersection form allows us to express the effective action in terms of these
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natural period functions. Two 3-cycles intersect at points in a 6-dimensional manifold.

Since cycles are oriented such points will have multiplicity ±1. The intersection form,

in the context where the (3)-homology groups are the domain, takes in two 3-cycles

and sums the intersection multiplicities. In light of the Poincaré duality this is equally

viewed as a map from two copies of the (3)-cohomology groups. That is, we write

Qij = Q(Ci, Cj) = ⟨Ci ⌣ Cj[Y ]⟩ (4.1.44)

= Q̃ij = Q̃(αi, αj) =

∫
Y

αi ∧ αj. (4.1.45)

In an integral and symplectic basis Qij are the entries of a symplectic h3×h3-matrix.

The superpotential, W, can now be expressed as follows,

W =
4∑
i=0

GiΠi(z) (4.1.46)

= (F − τH) · Π(z) (4.1.47)

where F and H are row vectors whose four entries indicate the quantity of RR and

NSNS flux wrapping the basis cycles, and Π(z) is a column vector containing the h3

period functions. It can be shown that the 3-form fluxes wrapping the integral and

symplectic basis cycles are integrally quantized in units of 4π2α′,

1

2πα′

∫
Ci

F(3) ∈ 2πZ (4.1.48)

and similarly for H(3). Since the overall dimensionful factor has been pulled outside

the potential, this amounts to requiring the entries of the F and H vectors in eq.

4.1.47 be integers.

The Kähler potential for the complex structure modulus is expressed in terms of
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the period functions as follows,

Kcs(z, z̄) = − log(iΠ†(z̄)Q−1Π(z)) (4.1.49)

In evaluating these functions, one can avoid performing an integration over the com-

pactification manifold because the periods are solutions to particular differential equa-

tions, the Picard-Fuchs equations (associated with the given Calabi-Yau). Given the

above expressions for the superpotential and Kähler potential, one need only find the

solutions to these differential equations to write down an explicit effective action for

the moduli.

The complexity of the Picard-Fuchs equations quickly mounts as the number of

moduli increase. We consider the simplest case, where h2,1 = 1, and so there are

a total of four period functions. There is a complete list 14 such compactifications,

the most well known being the mirror quintic. For these 14 models the Picard-Fuchs

equation takes the following form,

[
δ4 − z(δ + α1)(δ + α2)(δ + α3)(δ + α4)

]
u(z) = 0 (4.1.50)

where δ ≡ z d
dz

, and the αj are rational numbers specific to the compactification (the

mirror quintic has αj = j/5).

A convenient basis for expressing solutions to this ODE, which we shall label
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{Ui(z)}3i=0, is as follows [50]

U0(z) = c G1,3
4,0(−z; {1− α1, 1− α2, 1− α3, 1− α4}, {0, 0, 0, 0}) (4.1.51)

U1(z) =
c

2πi
G2,2

4,0(z; {1− α1, 1− α2, 1− α3, 1− α4}, {0, 0, 0, 0}) (4.1.52)

U−
2 (z) =

c

(2πi)2
G3,1

4,0(−z; {1− α1, 1− α2, 1− α3, 1− α4}, {0, 0, 0, 0})

U3(z) =
c

(2πi)3
G4,0

4,0(z; {1− α1, 1− α2, 1− α3, 1− α4}, {0, 0, 0, 0}) (4.1.53)

U2(z) =

 U−
2 (z) Im(z) ≤ 0

U−
2 (z)− U1(z) Im(z) > 0

(4.1.54)

The Gm,n
p,q are Meijer-G functions defined in terms of contour integrals in the complex,

say, s-plane,

Gm,n
p,q (z; {a1, ...ap}, {b1, ..., bq}) =

1

2πi

∫
L

ds
Πm
j=1Γ(bj − s)Πn

j=1Γ(1− aj + s)

Πq
j=m+1Γ(1− bj + s)Πp

j=n+1Γ(aj − s)
zs

(4.1.55)

where c is a constant specific to the given Calabi-Yau (one of the 14 models),

c =
1

Γ(α1)Γ(α2)Γ(α3)Γ(α4)
. (4.1.56)

The particular linear combinations of the Ui(z) that yield the periods in the

integral symplectic basis, the Πi(z)’s, are fixed by the calculable monodromy trans-

formations of the homology cycles when transported about certain special points in

the moduli space. For the case of h2,1 = 1 there are three such special points: the

large complex structure point (which corresponds to z = 0 in our coordinates), the

conifold point (z = 1) and the Landau-Ginsburg point (z = ∞). These nontrivial

monodromy transformations of the 3-cycles in turn yield nontrivial transformations

for the corresponding period functions.

For instance, if we donate the shrinking sphere as the conifold is approached by
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C3, and the cycle it intersects by C0, then

Q03 = ⟨C0 ⌣ C3, [Y ]⟩ →⟨C0 + nC3 ⌣ C3, [Y ]⟩ (4.1.57)

= ⟨C0 ⌣ C3, [Y ]⟩+ n⟨C3 ⌣ C3, [Y ]⟩ (4.1.58)

= Q03 + n ∗ 0 = Q03. (4.1.59)

The integer n is specified by requiring mutual consistency between all the monodromy

transformations in the mirror quintic’s moduli space, and as is well-known, this re-

quires n = 1. The monodromy transformations imply that the linear combinations

of the aforementioned solutions to the Picard-Fuchs equation, {Ui}, that correspond

to the period integrals in a symplectic basis for the mirror quintic are given by,

Π0(z) = U0(z) (4.1.60)

Π1(z) = −U1(z) (4.1.61)

Π2(z) = 3U1(z)− 5U2(z) (4.1.62)

Π3(z) = 5U1(z) + 5U3(z) (4.1.63)

where Π3 is the (analytic) period that vanishes at the conifold point, it’s partner, Π0,

picks up a copy of Π3 for each revolution about the conifold point, and the remaining

periods are analytic and nonvanishing. For a detailed derivation including the general

form for any of the 14 one parameter models see, for instance, Appendix A of [50].

The transformations of the periods upon circling a given special point in the

moduli space fix their expansions in the neighborhood of the special point. In the

case of the conifold point the transformation,

Π0(z) → Π0(z) + Π3(z) (4.1.64)
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for each revolution z → (z − 1)e2πi + 1, implies

Π0(z) = Π3(z)
log(z − 1)

2πi
+ f(z) (4.1.65)

where f(z) is analytic and nonvanishing at the conifold point. The expansions of the

period functions are discussed in detail in the following section. For now we remark

that the branch cut for Π0 introduces a branch point singularity in first derivative of

Π0 which in turn results in a singularity in the Kähler metric at the conifold point.

We also adopt the standard convention (see, e.g., [50] for details) where the entries

of the period vector, Π(z), are given in descending order,

Π(z) =



Π3(z)

Π2(z)

Π1(z)

Π0(z)


(4.1.66)

while those in the flux vectors are labeled in ascending order,

F =

(
F0, F1, F2, F3

)
(4.1.67)

H =

(
H0, H1, H2, H3

)
. (4.1.68)

With this review of notation and conventions, all functions in the effective action

have now been specified. The only free parameters are the fluxes, which for us consist

of eight integers (four RR and four NSNS fluxes). So, by randomly selecting a set

of eight integers, constructing the corresponding scalar potential, searching for local

minima (in the z − τ field space), and evaluating the potential’s Taylor coefficients

about the local minima so identified, one obtains the masses and couplings of a sample

of effective field theories in the landscape of the mirror quintic. Since this model’s only
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dynamical fields are the axio-dilaton and the mirror quintic’s sole complex structure

modulus there are a total of four real degrees of freedom.

For the masses and couplings to have physical significance one must trade the

{z, τ, z̄, τ̄} basis for one that simultaneously diagonalizes the Hessian of the scalar

potential, and yields kinetic terms that are canonical (i.e. the Kähler metric evaluated

at the vacuum is the identity). This transformation and several other technicalities

are discussed in detail in section 4.2, but here we finish outlining the strategy in broad

strokes.

To minimize a function numerically we must begin by providing a guess for the

vacuum location. Vacua are known to accumulate near the aforementioned special

points in the moduli space, especially near the conifold point. We focus our search

there. Moreover, we look specifically for zeros of the scalar potential, which are so-

lutions to the SUSY condition DzW = DτW = 0. This restriction both dramatically

reduces the computational expense of searching for vacua by decreasing the (real)

dimension of the space over which the function needs to be minimized from four to

two, as well as enables us to compute a guess location given a choice of fluxes (which

is essential for numerical minimization). These are not SUSY vacua in the traditional

sense because we do not require that the superpotential itself vanish at the vacua.

The first of these simplifications is due the fact that the two SUSY conditions

imply that the vacuum value of the axio-dilaton τSUSY for a given choice of fluxes is

an explicit function of the complex structure vacuum location. In particular,

τSUSY =
F · Π̄(z̄SUSY )
H · Π̄(z̄SUSY )

(4.1.69)

So, we evaluate the axio-dilaton in the function we seek to minimize, |DzW |2, at

τ = τSUSY (z). We then need only minimize over the variation of two real fields (the

real and imaginary parts of z). The guess location, zguess, for the given set of fluxes
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can be computed straightforwardly by using the near conifold period expansions in

the period vectors and the Kähler potential below,

DzW (z, τSUSY (z))=

(
F − F · Π̄(z̄)

H · Π̄(z̄)
H

)
· (Π′(z) +KzΠ(z)) = 0, (4.1.70)

We compute the leading order solution to the above, which amounts to retaining the

log(z−1) and constant terms, and dropping everything O(z−1). The resulting zguess

is given in terms of the flux integers and period expansion coefficients in section 4.2.

To proceed further, it is essential to have high accuracy approximations to the pe-

riod functions near the conifold point. The Meijer-G functions, with respect to which

the periods and their derivatives can be expressed, are generally slow to evaluate

numerically. As the singularities of the Meijer-G’s are approached (for example the

branch point singularity for Π′
0(z), and terms ∼ 1

(z−1)k−1 for its kth order derivative)

this becomes a significant obstacle. We not only evaluate such expressions multiple

times while searching for a single vacuum, but we then must compute the Taylor

coefficients at the near conifold vacuum found. This will involve many additional

evaluations of increasingly divergent (due to the derivatives taken) Meijer-G’s near

their singularities. The tremendous number of times the search algorithm needs

to be run to find a sufficiently large random sample of vacua, and the subsequent

computation of the Taylor coefficients makes it essential to have high accuracy fast

approximations to the period functions near the conifold point.

Additionally, we note that such approximations are also needed near the large

complex structure point (z = 0). The minima we are searching for typically have

basins of attraction that narrow sharply near the minimum. Though a particular

set of fluxes may yield a guess in the neighborhood of the conifold point, and so be

worthy of pursuing, the guess may lie far up the minimum’s basin outside the basin’s

thin throat. Iterative minimization procedures work by taking a steps in the direction
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of the gradient of the function being minimized. A narrow basin that then flattens

out can result in significant overshooting of the minimum during the first steps. The

search region needs to be large enough to contain these initial sweeps as it ping-pongs

around the minimum, and eventually spiral into it.

The surrounding buffer area we need includes the large complex structure point.

