46,551 research outputs found

    List Scheduling in Embedded Systems under Memory Constraints

    Get PDF
    International audienceVideo decoding and image processing in embedded systems are subject to strong resource constraints, particularly in terms of memory. List-scheduling heuristics with static priorities (HEFT, SDC, etc.) being the oft-cited solutions due to both their good performance and their low complexity, we propose a method aimed at introducing the notion of memory into them. Moreover, we show that through appropriate adjustment of task priorities and judicious resort to insertion-based policy, speedups up to 20\% can be achieved. Lastly, we show that our technique allows to prevent deadlock and to substantially reduce the required memory footprint compared to classic list-scheduling heuristics.Le décodage vidéo et le traitement d'image dans les systèmes embarqués sont sujets à de fortes contraintes de ressources, particulièrement en termes de mémoire. Les heuristiques d'ordonnancement de liste à priorités statiques (HEFT, SDC,...) étant les solutions les plus souvent citées en raison à la fois de leurs bonnes performances et de leur faible complexité, nous proposons une méthode visant à y introduire la notion de mémoire. De plus, nous montrons que par le biais d'un ajustement adapté des priorités des tâches et d'un recours judicieux à l'insertion, des accélérations jusqu'à 20% peuvent être obtenues. Enfin, nous montrons que notre technique permet d'empêcher les interblocages et de réduire significativement l'empreinte mémoire requise comparé à des heuristiques d'ordonnancement de liste classiques

    List Scheduling in Embedded Systems Under Memory Constraints

    Get PDF
    International audienceVideo decoding and image processing in embedded systems are subject to strong resource constraints, particularly in terms of memory. List-scheduling heuristics with static priorities (HEFT, SDC, etc.) being the oft-cited solutions due to both their good performance and their low complexity, we propose a method aimed at introducing the notion of memory into them. Moreover, we show that through adequate adjustment of task priorities and judicious resort to insertion-based policy, speedups up to 20% can be achieved. We also show that our technique allows to prevent deadlock and to substantially reduce the required memory footprint compared to classic list-scheduling heuristics. Lastly, we propose a methodology to assess the appropriateness of dynamic scheduling in this context

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Toward Contention Analysis for Parallel Executing Real-Time Tasks

    Get PDF
    In measurement-based probabilistic timing analysis, the execution conditions imposed to tasks as measurement scenarios, have a strong impact to the worst-case execution time estimates. The scenarios and their effects on the task execution behavior have to be deeply investigated. The aim has to be to identify and to guarantee the scenarios that lead to the maximum measurements, i.e. the worst-case scenarios, and use them to assure the worst-case execution time estimates. We propose a contention analysis in order to identify the worst contentions that a task can suffer from concurrent executions. The work focuses on the interferences on shared resources (cache memories and memory buses) from parallel executions in multi-core real-time systems. Our approach consists of searching for possible task contenders for parallel executions, modeling their contentiousness, and classifying the measurement scenarios accordingly. We identify the most contentious ones and their worst-case effects on task execution times. The measurement-based probabilistic timing analysis is then used to verify the analysis proposed, qualify the scenarios with contentiousness, and compare them. A parallel execution simulator for multi-core real-time system is developed and used for validating our framework. The framework applies heuristics and assumptions that simplify the system behavior. It represents a first step for developing a complete approach which would be able to guarantee the worst-case behavior

    Parallelism-Aware Memory Interference Delay Analysis for COTS Multicore Systems

    Full text link
    In modern Commercial Off-The-Shelf (COTS) multicore systems, each core can generate many parallel memory requests at a time. The processing of these parallel requests in the DRAM controller greatly affects the memory interference delay experienced by running tasks on the platform. In this paper, we model a modern COTS multicore system which has a nonblocking last-level cache (LLC) and a DRAM controller that prioritizes reads over writes. To minimize interference, we focus on LLC and DRAM bank partitioned systems. Based on the model, we propose an analysis that computes a safe upper bound for the worst-case memory interference delay. We validated our analysis on a real COTS multicore platform with a set of carefully designed synthetic benchmarks as well as SPEC2006 benchmarks. Evaluation results show that our analysis is more accurately capture the worst-case memory interference delay and provides safer upper bounds compared to a recently proposed analysis which significantly under-estimate the delay.Comment: Technical Repor

    AADLib, A Library of Reusable AADL Models

    Get PDF
    The SAE Architecture Analysis and Design Language is now a well-established language for the description of critical embedded systems, but also cyber-physical ones. A wide range of analysis tools is already available, either as part of the OSATE tool chain, or separate ones. A key missing elements of AADL is a set of reusable building blocks to help learning AADL concepts, but also experiment already existing tool chains on validated real-life examples. In this paper, we present AADLib, a library of reusable model elements. AADLib is build on two pillars: 1/ a set of ready-to- use examples so that practitioners can learn more about the AADL language itself, but also experiment with existing tools. Each example comes with a full description of available analysis and expected results. This helps reducing the learning curve of the language. 2/ a set of reusable model elements that cover typical building blocks of critical systems: processors, networks, devices with a high level of fidelity so that the cost to start a new project is reduced. AADLib is distributed under a Free/Open Source License to further disseminate the AADL language. As such, AADLib provides a convenient way to discover AADL concepts and tool chains, and learn about its features
    • …
    corecore