3 research outputs found

    On the Troll-Trust Model for Edge Sign Prediction in Social Networks

    Get PDF
    In the problem of edge sign prediction, we are given a directed graph (representing a social network), and our task is to predict the binary labels of the edges (i.e., the positive or negative nature of the social relationships). Many successful heuristics for this problem are based on the troll-trust features, estimating at each node the fraction of outgoing and incoming positive/negative edges. We show that these heuristics can be understood, and rigorously analyzed, as approximators to the Bayes optimal classifier for a simple probabilistic model of the edge labels. We then show that the maximum likelihood estimator for this model approximately corresponds to the predictions of a Label Propagation algorithm run on a transformed version of the original social graph. Extensive experiments on a number of real-world datasets show that this algorithm is competitive against state-of-the-art classifiers in terms of both accuracy and scalability. Finally, we show that troll-trust features can also be used to derive online learning algorithms which have theoretical guarantees even when edges are adversarially labeled.Comment: v5: accepted to AISTATS 201

    On relational learning and discovery in social networks: a survey

    Get PDF
    The social networking scene has evolved tremendously over the years. It has grown in relational complexities that extend a vast presence onto popular social media platforms on the internet. With the advance of sentimental computing and social complexity, relationships which were once thought to be simple have now become multi-dimensional and widespread in the online scene. This explosion in the online social scene has attracted much research attention. The main aims of this work revolve around the knowledge discovery and datamining processes of these feature-rich relations. In this paper, we provide a survey of relational learning and discovery through popular social analysis of different structure types which are integral to applications within the emerging field of sentimental and affective computing. It is hoped that this contribution will add to the clarity of how social networks are analyzed with the latest groundbreaking methods and provide certain directions for future improvements

    Link-Sign Prediction in Dynamic Signed Directed Networks

    Get PDF
    International audienceMany real-world applications can be modeled as signed directed graphs wherein the links between nodes can have either positive or negative signs. Social networks can be modeled as signed directed graphs where positive/negative links represent trust/distrust relationships between users.In order to predict user behavior in social networks, several studies have addressed the link-sign prediction problem that predicts a link sign as positive or negative. However, the existing approaches do not take into account the time when the links were added which plays an important role in understanding the user relationships. Moreover, most of the existing approaches require the complete network information which is not realistic in modern social networks. Last but not least, these approaches are not adapted for dynamic networks and the link-sign prediction algorithms have to be reapplied each time the network changes.In this paper, we study the problem of link-sign prediction by combining random walks for graph sampling, Doc2Vec for node vectorization and Recurrent Neural Networks for prediction. The approach requires only local information and can be trained incrementally. Our experiments on the same datasets as state-of-the-art approaches show an improved prediction
    corecore