The behavior of the periods here is well known, Πi → (z log(z))i. Due to the branch

cuts in the periods, many of the Meijer-G’s in the expressions we seek to minimize are

singular. So, when searching for vacua we use “patched period functions” — piece-

wise defined fast approximations to the exact expressions in terms of the Meijer-G’s.

Outside the neighborhoods of both the large complex structure point and conifold

point (where the expansions are used), we build interpolating functions by evaluating

the exact periods on a grid. The entire search region showing the neighborhoods

where each of the three type of approximations to the period functions are used is

found in figure 4.1. We postpone further discussion of the search algorithm until

the Calculational Approach section, and now turn to the computation of the fast

approximations to the period functions.

Period Expansions for the Mirror Quintic

Three of the mirror quintic’s four period integrals (in the integral and symplectic

basis) are analytic in the neighborhood of the conifold point. These are the inter-

secting pair Π1(z) and Π2(z) which are nontrivial at the conifold point, and Π3(z)

which vanishes because it is an integral over the collapsing three cycle. These can be
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Figure 4.1: We search for no scale vacua in the square portion of the complex plane
for z depicted above. The three regions where we use different fast approximations
to the period functions are shown using different colors. The near-conifold patch
consists of the disk of radius 0.5 centered at the conifold, z = 1. The portion of the
disk of radius 0.8 centered at the LCS point, z = 0, that is not contained within the
near-conifold region is shown in purple. Here we use the 12th order expansions about
z = 0 obtained directly from Mathematica. Lastly, an interpolating function built
from discrete Meijer-G data is used in the remaining portion of the square search
region, shown in light green. Branch cuts are indicated by the red zigzag lines, with
the one emanating from the conifold point along the positive real axis applying to
Π0, and those emanating along the negative real axis from the LCS point of relevance
to all periods excluding Π0.

approximated straightforwardly by truncating their Taylor series. We write,

Π1(z) =

q∑
n=0

bn(z − 1)n (4.1.71)

Π2(z) =

q∑
n=0

cn(z − 1)n (4.1.72)

Π3(z) =

q∑
n=1

dn(z − 1)n. (4.1.73)

The periods and their first derivatives enter the scalar potential. Since we seek
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to collect up to fourth order Taylor coefficients of the scalar potential at the vacua

located, we will be evaluating fifth order derivatives of the periods near z = 1. For

the sake of accuracy we take q = 8. The expansion coefficients can be found in table

1 of Appendix 4.4.

The remaining period, Π0, picks up one factor of its intersecting partner, Π3, for

each loop about the conifold point. This transformation property of Π0 restricts its

form to

Π0(z) = Π3(z)
log(z − 1)

2πi
+ f(z) (4.1.74)

for some function f(z) that is analytic at the conifold point. Before proceeding we

note that we shall henceforth include an overall minus sign in front of the argument in

the logarithm in the expansion of Π0 so that all explicit values of the expansion coeffi-

cients correspond to a consistent choice of branch cuts in Mathematica. Specifically,

the expressions given for the periods in terms of the Meijer-G’s use the convention of

branch cuts emanating from the conifold point along the positive real axis, and from

the large complex structure point along the negative real axis. Since Mathematica’s

logarithm function places the branch cut along the argument’s negative real axis, it

is necessary to include a minus sign in front of the log’s argument in the expansion,

eq. 4.1.74, to flip it from (−∞, 1] to [1,+∞).

Note that the argument of the logarithm in Π0’s expansion may be rescaled freely

because this amounts to a relabeling of analytic terms. The righthand side of eq.

4.1.74 is equivalently written as

Π3(z)
log(−(z − 1))

2πi
+ f(z)− Π3(z)

2
= Π3(z)

log(−(z − 1))

2πi
+ f̃(z). (4.1.75)

The shifted function, f̃(z), is still analytic because Π3 is. Relabeling f̃(z) by f(z)

we have the same expression as eq. 4.1.74, only with a negative sign in front of the

(z − 1). We choose however to keep the “extra” analytic term, −Π3/2, separate and
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take the form,

Π0(z) = Π3(z)

(
log(−(z − 1))

2πi
− 1

2

)
+ f(z). (4.1.76)

It is a convenient choice for performing checks of the accuracy of the Π0 approximation

because the factor multiplying Π3 does not change sign (the range of the imaginary

part of the logarithm function in Mathematica is [−π, π]).

Since we have a polynomial expansion for Π3, the task of obtaining a fast ap-

proximation for Π0 amounts to finding one for the unknown f(z). Since we have no

special restrictions to this function’s properties aside from analyticity, the simplest

approximation is a Taylor series about z = 1. We write

f(z) =

q∑
n=0

an(z − 1)n. (4.1.77)

The zeroth coefficient is the value of Π0 at the conifold point, which is trivial to

compute. The higher order coefficients are more difficult.

Although each

an =
1

n!

dnf

dzn

∣∣∣∣
z=1

=
1

n!

(
dnΠ0

dzn

∣∣∣∣
z=1

− 1

2πi

dn

dzn

[
Π3(z)

(
log(−(z − 1))− 1

2

)] ∣∣∣∣
z=1

)
(4.1.78)

is finite, the fact that the divergences between the two terms on the righthand side

cancel exactly at each order is lost if one attempts to evaluate (numerically) the

righthand side exactly the conifold point. Mathematica’s “Limit” function cannot be

used to remedy this. However, the next coefficient, a1, is nonetheless easily obtained

numerically by exploiting the weakness of the divergences that cancel in the first

derivative, which are logarithmic.

In particular, to leading order in s ≡ (z − 1), a1 is given by,

a1 =

(
dΠ0

dz

∣∣∣∣
z=1

− d1
log(−s)
2πi

)
+
id1
2π

+
d1
2

+O(s log(s)). (4.1.79)
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We obtain an approximate value for a1 by dropping the O(s) terms which involve

higher order (unknown as of now) ai’s and evaluating the remaining known expressions

on the righthand side sufficiently close to the conifold point that errors due to the

truncation are negligible. Taking the form s = e−t, the negligibility of such errors at

a finite t = t∗ is ensured if the value of ã1(t) defined by,

ã1(t) = Π′
0(1 + e−t) +

id1
2π

+
d1
2

− d1
log(−e−t)

2πi
(4.1.80)

converges within the relevant precision one is using for t → t∗. Such convergence is

exhibited in table 4.1.

t ã1(t)
2 0.0082657465− 0.1488734062i
3 0.0143193561− 0.1662234075i
4 0.0193211265− 0.1734738528i
5 0.0221685901− 0.1762752502i
6 0.0235728366− 0.1773249249i
7 0.0242171435− 0.1777137131i
8 0.0245004660− 0.1778570993i
9 0.0246216047− 0.1779098968i
10 0.0246723700− 0.1779293266i
12 0.0247018694− 0.1779391052i
14 0.0247067045− 0.1779404287i
16 0.0247074729− 0.1779406078i
20 0.0247076106− 0.1779406353i

Table 4.1: Depiction of the the convergence of the expansion coefficient a1 computed
numerically.

The third coefficient in f ’s expansion, a2, can be obtained in a similar fashion.

We write

ã2(t) ≡
1

2

[
Π′′

0(1 + e−t) + d2 +
3id2
2π

+
id1e

t

2π
− d2 log(−e−t)

π

]
(4.1.81)

However, here it is essential to use high-digit accuracy computations when evaluating

the righthand side for a given value of t. This is because we’re extracting a small
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number by taking the difference of two large numbers, Π′′
0(1 + e−t) and the term

proportional to et in eq. 4.1.81. table 4.2 displays the convergence of a2.

t ã2(t)
2 0.00213219053 + 0.09247047120i
3 −0.00142768524 + 0.11114853496i
4 −0.00594277215 + 0.11937168288i
5 −0.00880198201 + 0.12261391639i
6 −0.01027763172 + 0.12383805148i
7 −0.01097135473 + 0.12429273911i
8 −0.01128102108 + 0.12446060393i
10 −0.01147126928 + 0.12454519737i
12 −0.01150432390 + 0.12455665210i
16 −0.01151065730 + 0.12455841226i
20 −0.01151081435 + 0.12455844450i
24 −0.01151081798 + 0.12455844509i
28 −0.01151081806 + 0.12455844510i

Table 4.2: Depiction of the convergence of the expansion coefficient a2 computed
numerically.

Clearly this strategy is limited to the lowest expansion coefficients. At each higher

order the righthand side will involve evaluating increasingly divergent terms near the

conifold point and extracting an ever (comparatively) smaller difference. To obtain

the higher order coefficients we instead derive a recursion relation for the an’s by using

the fact that both Π0 and Π3 are solutions to the Picard-Fuchs equation. Specifically,

since the Picard-Fuchs equation is linear, f(z) must satisfy

ÔPF [f(z)] = −ÔPF

[
Π3(z)

(
log(−(z − 1))

2πi
− 1

2

)]
. (4.1.82)

The righthand side is a known, albeit messy, analytic function due to the fact

that Π3’s near conifold expansion coefficients are known. Note that because OPF

is a fourth order differential operator the righthand side will contain terms that are

individually divergent (from derivatives acting on the log times the lower order terms

in Π3 so as to yield contributions ∼ s−1 and s−2). The divergences, though, exactly
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cancel due to the strict relationship among Π3’s coefficients, owing to the fact that it

satisfies

ÔPF [Π3(z)] = 0. (4.1.83)

Thus, we need only express the lefthand side of eq. 4.1.82 as a power series in

s (whose coefficient at a given order is a linear combination of a subset of the {ai})

and ensure we have enough of the lowest order coefficients to generate the rest. It

will turn out that the zeroth order term on the lefthand side involves f ’s four lowest

order coefficients, and all those of order n > 0 involve the n − 1th and subsequent

four coefficients: {an−1, .., an+3}. Hence, the a0, a1 and a2 obtained numerically as

described above will be sufficient to start off the recursive procedure, and provide us

as many coefficients as we need.

To that end, we rewrite the Picard-Fuchs differential operator as follows,

ÔPF = −sδ4 − s(k1δ
3 − k2δ

2 − k3δ − k4)− (k1δ
3 − k2δ

2 − k3δ − k4) (4.1.84)

= −s
4∑
i=0

kiδ
4−i −

4∑
i=1

kiδ
4−i

where the ki are the constants,

k0 = 1 (4.1.85)

k1 =
4∑
i=1

αi (4.1.86)

k2 =
4∑
i=1

4∑
j=i+1

αiαj (4.1.87)

k3 = α1α2α3 + α1α2α4 + α2α3α4 (4.1.88)

k4 = α1α2α3α4. (4.1.89)
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Next note that δ acts on sn as,

δsn = (s+ 1)
d

dz
(z − 1)n

= (s+ 1)nsn−1

= n(sn + sn−1).

By repeatedly applying this rule each of the δjsn terms can be computed. For in-

stance,

δ2sn = δ[n(sn + sn−1)]

= n(n(sn + sn−1) + (n− 1)(sn−1 + sn−2))

= n2sn + n(2n− 1)sn−1 + n(n− 1)sn−2.

After similarly obtaining δ3 and δ4 on sn, collecting terms and shifting indices of

summation, the Picard-Fuchs operator’s action on f(z) can be expressed in the form,

ÔPF [f(z)] =
∞∑
n=0

(
C−1(n)an−1 +C0(n)an +C1(n)an+1 +C2(n)an+2 +C3(n)an+3

)
sn,

(4.1.90)

where a−1 ≡ 0 and the constants Cj(n) are also functions of the ki. Though a tedious

exercise, the Cj(n) can be obtained straightforwardly with the aid of Mathematica.

