1,313,570 research outputs found

    Joint Dispersion Model with a Flexible Link

    Get PDF
    The objective is to model longitudinal and survival data jointly taking into account the dependence between the two responses in a real HIV/AIDS dataset using a shared parameter approach inside a Bayesian framework. We propose a linear mixed effects dispersion model to adjust the CD4 longitudinal biomarker data with a between-individual heterogeneity in the mean and variance. In doing so we are relaxing the usual assumption of a common variance for the longitudinal residuals. A hazard regression model is considered in addition to model the time since HIV/AIDS diagnostic until failure, being the coefficients, accounting for the linking between the longitudinal and survival processes, time-varying. This flexibility is specified using Penalized Splines and allows the relationship to vary in time. Because heteroscedasticity may be related with the survival, the standard deviation is considered as a covariate in the hazard model, thus enabling to study the effect of the CD4 counts' stability on the survival. The proposed framework outperforms the most used joint models, highlighting the importance in correctly taking account the individual heterogeneity for the measurement errors variance and the evolution of the disease over time in bringing new insights to better understand this biomarker-survival relation.Comment: 27 pages, 3 figures, 2 table

    Robot Excitation Trajectories for Dynamic Parameter Estimation using Optimized B-Splines

    Get PDF
    In this paper we adressed the problem of finding exciting trajectories for the identification of manipulator link inertia parameters. This can be formulated as a constraint nonlinear optimization problem. The new approach in the presented method is the parameterization of the trajectories with optimized B-splines. Experiments are carried out on a 7 joint Light-Weight robot with torque sensoring in each joint. Thus, unmodeled joint friction and noisy motor current measurements must not be taken into account. The estimated dynamic model is verified on a different validation trajectory. The results show a clear improvement of the estimated dynamic model compared to a CAD-valued model

    A passivity based control methodology for flexible joint robots with application to a simplified shuttle RMS arm

    Get PDF
    The main goal is to develop a general theory for the control of flexible robots, including flexible joint robots, flexible link robots, rigid bodies with flexible appendages, etc. As part of the validation, the theory is applied to the control law development for a test example which consists of a three-link arm modeled after the shoulder yaw joint of the space shuttle remote manipulator system (RMS). The performance of the closed loop control system is then compared with the performance of the existing RMS controller to demonstrate the effectiveness of the proposed approach. The theoretical foundation of this new approach to the control of flexible robots is presented and its efficacy is demonstrated through simulation results on the three-link test arm

    Rheumatoid arthritis and spondyloarthropathy

    Get PDF
    Part 2 of the article can be found through this link: https://www.um.edu.mt/library/oar//handle/123456789/13280Rheumatoid arthritis (RA) and spondyloarthropathy are two groups of inflammatory joint disease. Detection of early inflammatory joint disease is not possible with clinical examination or plain radiography, which have been the main diagnostic methods in the past. Changes detected on plain radiography are those of chronic damage caused by these conditions rather that acute inflammation, which results in delay in diagnosis and often suboptimal outcomes in these patients.peer-reviewe

    Power Allocation for Conventional and Buffer-Aided Link Adaptive Relaying Systems with Energy Harvesting Nodes

    Full text link
    Energy harvesting (EH) nodes can play an important role in cooperative communication systems which do not have a continuous power supply. In this paper, we consider the optimization of conventional and buffer-aided link adaptive EH relaying systems, where an EH source communicates with the destination via an EH decode-and-forward relay. In conventional relaying, source and relay transmit signals in consecutive time slots whereas in buffer-aided link adaptive relaying, the state of the source-relay and relay-destination channels determines whether the source or the relay is selected for transmission. Our objective is to maximize the system throughput over a finite number of transmission time slots for both relaying protocols. In case of conventional relaying, we propose an offline and several online joint source and relay transmit power allocation schemes. For offline power allocation, we formulate an optimization problem which can be solved optimally. For the online case, we propose a dynamic programming (DP) approach to compute the optimal online transmit power. To alleviate the complexity inherent to DP, we also propose several suboptimal online power allocation schemes. For buffer-aided link adaptive relaying, we show that the joint offline optimization of the source and relay transmit powers along with the link selection results in a mixed integer non-linear program which we solve optimally using the spatial branch-and-bound method. We also propose an efficient online power allocation scheme and a naive online power allocation scheme for buffer-aided link adaptive relaying. Our results show that link adaptive relaying provides performance improvement over conventional relaying at the expense of a higher computational complexity.Comment: Submitted to IEEE Transactions on Wireless Communication

    Kinematic functions for the 7 DOF robotics research arm

    Get PDF
    The Robotics Research Model K-1207 manipulator is a redundant 7R serial link arm with offsets at all joints. To uniquely determine joint angles for a given end-effector configuration, the redundancy is parameterized by a scalar variable which corresponds to the angle between the manipulator elbow plane and the vertical plane. The forward kinematic mappings from joint-space to end-effector configuration and elbow angle, and the augmented Jacobian matrix which gives end-effector and elbow angle rates as a function of joint rates, are also derived
    corecore