A similar procedure yields the expansion of the righthand side of eq. 4.1.82 thus

completing the recursion relation. The resulting values for the an are given in table

2 located in Appendix 4.4.

The analogous expansions about the large complex structure point are far easier

to obtain numerically, despite the fact that three as opposed to one of the cycles

transform nontrivially upon circling it. Being finite but multiple-valued, the form
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of the corresponding three periods involve linear combinations of powers of z log z.

As mentioned at the end of subsection 4.1, the leading order behavior of the jth

period in our notation (that is the term that contributes the most divergent term to

the period’s derivative) is (z log z)j. This form includes the behavior of the analytic

period, Π0, which is ≊ 1.

Since each of the other three periods has its own residual analytic term (analo-

gous to f(z) in eq. 4.1.74) as well as an additional subleading logarithmic term at

each period index j higher, the near large complex structure expressions are more

complicated. Nonetheless, the approximations can be obtained using Mathematica’s

“Series” function, due to the special properties of Meijer-Gs. Essentially, one can ex-

pand the Gm,n
p,q in eq. 4.1.55 about z = 0 to yield a series of integrals whose individual

terms are easy to evaluate.

Structure of the Hessian

The masses of the moduli in the effective field theory associated with a given vacuum

are contained in the Hessian of the scalar potential specified by the particular flux

configuration. When evaluated at the vacuum location in the moduli space, the

eigenvalues of the Hessian in canonically normalized field coordinates are the squares

of the masses in the effective theory. No scale vacua have additional structure built

in from the outset as compared to ordinary general N = 1 supersymmetric theories.

We begin by expressing the general N = 1 scalar potential — that which includes

the Kähler moduli and does not assume cancellation of the 3|W |2 term — and its

partial derivatives in terms of the appropriately invariant quantities. It is convenient

to adopt the standard notation for the Kähler and geometrically covariant derivatives

of the superpotential, up to third order,

FI ≡ DIW ; ZIJ ≡ DIDJW ; UIJK ≡ DIDJDKW (4.1.91)
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Note that FI is not to be confused with the amount of RR flux wrapping a particular

3-cycle of the compact manifold. We express general N = 1 scalar potential then as,

V = eK(FIF̄
I − 3|W |2). (4.1.92)

where indices run over all moduli.

Due to the Kähler invariance of eq. 4.1.92 we may trade partial derivatives for

covariant ones and obtain the following covariant expressions [36].

∂IV = eK
(
(DIDJW )F̄ J − 2FIW̄

)
= eK

(
ZIJ F̄

J − 2FIW̄
)

∂I∂JV = eK
(
(DIDJDKW )F̄K −DIDJW̄

)
= eK

(
UIJKF̄

K − ZIJW̄
)

∂I∂J̄V = eK
(
−RIJ̄KL̄F̄

KF L̄ +KIJ̄FKF̄
K − FIF̄J̄ + (DIDKW )(D̄J̄D̄

KW̄ )− 2KIJ̄ |W |2
)

= eK
(
−RIJ̄KL̄F̄

KF L̄ +KIJ̄FKF̄
K − FIF̄J̄ + ZZ̄IJ̄ − 2KIJ̄ |W |2

)
.

When the no scale cancellation takes place, and the SUSY condition for the re-

maining dynamical moduli in the theory is imposed the nontrivial components of the

Hessian reduce to,

∂I∂JV = 2eKW̄ZIJ (4.1.93)

∂I∂J̄V = eK
(
ZZ̄IJ̄ +KIJ̄ |W |2

)
. (4.1.94)

where ZZ̄ is defined with the contraction of one holomorphic and one anti-

holomorphic index using the (inverse) Kähler metric, and indices now run over only

the axio-dilaton and complex structure moduli.

Next choose a basis for the complex moduli fields that is orthonormal with respect

to the vacuum Kähler metric,

KIJ̄ |vac = δIJ̄ . (4.1.95)
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Such a basis is only unique up to unitary transformations. An arbitrary choice will

not in general simultaneously diagonalize ZcanZ̄can. Note that while Z and Z̄ are

complex and symmetric, ZZ̄ is Hermitian and positive definite, and is thus related to

the diagonal matrix containing N = 1+h2,1 eigenvalues by a unitary transformation.

In canonical coordinates we write,

ZcanZ̄can = UΣ2U † (4.1.96)

and express the eigenvalues as the squares of real positive numbers λi. The columns

of the unitary matrix, U , are of course the corresponding eigenvectors of the canonical

ZZ̄. (An excellent resource for understanding no scale structure and its implications

is [51]. We’ve adopted their notation in our abridged calculation here in order to

facilitate its use to readers seeking greater detail). Thus, the Hessian in canonical

coordinates,

Hcan = eKU †

 (ZZ̄)can
IJ̄

+ 12×2|W |2 2Z̄can
ĪJ̄
W

2Zcan
IJ W̄ (ZZ̄)can

ĪJ
+ 12×2|W |2

U (4.1.97)

can be diagonalized by a unitary transformation defined in terms of the 2N×2N-

matrix U ,

U =

 U 0

0 U †

 . (4.1.98)

In particular, one can rewrite eq. 4.1.97 as,

Hcan = eKU †

 Σ2 + 12×2|W |2 2ΣW

2ΣW̄ Σ2 + 12×2|W |2

U (4.1.99)

A permutation of the rows and columns of matrix between U and U † in eq. 4.1.99
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casts it as block diagonal, with each of the N 2×2 blocks having the form,

 λ2i + |W |2 2λiW

2λiW̄ λ2i + |W |2

 . (4.1.100)

The eigenvalues of the Hessian then come in pairs, namely those of each block times

the overall factor of eK,

m2
i± = eK (λi ± |W |)2 . (4.1.101)

The fact that the scalar masses in no scale supergravity take the form of eq.

4.1.101 does not ensure a discernible pattern among the masses of an ensemble of

vacua will emerge. Which pattern is present, if any, depends on the relative scales

of the λi as well as how they compare to the magnitude of the superpotential at

vacua. We shall see that a pronounced hierarchy and splitting of the field space

consistent across the ensemble arises due to the special features of the conifold point,

where our vacua accumulate. This is discussed at length in section 4.3. It is worth

remarking that no association of one particular kind of moduli field (or a particular

linear combination) with a heavy or light mass pair, nor the existence of separated

mass pairs, is imposed by eq. 4.1.101.

4.2 Calculational Approach

There are two components to our procedure for generating a random sample of ef-

fective field theories in the mirror quintic’s moduli space. In this section we discuss

each of these in turn.
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Generating a Random Sample of Vacua

Recall that we make the assumptions that the effect of O3-planes on the compact

geometry is negligible at the level of the 4-dimensional action for the moduli, that

all Kähler moduli are stabilized, and that the backreaction from fluxes (warping) can

be ignored thus preserving the no scale structure given by compactifying type IIb

supergravity on a Calabi-Yau.

The effective action for the two remaining complex scalars takes the form,

Seff =
M2

pl

2

∫
d4x Kcs

zz̄∂µz∂
µz̄ +Kax

τ τ̄∂µτ∂
µτ̄ − V (z, τ, z̄, τ̄), (4.2.1)

where both components of the field space metric are obtained by taking one holo-

morphic and one antiholomorphic derivative of the relevant Kähler potential. The

Kähler potential for the complex structure is given by eq. 4.1.49, which is known

explicitly in terms of Meijer-G functions via eqs. 4.1.60 —4.1.63 and 4.1.51–4.1.54.

That for the axio-dilaton is obtained from eq. 4.1.19.

The scalar potential, V , is not a holomorphic function of z and τ . It is however

defined in terms of the holomorphic superpotential, W (z, τ),

V =
M2

pl

4πV2
0

eK
cs(z,z̄)+Kax(τ,τ̄)

(
Kzz̄DzWD̄z̄W̄ +Kτ τ̄DτWD̄τ̄W̄

)
. (4.2.2)

The superpotential is parameterized by eight integers indicating the amount of RR

and NSNS fluxes wrapping/piercing each of the mirror quintic’s four 3-cycles. In

particular, we write the superpotential as in eq. 4.1.47; a linear combination of the

mirror quintic’s period integrals in a symplectic basis (the Πi’s).

Solutions to the SUSY condition, DzW = DτW = 0, are zeros of the scalar

potential and thus are global minima of the theory. We search specifically for such

solutions by randomly scanning through models defined by eq. 4.2.1, that is by
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randomly drawing eight flux integers. For simplicity, we assume a flat measure for

the fluxes, and draw from the interval, [−20, 20]. Once the set of fluxes is drawn, the

corresponding superpotential can be built, and the zeros of DIW can be searched for

numerically.

The SUSY condition for the axio-dilaton implies it is an explicit function of the

complex structure vacuum location, specifically that in eq. 4.1.69. By evaluating the

SUSY condition for the complex structure, DzW = 0, at τ = τSUSY (z) we accomplish

an important reduction in the computational expense of finding vacua numerically —

we need only minimize a single (semipositive definite) function of two real variables,

namely,

u(x, y; {Fi, Hi}) = |(F − τSUSY (x+ iy)H) · (Π′(x+ iy) +KzΠ(x+ iy))|2 . (4.2.3)

where Kz is of course also a function of the real and imaginary parts of the complex

structure, x and y. Specifically,

Kz = −Π†(x− iy)Q−1Π′(x+ iy)

Π†(x− iy)Q−1Π(x+ iy)
. (4.2.4)

For a given set of fluxes the function, u, defined in eq. 4.2.3 can be assembled and

minimized directly in Mathematica using its FindMinimum function, provided that

an initial starting point (for x and y) is specified. Vacua are known to accumulate

near the conifold point, z = 1, so it is reasonable to target our search here. Since we

have simple expansions for the period functions here, namely eqs. 4.1.71–4.1.74, we

may expand the Kähler covariant derivative of the superpotential with respect to the

complex structure in z − 1. The term involving Π′
0 in DzW will yield a logarithm of

z − 1. This is the most divergent term. By retaining only the logarithmic and O(1)

terms in DzW = 0 we can solve for z in terms of the fluxes. The result is,
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zguess = 1− eφ (4.2.5)

φ = −1 + 2πi

(
βa0 − a1 − d1

2

d1
+
F2 − tH2

F3 − tH3

βb0 − b1
d1

+
F1 − tH1

F3 − tH3

βc0 − c1
d1

− F0 − tH0

F3 − tH3

)
(4.2.6)

β = − ā0d1 − c̄0b1 + b0c̄1
b̄0c0 − c̄0b0

(4.2.7)

t =
F3ā0 + F2b̄0 + F1c̄0
H3ā0 +H2b̄0 +H1c̄0

(4.2.8)

Note that the axio-dilaton has been evaluated at τSUSY (z;F,H) and expanded as

well. It is the the O(1) constant, t, above.

There is no guarantee that a random choice of fluxes will have a near conifold min-

imum that satisfies the SUSY condition. In fact, the vast majority do not. Whether

this is the case can be determined from the initial guess. If zguess − 1 is so large that

O(z − 1) terms dominate log(z − 1), then the expansion that lead to zguess was not

valid to begin with, and so the eight fluxes are redrawn.

To summarize, then, the steps of our search algorithm are:

1. Randomly draw eight integers independently from the interval [−20, 20].

2. Compute the guess via eq. 4.2.6. If it is more than 0.5 away from coni-

fold redraw the fluxes. Otherwise construct u(x, y;F,H) using the patched period

functions.

3. Minimize u using FindMinimum, with the real and imaginary parts of the

guess as the starting point. (We further invoke the option that limits the search

region to avoid Mathematica searching far away from the region of interest when

there is no near conifold minimum, and/or extrapolating the periods so as to give

artificial minima).

4. If a minimum is found, and that minimum is sufficiently close to the conifold,
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we collect a variety of useful information including the list of fluxes, the minimum’s

location, the magnitude of u, and the axio-dilaton’s location τSUSY (zmin).

5. Repeat.

Lastly, it is necessary to filter these local minima of u. Since the imaginary

part of the axio-dilaton is proportional to the inverse of the string coupling, any

minima found during the search that have negative Im(τSUSY (zmin)) are unphysical.

Removing these, the list of potential vacua is approximately cut in half. Next, only

the zeros of u should be kept, as the evaluation of the axio-dilaton at 4.1.69 assumes

vacua solve DIW = 0. We eliminate minima whose u is above a threshold of 10−6.

To compare vacua properly, particularly with regard to their locations in the the

τ field space, we need to perform an SL(2,Z) transformation that maps each vacua’s

τ value into the fundamental domain. A set of four integers {a, b, c, d} is found such

that the transformation,

τ → aτ + b

cτ + d
(4.2.9)

maps the axio-dilaton into the strip in the upper half-plane with both Re(τ) < 1
2

and

|τ | > 1
2
. The vacuum’s fluxes are then mapped as follows,

Fi → aFi + bHi

Hi → cFi + dHi.

This is the 4-dimensional incarnation of the original SL(2,Z) symmetry enjoyed

by the 10-dimensional type IIb supergravity action. In fact, one reason for formulating

the theory in terms of the axio-dilaton is so this symmetry is made manifest. The

transformation is stated for the total 3-form flux as,

G(3) → cG(3) + d. (4.2.10)
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Performing the transformation also enables us to check for duplicate vacua. The

transformation is not 1-to-1, so vacua with different fluxes prior to mapping may

actually correspond to the same vacuum in the fundamental domain. Though possi-

ble, no instances of double counting were found among the vacua identified with our

algorithm.

Finally, we impose the type IIb tadpole condition on the fluxes, eq. 4.1.30. This

integral expression can be restated conveniently in terms the number of orientifold

planes and D3-branes, and the dimensionless fluxes wrapping the mirror quintic’s

3-cycles as

F ·Q ·H =
1

4
NO3 −ND3, (4.2.11)

where Q is the intersection matrix, and F and H are the vectors containing the four

RR and four NSNS flux integers. The condition is often stated as an inequality by

defining the maximum of the righthand side as the positive number Lmax,

F ·Q ·H ≤ Lmax. (4.2.12)

We make an admittedly arbitrary choice of Lmax = 300, and dispose of vacua

whose fluxes combine via Q to violate this threshold. We are interested in the sta-

tistical features of flux vacua in the mirror quintic’s moduli space as a probe of the

landscape more broadly. So long as our results are not sensitive to the particular

choice of Lmax, we believe it is reasonable to relax the condition. We find this is the

case and so proceed without concern for the actual maximum number of orientifold

planes the mirror quintic can support.

The results for the masses and couplings given in the following section are for the

largest random sample of vacua we found using this search algorithm and filtering.

It consists of 1358 near conifold vacua whose complex structure and axio-dilaton’s

locations are shown in figure 4.2.
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Figure 4.2: Complex structure and axio-dilaton vacuum locations for the random
sample of 1358 vacua.

Computing Coefficients

Now that we have a random sample of flux vacua, we turn to our second computational

task — obtaining the masses and couplings to quartic order in the corresponding

ensemble of effective field theories. These are the data whose statistics we want

to analyze. For a given model, the nth order couplings are the nth order Taylor

coefficients of the corresponding scalar potential expanded about the model’s vacuum

and transformed appropriately so that the kinetic terms in all the effective field

theories are canonical.

Though the vacuum axio-dilaton coordinate location in each model is fixed in

terms of the vacuum’s complex structure location, the axio-dilaton is a full degree

of freedom. We fixed it as an explicit function of z in our search algorithm as a

short-cut to finding the location of minima of the scalar potential. Here we leave τ

as a variable in the scalar potential, and so have two complex degrees of freedom.

The Hessian then is a 4× 4-matrix, and the four masses come in two pairs due to the

special structure of the mass matrix in no scale models, as we reviewed in section 4.1.
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This structure is relevant to the higher order couplings because we need to report

them in a basis which not only yields canonical kinetic terms but also diagonalizes

the mass matrix. In this subsection we first discuss the field redefinitions,

{z, τ, z̄, τ̄} → {y1, y2, y3, y4} (4.2.13)

(z, τ) ∈ C2, y ∈ R4 (4.2.14)

that accomplish this, and we then the numerical algorithm for evaluating the Taylor

coefficients. Though the original complex coordinates are the simplest in which to

evaluate the Taylor coefficients because we have expansions for the periods in z−1, it

will still be necessary to design an efficient algorithm. This somewhat tedious exercise

is discussed in the second half of this section after defining the specific transformation

that is applied to each tensor of Taylor coefficients calculated with the algorithm.

To that end, we define the column vector of fields in our original complex basis,

Φ ≡



z

τ

z̄

τ̄


. (4.2.15)

The effective field theory is obtained by expanding about a homogeneous background,

Φvac. We begin by writing, Φ = Φvac + BΨ, where the matrix B will serve to

canonically normalize the kinetic terms. We have,

L(Φ) = L(Φvac) + ∂µΨ
†B†(Gvac +O(Ψ))B∂µΨ− V (BΨ) (4.2.16)

= Lvac + ∂µΨ
†B†GvacB∂

µΨ− 1

2
Ψ†B†MBΨ+O(Ψ3) (4.2.17)

where G(Φ) is the Hermitian matrix containing the components of the Kähler metrics.
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Specifically,

G(Φ) =



Kzz̄ 0 0 0

0 Kτ τ̄ 0 0

0 0 Kz̄z 0

0 0 0 Kτ̄ τ


. (4.2.18)

and Gvac is that evaluated at the vacuum.

The effective field theory will have canonical kinetic terms provided

B†GvacB = 1. (4.2.19)

This is easily accomplished by rescaling the fields. A normalized complex basis, which

we denote {ξ, σ}, will be useful in discussing our results so we define one during this

otherwise intermediate step. It will be convenient, in addition, to shift the normalized

complex structure field so that it is zero at the conifold. Thus we write,

z = 1 + C1ξ , τ = C2σ (4.2.20)

where C1 and C2 are the constants 1/
√

Kzz̄|vac and 1/
√

Kτ τ̄ |vac, respectively (we

drop the superscripts on the Kähler potentials indicating the complex structure and

axio-dilaton as its diagonal form in z and τ renders them superfluous in the metric).

Then,

Ψ ≡



ξ − ξvac

σ − σvac

ξ̄ − ξ̄vac

σ̄ − σ̄vac


. (4.2.21)

The matrix M contains the partial derivatives of the scalar potential (in the

original coordinates) evaluated at the vacuum, but with the appropriate ordering so

that it is Hermitian. We take the ordering (z, τ, z̄, τ̄) for the columns, so our rows
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have the barred ordering (z̄, τ̄ , z, τ). Using the like orderings for columns and rows

will not yield a Hermitian matrix, only a symmetric one. We included the subscripts

in the definition of G in part to emphasize this.

The “rescaled” mass matrix, B†MB, is not in general diagonal. This is because

the scalar potential nontrivially mixes the complex structure with the axio-dilaton

so that mixed partials, like ∂z∂τV , do not vanish at the vacuum. We choose first

to transform to a set of four real fields, and then to diagonalize the resulting real

and symmetric matrix by an orthogonal transformation (for reasons that will become

clear momentarily.)

We express Ψ as

Ψ = TX, where X =
1√
2



Re(ξ − ξvac)

Im(ξ − ξvac)

Re(σ − σvac)

Im(σ − σvac)


. (4.2.22)

Note that T it is unitary. Lastly, we take

X = OY (4.2.23)

where O is the orthogonal matrix containing the (normalized) eigenvectors of

T †B†MBT as columns. That is,

Y TOTT †B†MBTOY = Y TDY =
4∑
i=1

m2
i y

2
i (4.2.24)

where D is diagonal.

The full transformation to the real basis that simultaneously diagonalizes the
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Hessian and canonically normalizes the kinetic terms (locally) is

J̃ : (Φ− Φvac) → Y

J̃ = (BTO)−1

So, if we compute the rank three and four symmetric tensors of partial derivatives of

the scalar potential at the vacuum in the original complex coordinates,

Aijk =
∂

∂Φi

∂

∂Φj

∂

∂Φk
V

∣∣∣∣
Φvac

, (4.2.25)

we need to transform according to the standard tensor transformation law,

Ai′j′k′ =
∂Φi

∂Y i′

∂Φj

∂Y j′

∂Φk

∂Y k′
Aijk (4.2.26)

= J ii′J
j
j′J

k
k′Aijk, (4.2.27)

with J defined as the inverse of J̃ , and similarly for the fourth order coefficients,

Ai′j′k′l′ as well. By choosing the particular unitary transformation that diagonalizes

the rescaled mass matrix and yields a basis of real fields, yi, we avoid concerning

ourselves about reordering of the entries of the complex symmetric rank three and four

tensors we compute numerically. This final task, evaluating the Taylor coefficients in

the original complex field coordinates, may seem trivial. After all, the vacua reside

near the conifold point where the period functions are polynomial in (z − 1) and/or

(z − 1)n log(z − 1), so we never need evaluate the divergent Meijer-G’s in the scalar

potential resulting from derivatives of Π0 (and Π̄0). However, the seemingly mundane

exercise of symbolically simplifying the near conifold scalar potential resulting from

plugging in the period expansions and its partial derivatives proves prohibitive.

This is mainly due to the cumbersome way the scalar potential mixes up the
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periods and the relative factors of

∼ ∂mΠ†Q−1∂nΠ

(Π†Q−1Π)m+n
(4.2.28)

between its summands. Since we are plugging in eighth order expressions for the

periods, the number of terms that need to be expanded, collected and organized is

large. Rather than try to undo the natural packaging of the period functions, we

make use of it.

Our strategy is to express each entry in the tensors we wish to evaluate, the

Aijk and Aijkl, in terms of simple combinations of a small number of blocks. Each

block is built out of smaller elements, which include the periods, their derivatives

and combinations thereof (the Kähler potential for the complex structure and its

partial derivatives). For each model in the ensemble, we evaluate the periods and

their derivatives up to fifth order once. The values in this array are then combined

appropriately to obtain the rest of the elements needed to construct the blocks. The

blocks are then assembled into each entry required by the tensors. Essentially, we

are exploiting the fact that many expressions appear repeatedly within a given entry

and across entries, and so we need not evaluate them repeatedly.

The blocks consist of all the Kähler covariant derivatives of the superpotential,

FI , and their partial derivatives up to third order taken with respect to any of the

complex fields. Some of these are zero, for instance ∂τ̄Fz, but note ∂z̄Fz is in general

non-vanishing. Since the scalar potential is

V = eK
(
Kzz̄FzF̄z̄ +Kτ τ̄Fτ F̄τ̄

)
(4.2.29)

its third and fourth order partial derivatives involve several terms linear in FI . All

such contributions vanish however because the SUSY condition, FI = 0, is satisfied at

all the vacua. By only retaining those terms in Aijk and Aijkl that have at least one
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partial derivative on FI and at least one on its conjugate we have more manageable

expressions for each Taylor coefficient that need to be combined.

The individual blocks are compact when expressed in terms of the elements. For

example,

∂z∂z̄∂τFz = ∂z∂z̄∂τ (F − τH) · (Π′ +KzΠ) (4.2.30)

= −H · (Π′′ +Kzz̄Π
′ +Kzzz̄Π). (4.2.31)

This approach enables us to compute both rank 3 and 4 tensors for the entire sample

of 1358 vacua in time of order tens of minutes.

Lastly, we note that the form of the Hessian outlined in subsection 4.1 is confirmed

by comparing that obtained by direct differentiation with that built from the metric

and (separately constructed) Z and Z̄ matrices in the original noncanonical basis.

The percent deviation between the eigenvalues of the two are on the order of 10−13.

4.3 Results

In this section we analyze the distributions of masses and couplings for a collection of

1358 vacua, found using the vacuum hunting algorithm described in subsection 4.2.

There is a great deal of structure built in from the get-go. The task is to untangle

the randomness that is present from that structure. As indicated in subsection 4.1,

the no-scale structure for a theory with N complex moduli is responsible for pairing

the 2N scalar masses of the effective field theory.

The association of each mass pair with a single one of the complex scalars (for us,

either z or τ) is not expected, a priori, because of the mixing between the axio-dilaton

and the complex structure in the scalar potential.

However, for near conifold flux vacua in the mirror quintic’s moduli space that sat-

isfy the SUSY condition, DIW = 0, the two scalar fields do approximately separate;
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ever more so as the vacuum-to-conifold distance is diminished. Tied to this cleaving of

the field space is also a scale separation between the associated axio-dilaton and com-

plex structure mass pairs. We observe that such a hierarchy percolates through third

and fourth order couplings. All this structure, nearly universal across our ensemble,

can be traced back to a single quantity: the mirror quintic’s Yukawa coupling.

We will show that the larger the Yukawa coupling, the more exaggerated this

structure becomes. Its singularity, located precisely where vacua accumulate — at

the conifold point — is responsible for the expected pattern of near conifold mass

and couplings dominating the ensemble. We use the qualifier “expected” because

there is one random ingredient: the vev of the superpotential. Depending on your

point of view, it muddies otherwise sharply defined features, or provides the possibil-

ity of freedom from rigidity (albeit a vanishingly small possibility as the conifold is

approached).

In this section we first establish the distance of a vacuum from the conifold as the

key quantity controlling the degree to which structure is amplified or diluted. Next,

we build intuition for the mass pairs and their distributions. Finally we present the

hierarchies and correlations observed in the data for cubic and quartic couplings,

which similarly is attributable to the singular dependence on the vacuum-to-conifold

distance. For ease of discussion, we will loosely refer to the magnitude of a vacuum’s

canonical complex structure coordinate, |ξvac|, as its distance to the conifold in moduli

space. More precisely, this distance is a monotonically increasing fucntion of |ξ|, but is

not identically equal to it. During our investigation we developed a Random Matrix

Model that accurately captures this particular combination of both regularity and

randomness. We comment on the possible generalizations of these results to models

with more complex structure moduli in the Discussion section.
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Masses

Since the SUSY condition is satisfied at our vacua, the complex 2×2-matrix ZIJ ≡

DIDJW is the matrix of vacuum values of the partial derivatives of FI , specifically,

Z =

 ∂τFτ ∂zFτ

∂τFz ∂zFz

 . (4.3.1)

Not all entries in this matrix are independent. It’s form is restricted because there

is no mixing between the complex structure and the axio-dilaton at the level of the

Kähler potential (Kzτ = 0) and also because Kτ τ̄ = −Kτ
2. These two, together with

the SUSY condition in τ , imply Z has the form,

Z =

 0 Z01

Z10 Z11

 , (4.3.2)

where the entries are complex valued (and Z01 = Z10).

The two nontrivial entries, it turns out, are related by a known analytic function

when the canonical basis is used (the fields we labeled ξ and σ, whose corresponding Z

matrix is Zcan). For compactifications of type IIb on general Calabi-Yau the following

equation is valid at solutions to DIW = 0,

ZIJ = FIJKZ̄
0K (4.3.3)

in a basis where the fields in the effective action are canonically normalized. The FIJK

in eq. 4.3.3 are the Yukawa couplings between the Calabi-Yau’s complex structure

moduli and their fermionic counterpart in the effective field theory. Since the mirror

quintic has a single complex structure modulus we have the direct proportionality,

Z11 = F111Z̄
01. (4.3.4)
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where we’ve suppressed the “can” superscripts.

The Yukawa coupling is singular at the conifold point. Its exact analytic form

was found by Candelas and de la Ossa (see for e.g. [52]). Stated in terms of their

complex structure field coordinate before canonical normalization, ψ, which is related

to ours by z = ψ−5 the Yukawa coupling takes the form

κψψψ =

(
2πi

5

)3
5ψ2

1− ψ5
. (4.3.5)

Note that while zero and infinity switch under the coordinate transformation be-

tween ψ and z, the conifold point is fixed. The conifold singularity in eq. 4.3.5

persists through the coordinate transformation to our F111, and manifests as one

naively expects (as a 1/ξ divergence) with minor modification. This is because the

prepotential from which κψψψ derives is the same as ours.

It is useful to briefly sketch the calculation of Candelas and de la Ossa in order

to understand the origin of the divergence, as well as its leading order form in our

coordinates. They define a set of functions, “Wronskians”, in terms of derivatives of

the prepotential. The kth Wronskian is given by

Wk = Z i d
k

dψk
Gi − Gi d

k

dψk
Zi (4.3.6)

where Z i and Gi are an intersecting pair of periods (in an integral and symplectic

basis). Since there are four nontrivial cycles, i ranges from 1 to 2. The prepotential

is

G =
1

2
Z iGi. (4.3.7)

A crucial next step is to identify the Yukawa coupling,

κψψψ =

∫
Ω ∧ d3Ω

dψ3
, (4.3.8)
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with the third Wronskian. Together with the properties of Calabi-Yau, particularly

the fact that the periods solve the Picard-Fuchs equation, they obtain an ordinary

differential equation for W3, whose solution is given in eq. 4.3.5.

When the fields in the effective action are canonically normalized, the Yukawa

coupling receives a total factor of the inverse vacuum Kähler metric for the complex

structure raised to the three halves; one half power from the rescaling of the scalar

field and one full power from the transformation of the fermion (one half power for

each of the two factors of the fermion in the original interaction term ∼ κφχχ).

We’ve already accounted for one half of the total three halves by canonically

normalizing our z coordinate. This implies the ratio of our Zcan
11 to Zcan

01 will have

a leading order behavior of 1/(ξ log ξ), since the Kähler metric goes like log(ξ) near

the conifold point, ξ = 0. In figure 4.3 we display the actual vacuum data for the

magnitude of this ratio against the conifold distance. A numerical fit to the leading

order form is overlaid in red. Note the exceedingly tight agreement between the two.

Essentially, the ∼ 1
ξ

dependence comes from a contribution ∼ Π3
d3

dξ3
Π0, since

Π3
d3

dξ3
Π0 = O(ξ)

d3

dξ3
(O(ξ) log ξ + analytic) (4.3.9)

= O(ξ)

(
O(ξ)

d3

dξ3
log ξ +O(1)

d2

dξ2
log ξ +O(1)

)
(4.3.10)

= O(ξ)O(1/ξ2) (4.3.11)

= O(1/ξ) (4.3.12)

Our vacua live in a region where |F| ≫ 1, so Z11 always dominates Z01. This

is consequential for the mass spectra and coordinate transformation that enters into

the computation of the subsequent higher order couplings. Expressed in terms of the

magnitude of the Yukawa coupling (where we’ve suppressed the “111” indices), the
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Figure 4.3: Plotted in light purple is the ratio of the magnitudes of the entries of
the Z matrix for our vacua (the 11 entry over the 01 entry) on the vertical, against
|ξvac| which is a measure of the vacuum to conifold distance. Special geometry implies
that this ratio ought to be the magnitude of the Calabi-Yau Yukawa coupling. The
function plotted in red is a numerical fit of the data to the leading order form of the
mirror quintic’s |F|2. Note the extremely good agreement between the two, and the
divergence at the conifold point, precisely where vacua accumulate.

ZZ̄ matrix takes the form,

ZZ̄ = |Z01|2

 0 |F|e−iδ

|F|e+iδ |F|2 + 1

 , (4.3.13)

whose eigenvalues come in the pair,

Λ2
± =

|Z01|2

2

(
|F|2 + 2± |F|

√
|F|2 + 4

)
. (4.3.14)

The larger of these is always Λ2
+, so, in our labeling convention for the λi’s we identify

λ21 = Λ2
+, and λ22 = Λ2

−.

Note that in either limit, |F| ≫ 1, or the reverse, we have Λ2
+ ≫ Λ2

−. If |F| ≫ 1
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the eigenvector associated with the larger eigenvalue is almost entirely contained

within the span of the complex structure field, and in the opposite limit within that

of axio-dilaton field. Since we always have the former case, the largest eigenvalue of

ZZ̄, λ21, is associated always with the complex structure, and the smaller, λ22, with

the axio-dilaton. An immediate consequence of this is the cleaving of the eigenspace

of the Hessian in two.

One subspace is spanned almost entirely by the complex structure and is associ-

ated with the mass pair m2
1±, while the other is spanned by the axio-dilaton and is

associated with m2
2±. This is because the 2×2 blocks entering into the diagonalization

of the Hessian, which would otherwise mix these two fields, are approximately equal

to the identity. These 2×2 blocks in the complex field coordinates of section 4.1 are

U and its Hermitian conjugate. In the real field coordinates of section 4.2 they form

two by two blocks in O, upon a reordering of rows and columns.

Whether or not the hierarchy in the λi leads to a hierarchy between the two mass

pairs — a heavy complex structure pair and a light axio-dilaton pair — depends

on the relative sizes of |W |, λ1 and λ2. More precisely, we begin by noting there

is no ambiguity about the heaviest mass. It is always m2
1+, which for us is always

associated with z. It’s partner (still associated with z) need not be second heaviest,

however. To see why note that

(λ1 − |W |)2 < (λ2 ± |W |)2

λ21 − λ22 < 2|W |(λ1 ± λ2)

λ1 ∓ λ2 < 2|W |.

So, if half of the gap between the λi is less than the magnitude of the vacuum su-

perpotential the second heaviest of the four masses is the larger of the axio-dilaton

masses, m2+. If the average of the λi is also less than the magnitude of the super-
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potential then the third heaviest mass is the lighter of the axio-dilaton pair, and the

lightest of the four masses is the lighter of the complex structure pair. To summarize,

the naive/expected ordering among the masses,

m2
1+ > m2

1− > m2
2+ > m2

2− (4.3.15)

is realized if the difference condition is not met (large discrepancy between the λi’s).

The middle two masses swap places,

m2
1+ > m2

2+ > m2
1− > m2

2− (4.3.16)

if the gap condition is met but the average condition is not. Lastly, if both conditions

are met the lighter complex structure mass shuffles all the way to the bottom of the

mass scale,

m2
1+ > m2

2+ > m2
2− > m2

1−. (4.3.17)

As we’ve seen, the difference in scale between the two distinct nontrivial entries

of Z diverges as the conifold point is approached. Since the larger the scale difference

the larger the gap between the λi will be, we expect the likelihood of the gap condition

being met to diminish as the conifold point is approached. This is precisely what we

find. In figure 4.4 we plot λ1−λ2 divided by twice the magnitude of the superpotential

against the conifold distance for each vacuum. A horizontal line at 1 is indicated by

the dashed line, so points above this line fail the gap condition and the naive order

exists, while those below have at least one rightward shift of m2
1− down the hierarchy

in 4.3.15.

There are two important observations. First, the vacua migrate upward as the

conifold is approached making the condition ever more unlikely to be satisfied, ver-

ifying our expectation. Second, there are nonetheless a few vacua for whom the
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Figure 4.4: The difference between the λi divided by twice the vev of the superpoten-
tial vs. |ξvac|, illustrating the key quantity in the hierarchy condition. Data points
that fall below the dashed pink line do not satisfy the condition and have a mass
hierarchy that differs from the expected one by at least one swap. Note that as the
conifold distance decreases the data points float upwards, confirming the expectation
(based on the divergence of the Yukawa coupling) that the condition becomes ever
more difficult to satisfy as the location of the vacuua approaches the conifold.

condition is met. Specifically, we find 33 out of 1358 such instances, or 2.4%. The

image toward the upper-right of figure 4.4 shows the portion of the plot focused near

the bottom (with exactly 33 points below the dashed line). The random ingredient

that allows for vacua to dip below the threshold for mass swaps is the magnitude

of the superpotential. The vev shows no dependence on the distance of the vacuum

from the conifold. This is shown in figure 4.5.

We reiterate that in all cases, including these nonconformist 33, the Hessian’s

eigenspace enjoys an approximate separation between the complex structure field

space, and axio-dilaton field space. The angle between the subspace spanned by one

of the moduli — ξ or σ — and that spanned by the two eigenvectors associated with

one of the mass pairs — m2
1± or m2

2± — can be computed. In figure 4.6 we display
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Figure 4.5: A scatter plot of the magnitude of the vev of the superpotential vs.
ξvac. Note that the two bear no significant dependence on one another. Data points
become more clustered as one moves toward the peak or either quantity’s distribution
independently.

the histogram of angles between the complex structure subspace and the i = 1 mass

pair for all vacua. The mean angle is 5.85 degrees, indicating that the subspaces are

approximately parallel. The identical statement holds for the axio-dilaton subspace

and the second mass pair. A visual depiction of the subspaces is included to the right

of the histogram, and uses the mean angle.

Now that we have established that this separation between z and τ lines up with

the half-way marker between the masses in virtually all cases, we turn to developing

intuition for each pair. We display the distributions of λ1 and λ2 in figure 4.7, and

of |W | in figure 4.8. We have absorbed a factor of the vev of eK/2 into the definitions

of each of these three, as they are the correct Kähler invariant quantities, i.e. the

physically relevant values to consider.

As expected, the λ1 distribution’s scale is significantly larger than λ2’s due to

the accumulation of vacua where the Yukawa coupling diverges. Specifically, we

find a difference of two to three orders of magnitude. The characteristics of the

corresponding mass pairs will depend on the relative sizes of the λi to |W | individually.
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Figure 4.6: A distribution of relative angle, θ, between the complex structure subspace
of the moduli space and the m2

1± eigenspace, which is identical to that between the
axio-dilaton subspace and the m2

2± eigenspace. The fact that the angles for all vacua
are small indicates that the former pair are approximately parallel to each other, and
likewise for the latter. A visual aid depicting this split of the eigenspace is shown to
the right using the mean value of this angle, which is 5.85 degrees for our vacua.

Figure 4.7: Histograms of the Kähler independent λi for our ensemble of vacua.
Estimated distributions obtained numerically are plotted over each histogram in blue.

We find a superpotential that is approximately one order of magnitude larger than

λ2, but one order smaller than λ1 (several orders smaller for vacua in the tail).

The resulting two mass pairs are displayed in figures 4.9 and 4.10, with the larger

mass of each couple plotted on the horizontal. We immediately notice that the com-
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Figure 4.8: The histogram of the Kähler independent vevs of the superpotential for
our ensemble. The estimated distribution obtained numerically is overlaid.

plex structure mass pair looks more tightly correlated than the axio-dilaton pair.

This, as we’ll analyze more precisely later, is entirely an artifact of the difference in

scale between the two field’s pairs; an effect that is exaggerated by the particularly

wide range needed to include all of the z mass data points in figure 4.9. The dis-

tribution (for both members of the z pair) peaks at much lower values, around 100.

A fairer comparison with the τ masses, which are more widely/evenly distributed,

would come from zooming in and excluding the z masses’ long tails. A partial zoom

is shown in the ellipsoidal window on the right in figure 4.9. A more refined analysis

will nonetheless reveal that the two fields have virtually identical levels of relative

degeneracy between the members of their respective pairs.

Turning to the τ data points shown in figure 4.10, note firstly that they fill in more

of the triangular half below the diagonal including the region immediately beneath the

diagonal. This indicates that there is a larger variety among the dimensionful mass

gaps for the axio-dilaton, than for the complex structure. There are more instances of

near equality between the masses — in an absolute/dimensionful sense — as compared

to those in the lower range of z’s distribution (there are far more data points along the

diagonal boundary in the axio-dilaton’s scatter plot than in the zoomed in complex

structure’s). There are also more instances of large differences for the τ pairs than
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Figure 4.9: A scatter plot for the mass pair associated with the complex structure
modulus, with the heavier of the two, m1+, on the horizontal and the lighter, m1−on
the vertical. A dashed line with slope one is plotted in purple. The portion of the
plot focused where the masses distributions peak (i.e. where the data points cluster)
is shown to the right.

the z’s. Clearly, the latter statement remains true when z’s tail is considered, but

the former may not. These distinctions make sense given the distributions for the λi

and |W |. Essentially, the τ masses are dominated by the superpotential, which has

a rather large spread and is not skewed (roughly Gaussian). This leads to a more

uniform distribution horizontally throughout the triangle.

The lack of space between data points and the diagonal is due to the fact that λ2

peaks very near zero, and decays quickly before its decline steadies around ∼ 0.5. This

increases the frequency of λ2’s that are completely negligible compared to |W |, and

thus very nearly equal masses among the given pair. The axio-dilaton pairs’ greater

vertical extent throughout the triangle is due to the combination of the larger spread

in λ2 and |W |, and the fact that the intervals where they are supported partially

overlap. Thus, more instances of close competition between λ2 and |W | occur than

for λ1 and W .

These observations are helpful for building intuition, but a comparison of the

degree of degeneracy in the mass pairs of the two fields should involve dimensionless
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Figure 4.10: The analogous scatter plot for the mass pair associated with the axio-
dilaton as that in figure 4.9.

mass gaps, namely those scaled by the mean of the masses in each pair. Starting with

the difference in the squared masses of the two members in the ith pair, 4λi|W |, one

finds the limiting form,

∆mi/2

mi,avg

=

√
λi|W |

λ2i + |W |2
(4.3.18)

λi ≪ |W | : ∆mi/2

mi,avg

→ λi
|W |

≪ 1 (4.3.19)

λi ≫ |W | : ∆mi/2

mi,avg

→ |W |
λi

≫ 1 (4.3.20)

That the result is the same for both limits simply reflects the fact that one can equally

well view λi as the degeneracy breaking term as one can |W |. A small λi compared

to |W | yields a mass pair mi± ≈ |W | ± ϵ, and the reverse yields a mass pair ≈ λi± ϵ.

Now, we may consider a probability density for each modulus as a function of the

rescaled half mass gaps. For a given one of the moduli its value integrated over an

interval [a, b] would yield the probability of finding a vacuum for whom that modulus’

associated masses each lie within (b − a)mi,avg of their mean, mi,avg. We can then

consider a cumulative density function obtained by integrating the probability density

from a = 0. In figure 4.11 we display the histograms for our data corresponding to
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Figure 4.11: The cumulative relative mass gaps for each pair of masses, mi±. The pair
associated with the axio-dilaton is shown in on top in the darker shade of blue, while
that associated with the complex structure is shown behind in the lighter turquoise
color. The two are nearly identical meaning that the relative degree of non-degeneracy
between the masses in a given pair is distributed in the same manner across the vacua
of our ensemble, regardless of with which of the moduli the mass pair is associated.

the cumulative density functions (their discrete analogs) for our sample of vacua.

Notice that the complex structure and the axio-dilaton’s histograms are virtually

indistinguishable. They both achieve 50% within a threshold of 0.26, and continue to

rise together in step with 75% of both fields having scaled gaps within the threshold

of 0.40. This assessment of relative degeneracy, or relative spread, is not evident from

looking at the scatter plots alone.

The structure and patterns we’ve encountered in the masses clearly won’t be

replicated with an ordinary Random Matrix Model where the Hessian for each vacuum

is taken to be Wirshart — a Hermitian random matrix that is positive definite by

construction. One essentially “squares” a random (Wigner) matrix, A, which is not

in general Hermitian, by multiplying it with its complex conjugate. The entries of
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the Wigner matrix are taken to be independent and identically distributed, that is

drawn from an O(N2)-dimensional Gaussian.

In light of the analytic form of the Hessian with which we begin, and the limiting

behavior of one of its essential building blocks, Z, for near conifold vacua, we design a

different Random Matrix Model. We’ve seen three (Kähler independent) parameters

are ultimately in control. These are (1) the proximity of a given vacuum to the

conifold point, (2) its value of eK/2|Z01| and (3) its value of eK/2|W |. We should

be able to mimic the actual mass data with a random sample of these triples. The

simplest case would be to treat each parameter independently.

We saw earlier that control parameters (1) and (3) do not appear to depend on one

another, as indicated by figure 4.5. A similar scatter plot for (1) and (2) is displayed

in the right panel of figure 4.12, demonstrating their lack of correlation. The plot

for (2) and (3) shows a sharp cutoff because the tadpole condition forbids these data

points from leaving the quarter circle. It can be shown that the tadpole condition

implies,

|Z01|2 + |W |2 ≤ Lmax (4.3.21)

in Gaussian normal coordinates.

The radius of the arc plotted in figure 4.12 is indeed
√
Lmax =

√
300. Within this

region however the data points vary independently. The empty bands along both

axes are simply a reflection of the fact that the two distributions are peaked away

from zero, with relatively little of their support coming from the interval ≈ [0, 5].

Just as with the other two scatter plots, the density of data points increases as either

parameter is pushed towards the value where its distribution peaks while the other

is held fixed. The lack of correlation within the region suggests we do the following.

First obtain estimated probability densities for the Kähler invariant magnitudes

in the canonically normalized fields, namely, eK/2|W | and eK/2|Z01|, as well as for

the conifold distance. Draw a value from each distribution independently. If it has
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Figure 4.12: The left panel shows a scatter plot of the (Kähler independent) magni-
tude of the 01 entry of the Z matrix in canonical coordinates against the vev of the
superpotential. The sharp quarter-circle boundary is a manifestation of the tadpole
condition, with the radius of the arc being

√
Lmax which for us is

√
300. Within the

region allowed by the tadpole condition the data points exhibit no correlation. The
panel on the right displays a plot of the Z matrix entry against the remaining control
parameter, the conifold distance. No correlation is evident between these either.

parameters (2) and (3) that violate inequality 4.3.21 dispose of it and redraw the

triple until it is satisfied. Then compute the random eigenvalues, λ21 and λ22, by

evaluating the Yukawa coupling at the randomly drawn conifold distance, and using

it with the random |Z01| in eq. 4.3.14.

In figure 4.13 we display the resulting scatter plot for the i = 1 random mass

pair — the artificial complex structure pair — atop that from our sample of actual

flux vacua for the full range of masses. The image in the ellipsoidal window zooms

in on the range where complex structure mass distributions peak. The RMM does a

good job in reproducing the data’s features in both regimes: the peak and the tail

of the mass distributions. The same is true for the RMM’s performance with the

axio-dilaton mass pair. The two are virually indistinguishable in their superposed

scatter plots, shown in figure 4.14.
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Figure 4.13: The random matrix model data for the artificial complex structure mass
pair are plotted in light blue over that of the actual vacuum data, shown in light pink.
The panel to the right magnifies the portion of the plot where the mass distributions
peak.

Figure 4.14: The random matrix model data for the artificial axio-dilaton mass pair
are plotted in light blue over that of the actual vacuum data, shown in light pink.
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Figure 4.15: The analogous histograms to those in figure 4.11 for the random matrix
model.

The scaled mass gap CDFs for the RMM also agree rather well with the actual

data, and is shown in figure 4.15. It is worth noting that without the step in the

RMM procedure that eliminates draws that live outside the quarter circle allowed

by the tadpole condition there is a noticeable overdensity of RMM axio-dilaton data

points away from the diagonal in the analogous version of figure 4.14. The effect

on the complex structure’s scatter plot of removing RMM tadpole condition is not

perceptible.

Couplings

The hierarchy present in the masses, due to the fact that our vacua accumulate

where the Yukawa coupling is singular, persists through the third and fourth order

couplings. Since the basis in which couplings ought to be reported factors into one

half associated almost entirely with the complex structure and the other with the

axio-dilaton, we naively expect each additional index associated with the former at
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the expense of the latter to involve the evaluation of increasingly more divergent

terms near they singularity.

In particular, one expects four distinct scales to emerge among the distributions

of third order coefficients, and five scales for the fourth order couplings. These corre-

spond to the 3-choose-2 and 4-choose-2 ways one can differentiate the scalar potential.

For instance, at third order we expect the Ai′j′k′ with all indices related to the complex

structure (that is, equal to 1 or 2 in our convention for the basis of real canonically

normalized fields) to be dominated by the term involving a derivative of the Yukawa

coupling. The next highest scale expected would then be that with two complex

structure and one axio-dilaton indices (3 or 4 in our convention), followed by one

complex structure and two axio-dilaton, and lastly that with all three axio-dilaton.

First we establish that such a hierarchy of scales is realized, and then confirm the

explanation in the preceding paragraph is valid by showing that the scale separation

becomes ever more prominent as the vacuum-to-conifold distance diminishes. We

then qualitatively investigate the correlations between the couplings at a given order,

and indicate that they are not the result of the coordinate transformation alone.

We accomplish this with the use of another random construction. Specifically, we

generate a set of random rank three symmetric tensors and transform each by the

orthogonal matrices from the actual set of vacuum data. Though one might expect

correlations to be built in by the special structure of the Hessian’s eigenspace, the

fact that none of the correlations present in the mirror quintic data is replicated by

the random procedure indicates that they are not the consequence of diagonalization.

Turning to the hierarchy among the magnitudes of the couplings, the scale sepa-

ration can be shown visually by first imagining each of the entries in the third order

couplings for a given vacuum, Ai′j′k′ , as living in one of 64 cells of a 4-by-4-by-4 celled

cube. We have one cube for each vacuum, and its entries take on positive or negative

values (with equal likelihood, as indicated by the roughly Gaussian distributions cen-
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Figure 4.16: Representative example of the distributions of higher order couplings.

tered at zero found for all coefficients. A representative sample of the histograms and

estimated distributions can be found in figure 4.16). Taking the labeling convention

for the real and canonically normalized field coordinates defined in subsection 4.2,

one 2-by-2-by-2 subblock in, say, the front-bottom corner of this cube will involve

all complex structure related indices. The subblock diagonally opposite it in the

top-far corner will involve all axio-dilaton indices, and the two types of mixed index

subblocks will live interspersed throughout the remaining 6 off-diagonal subblocks.

Next, consider taking the magnitude of the value in each cell and then computing

the median for each entry across the ensemble of cubes. The median is the more

appropriate quantity because the distributions of the magnitudes are heavily skewed,

just as the masses were. We may then represent the cube containing the ensemble’s

median values visually by coloring each cell according to a continuous scheme. The

resulting hierarchy is, not surprisingly, best illustrated using a logarithmic scale. Two

views of the resulting cube are shown in figure 4.17, with a color gradient of green to

white to pink indicating smallest to largest.

The cube arranges itself into the four 8-celled subcubes of different scale, which

we’ve described. This is indicated by the green quadrant, which is flanked by much

paler green (identical by symmetry) subcubes adjacent to it, the vibrant pink quad-

rant diagonally across from the green corner and lastly the (identical) subcubes with

pale pink and green cells that share an edge with the pink corner.
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Figure 4.17: The median across the ensemble of the magnitude of the transformed
third order couplings, Ai′j′k′ . Each cell represents one choice for the three indices.
i′ = 1 or 2 corresponds to the complex structure associated eigenvectors, y1 and y2,
whereas i′ = 3 or 4 corresponds to the axio-dilaton associated eigenvectors, y3 and
y4. The scale is logarithmic with green representing the smallest median magnitude
and pink representing the largest. The “origin,” so to speak, is located in the bottom
right corner of the back face in the view of the cube in the left panel. The pink 2-by-
2-by-2 subcube in this corner contains the all-complex-structure subset of couplings
since the indices are all either 1 or 2. Similarly the green corner diagonally opposite
contains the all-axio-dilaton couplings. The four expected hierarchies based on the
leading order behavior of the Yukawa coupling near the conifold can be seen by the
partitioning of the cube into four types of subblocks each with cell colors in a different
regime of the scale: pink, light pink/pale green, light green, and green. A view of the
cube rotated about the vertical axis is shown on the right.

The smallest couplings (green) do indeed reside in the all-axio-dilaton subblock,

which is located at the top left of the front face of the cube in the first view. The

pink corner is in fact the all-complex structure subblock. Its neighboring subcubes

— those that share an edge with it (for instance those directly above and directly

to the left of the pink corner in the front face of the second view) — still have two

complex structure indices because they are in the same 2-cell thick “slice” of the

cube, but have only one axio-dilaton index. The fact that the pale colors in these

neighboring subcubes are pinker/less green than the pale subcubes that neighbor the

green axio-dilaton corner means the ξ-ξ-σ couplings are larger than the other mixed

index cubic couplings, ξ-σ-σ.
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The hierarchy among the quartic couplings can be visualized in much the same

way, only with a stack of four 64 celled cubes instead of a single one. We show

two views of this hypercube in figure 4.18. The blocks are arranged top to bottom

according to the first index, i′, in Ai′j′k′l′ ; the top having i′ = 1 and bottom having

i′ = 4. The color scheme here is CMYK with cyan/blue representing the smallest

magnitude, followed by purple, magenta, orange, yellow, gray and finally black indi-

cating the largest. Notice that each cube in the stack partitions itself into quadrants

of four distinct scales (just like the single cube of third order couplings).

The top pair of blocks then has one additional index associated with the canonical

complex structure coordinate, relative to the bottom pair with the canonical axio-

dilaton. The largest magnitudes (the blackest cells) do in fact fill in the ξ-ξ-ξ subcube

of the top pair of blocks. These are the all-complex-structure quartic couplings.

These corner subcubes each share an edge with (identical) yellow subcubes. Since

neighboring subcubes differ by one index type these neighbors contain couplings with

three complex structure indices and one axio-dilaton. The fact that it is yellow

means ξ-ξ-ξ-σ couplings rank second largest. Across from the black corner subcubes

but within the same 2-cell thick slice we have the couplings that involve one more σ

in place of ξ, the ξ-ξ-σ-σ couplings. The fact that they are orange indicates they are

the third largest scale.

The remaining two scales in the hierarchy are displayed by the purple corners of

the top pair of blocks in the stack and the blue corner cubes that are only present in

the bottom two blocks in the stack. The purple corners of the top pair of blocks blocks

do in fact lie diagonally opposite the black corners, making them cells containing ξ-

σ-σ-σ couplings. The subcube located in this same top back corner position in the

bottom pair of blocks in the stack differs from the purple ones of the preceding top

pair in the stack by the first index, making them the all-axio-dilaton couplings. The

cells are indeed cyan/blue, making these couplings the smallest in scale.
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Figure 4.18: The analogous data as that displayed in figure 4.17 for the quartic
couplings Ai′j′k′l′ with a logarithmic scale for the magnitudes represented with a
CMYK color scheme (black being the largest, followed by yellow, magenta then cyan).
The five scales expected due to the behavior of the Yukawa coupling near the conifold
manifest themselves as the five different types of subcubes — those with cells in the
black, yellow, orange/pink, pink/purple, and blue. The origin of each of the four
cubes in the stack is at the bottom left of the front face in the view on the left,
making the all-complex-structure-couplings contained in the black corners of the top
pair of cubes. The panel on the right shows a view of the hypercube rotated about
the vertical axis, with the all-axio-dilaton couplings in the top front corner of the
bottom pair of cubes in the stack, which are blue as expected.
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Now that we’ve confirmed the existence of the naively expected hierarchies we

turn to their source — the proximity to the conifold point. A priori it is possible

that the divergent contributions due to the Yukawa coupling and its derivatives could

have been tempered by some other mechanism as the conifold is approached. It is

also important to assess the degree of variation in the expected scale separation. Just

as the vev of the superpotential played the role of a random element complicating an

otherwise clean analytic dependence on the conifold distance, here too we will have

a layer of noise atop the signal. The significance of this noise, and importantly the

degree to which it changes as the conifold is approached, is not obvious at the outset.

We show the conifold distance dependence of the cubic couplings’ scale separation

visually as well. For each vacuum’s four independent 8-cell subcubes we first compute

each subcube’s mean magnitude. The mean is the appropriate measure here since the

entries in a single subcube for an individual vacuum are comparable. Each vacuum

then has a list of four positive values — the average magnitude of each of the four

type of cubic couplings. We take the logarithm of each value in the list, as well that of

the magnitude of the canonical vacuum coordinate, |ξvac|. The ensemble data for all

four types of cubic couplings are displayed in the single log-log scatter plot in figure

4.19, with different colors used for each of the four types.

Notice first that the colors separate into four approximately linear bands with

negative slope. This indicates that each type of coupling has an inverse power law

dependence on the canonical vacuum coordinate, |ξvac|. The data points with most

negative slope, the pink band, are the ensemble of all-complex-structure cubic cou-

plings. Each pink point is a different vacuum’s mean ξ-ξ-ξ —type coupling magnitude.

Below this band lies the second largest scale in the cubic couplings involving two ξ

and one σ, shown in teal, followed by purple and navy blue for the σ-σ-ξ and the

all-axio-dilaton couplings, respectively. The fact that the bands are approximately

linear reflects the domination of the leading order term in the Yukawa coupling and
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Figure 4.19: A log-log scatter plot of the vacuum cubic couplings’ subcube average
magnitude versus conifold distance. Each subcube contains couplings of one of the
four types: all-ξ (shown in pink), ξ-ξ-σ (green), ξ-ξ-σ (purple), and all-σ (navy). The
fact that the data points organize themselves into approximately linear bands with
increasingly negative slope for each ξ at the expense of a σ confirms the Yukawa
coupling (through its successively more singular partial derivatives) is responsible for
the hierarchy observed. The width of individual bands signals the presence/role of
the random element, the vev of the superpotential.

derivatives thereof over other terms in the expressions for the cubic couplings.

The same analysis can be performed for the quartic couplings. We show the

resulting log-log scatter plot for the five types of couplings in figure 4.20, with the

same coloring scheme descending from the largest in pink (ξ-ξ-ξ-ξ–type), and the

addition of a fifth color, light-blue, for the smallest (all-axio-dilaton type). The same

reasoning indicates that the source of the hierarchy among the quartic couplings are

the terms involving the most ξ derivatives of Yukawa coupling evaluated near the

conifold point. For both the cubic and the quartic scatter plots we may view the

statistical variation within a given band as being supplied by the random element,
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Figure 4.20: The analogous plot as that in figure 4.19 for the quartic couplings. The
colors are ordered in the same manner according to the number of ξ’s in the coupling-
type, descending from all-ξ (pink), with the addition of light-blue for the last of the
five types, all-σ. The self organization of the vacuum data into the approximately
linear bands of increasingly negative slope for every ξ at the expense of a σ confirms
the validity of our explanation of the hierarchies based on the behavior of the Yukawa
coupling near the conifold.

the vev of the superpotential.

We conclude with a qualitative discussion of the remaining aspect of the structure

among the couplings that is not captured by a Random Matrix Model, for example

that of [37]. These are the pattern of nontrivial correlations we find between couplings.

That is, the ensemble of Ai′j′k′ and Ai′j′k′l′ are not accurately modeled by totally

symmetric tensors whose entries are drawn separately from independent distributions.

We’ve seen that the distribution of a particular cubic or quartic coupling is roughly

Gaussian and is centered at zero. The hierarchies discussed mean that the spread

of these distributions differ in scale, according to index type. For instance the A112

distribution is comparable to A222 in this regard, but not to, say, A113, whose spread
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Figure 4.21: A representative sample of the scatter plots of pairs of cubic and quartic
couplings from the vacuum data (pink, green, and purple), as well as from the ran-
dom matrix model couplings (blue) designed as a diagnostic. Note that whereas the
vacuum data exhibits sharply defined correlations between certain pairs of couplings,
all the random matrix model pairs do not. This indicates that correlations are not
merely built in by the diagnoalization of the Hessian in canonical coordinates.
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is smaller by comparison.

The hierarchies and the non-flat distributions themselves need not have come with

correlations between couplings. The fact that we find approximately linear scatter

plots between particular pairs of couplings renders a random approach involving inde-

pendent distributions — uniform or otherwise — a poor approximation to the actual

coefficients. A representative sample of the nontrivial correlations for the cubic cou-

pling data sets are shown eight of the nine panels in figure 4.21, excluding that in the

bottom right corner (in blue).

The pink plots on the top row show that while the pairs A111 with A122, and A112

with A222 have an approximately constant ratio across the ensemble of vacua, there

is no relationship between A111 and A222. We also find correlations in the couplings

of medium scale, namely those that mix moduli type. For instance, A144 and A133

are approximately equal in magnitude, but opposite in sign, across models. This is

shown in the teal plots in the middle row.

A reasonable hypothesis for the source of these correlations is the transformation

performed to the field coordinates that simultaneously diagonalize the Hessian and

canonically normalizes the kinetic terms. This seemingly mundane step in the pro-

cessing of the raw coupling data might be suspected as being nontrivial at the level of

correlations because of the special structure of the Hessian’s eigenspace. We test this

hypothesis by comparing the results of a modified Random Matrix Model designed

entirely as a diagnostic for this purpose.

If it is the case that the transformation from the original noncanonical complex

coordinates builds in the patterns of correlations we observe, then an ensemble of

real and totally symmetric tensors with i.i.d. entries acted upon by the orthogonal

transformation O (defined in subsection 4.2) ought to exhibit correlations. Since

we have 1358 O matrices, we build the same number of random rank-3 tensors and
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perform the transformation,

Arandijk → Oi
i′O

j
j′O

k
k′A

rand
ijk . (4.3.22)

The result is that the transformed random couplings are uncorrelated. We’ve included

a single scatter plot of these RMM couplings as a representative example. This is the

ninth panel in figure 4.21.

4.4 Discussion

The initial expectation that string theory would result in a unique, or nearly unique,

vacuum state whose low energy excitations would explain the familiar properties of

particle physics has not been borne out by developments over the past few decades.

Instead, a wealth of discoveries have revealed an ever greater abundance of mathe-

matically consistent vacua, without any allied developments that single out one (or

perhaps a few) such vacua as physically relevant. Because of this, significant attention

has shifted to statistical properties of these vacua and, more generally, to statistical

properties of the easier to analyze surrogate, random field theories in high-dimensional

moduli spaces.

In this work, we have investigated the degree to which this latter surrogate faith-

fully models the space of low energy field theories arising from string compactifica-

tions. We reviewed arguments which suggest the relevance of random field theories —

namely, the randomizing effects of arbitrary fluxes coupled with the broad spectrum

of vacuum locations in moduli space associated with each such flux choice. We then

tested this argument by focusing our attention on one particular compactification of

the type IIb string, the famous mirror to the quintic hypersurface. We identified a

class of 1358 low energy flux models built on this compactification, computed the

scalar potential for the canonically normalized scalar fields in each such model, and
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considered the statistical distributions of the renormalizable coefficients in the Taylor

expansions of the potentials. We confirmed previously known results for the second

order coefficients — mass terms — and went on to study the third and fourth or-

der terms. Our main result is that we found significant deviations from a random

collection of coefficients, as illustrated in figures 4.17, 4.18 and 4.21, showing that

some of the rich structure inherent in type IIb supergravity survives the randomizing

influence of flux compactifications.

The lesson, then, is that one must exercise care when invoking random field the-

ories as a model for the space of low energy compactified string dynamics. More

particularly, our results, and generalizations thereof to higher dimensional moduli

spaces, provide a sharper ensemble for accurate statistical modeling of the features

of low energy string theory.

Going forward, these results suggest a number of research directions. For ease of

computation we have focused on a Calabi-Yau compactification with a single complex

structure modulus. One would like to acquire an understanding of the distributions

we have studied in more generic cases with higher dimensional moduli spaces. Ex-

plicit analysis of the sort we’ve undertaken here would be difficult. However, in the

vicinity of a conifold locus — where vacua generally accumulate — we’ve reduced the

statistical dependence to the three dominant control parameters introduced earlier.

These each have natural higher dimensional generalizations and so it would be of

interest to see if we can gain insight into more general Calabi-Yau compactifications

guided by the results we found here, and thus avoiding direct calculation. Our results

also suggest revisiting the work [37], which have investigated the quantum stability of

vacua in random high dimensional scalar field theories as a surrogate for the stability

of the string landscape; specifically assessing whether decay rates are modified by

using a collection of random field theories whose distribution more closely aligns our

findings.
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Appendix: Near Conifold Period Expansion Coefficients

Recall that our integral and symplectic basis for mirror quintic’s period functions are
denoted Πi, with i = 0 and 3 an intersecting pair, and i = 1 and 2 the other. Π0

is the only non-analytic period at the conifold point. It’s partner, Π3, is the period
obtained by integrating the holomorphic 3-form over the cycle that collapses. This
period is nevertheless well-behaved (it simply vanishes at the conifold). The two
periods associated with the other intersecting pair of cycles are also analytic. These
are nonvanishing. The following expansions about the conifold point at z = 1 hold,

Π1(z) =

q∑
n=0

bn(z − 1)n (4.4.1)

Π2(z) =

q∑
n=0

cn(z − 1)n (4.4.2)

Π3(z) =

q∑
n=1

dn(z − 1)n. (4.4.3)

The values for the coefficients were computed in Mathematica by evaluating deriva-
tives of the expressions for the Πi in terms of the Meijer-G functions (the Ui) at the
conifold. We used 40 digit accuracy in these computations. The values are listed in
Table 1.

n bn cn dn
0 +1.293574i 6.19502− 7.11466i 0
1 −0.150767i −1.016605 + 0.829217i −0.355881i
2 +0.0777445i 0.570733− 0.427595i 0.249117i
3 −0.0522815i −0.401804 + 0.287548i −0.194548i
4 +0.0393684i 0.312044− 0.216526i 0.161285i
5 −0.0315669i −0.256050 + 0.173618i −0.138686i
6 +0.0263447i 0.217649− 0.144896i 0.122217i
7 −0.0226046i −0.189607 + 0.124325i −0.109620i
8 0.0197941i 0.168193− 0.108868i 0.0996353i

Table 1: Expansion coefficients for period functions Π1, Π2 and Π3.

The remaining period, Π0, is multiple-valued at the conifold point. The cycle
it is associated with picks up one copy of its vanishing partner for each revolution
around the conifold in moduli space. This fixes the form of Π0 to 4.1.74. To match
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the branch cuts of the logarithm in the expansion with that of the relevant Mejer-G
(U0) in Mathematica we must negate the argument of the logarithm. Ultimately the
expression we write for Π0 is,

Π0(z) = Π3(z)

(
log(−(z − 1))

2πi
− 1

2

)
+ f(z) (4.4.4)

with f(z) analytic.
Its expansion coefficients, an, were computed using a recursion relation based on

the fact Π0 satisfies the Picard-Fuchs equation. This is discussed at length in section
4.1. Here we simply tabulate the resulting values. The first three an are needed by
the recursion to generate the rest. They are obtained numerically, as discussed in
section 4.1. All coefficients were calculated using 30–40 digit accuracy computations
and are listed in Table 2.

n an
0 1.07073
1 0.024708− 0.177941i
2 −0.0115108 + 0.1245584i
3 0.0065650− 0.0972742i
4 −0.0042768 + 0.0806427i
5 0.0030290− 0.0693428i
6 −0.0022701 + 0.0611087i
7 0.0017719− 0.0548102i
8 −0.0014261 + 0.0498177i

Table 2: Expansion coefficients for analytic contribution to Π0
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