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Abstract

The Robotics Research Model K-1207 manipulator is a redundant 7R serial link arm with offsets at

all joints. To uniquely determine joint angles for a given end-effector configuration, the redundancy is

parameterized by a scalar variable which corresponds to the angle between the manipulator elbow plane

and the vertical plane. The forward kinematic mappings from joint-space to end-effector configuration

and elbow angle, and the augmented Jacobian matrix which gives end-effector and elbow angle rates

as a function of joint rates, are also derived.

1. Introduction

The Robotics Research Model K-1207 arm is a seven degree-of-freedom serial link manipulator

which offers one extra degree of joint-space redundancy over that needed for the fundamental task of

end-effector placement and orientation. In this paper, a reasonable task-space parameterization, _b,

is first given of the redundancy, and the forward kinematic mappings from joint space to end-effector

configuration and .¢ are then derived. We also give the augmented Jacobian, jA, which gives end-

effector rates and _b as a function of joint rates. A longer and more complete version of this paper is

available which contains proofs, as well as an analysis of the kinematic and algorithmic singularities

of the augmented Jacobian.

2. Forward Kinematics

2.1. Mapping from Joint-Space to End-Effector Configuration

The Robotics Research Model K-1207 arm is essentially a 7R spherical-revolute-spherical ma-

nipulator, but with additional nonzero offsets (denoted by the link lengths ai, i = 1,... ,6) at each of

the joints, as shown in Figures 1-3. Denavit-Hartenberg (D-H) link frame assignments are given in

accordance with the convention described in [1]. This assignment results in the following general form

of the interlink homogeneous transformation matrix:

cos Oi - sin Oi 0 ai-1 \(i-lR, i-'pi ) sinOi.cosai_l cosOi.cosai-1 -sinai-1 -di'sin_i-1 )i-lTi -_ 0T 1 = sinOi, sin Oq_l cosOi, sinai_l cosoq-1 di. cos oti-i

0 0 0 1

where Oi denotes the i th joint angle. The D-It parameters for the K-1207 arm are given in Table

1. The link frame assignments for the K-1207 are given in Figure 2, where the arm is shown in its

zero configuration. The link i coordinate flame is denoted by Ui, with coordinate axes (xi, Yi, Y/) and

origin Oi. The associated interlink transformation matrices, i-lTi, i = 1,... 7, are easily found from

the above expression ewduated for the D-II parameter values listed in Table 1. If the link length

parameters ai, i = 1,...,6 are set to zero, the 7R anthropomorphic arm described in [2] is retrieved

and we call this arm the "zero-offset" arm.
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Tile forward kinematic function, °7'7, which gives tile position and orientation of the end_effector

as a function of joint angles 0 = (01,--.,0_) T, is °T 7 = °T 1...67.. If these multiplications are

performed to obtain a symbolic form for °T_, the resulting expression will be complex due to the

multitude of nonzero link offsets and the fact that no two consecutive joint axes are parallel. Rather

than construct and implement the symbolic expression, it is more efficient to compute the forward
kinematic function °T 7 via a link-by-link iteration of the form

°Ti=°Ti_l.i-lTi, i= 1,..-,7 (l)

thus exploiting special structural properties of the homogeneous transformation matrices during each

link update. Furthermore, it is useful to explicitly have the interlink homogeneous transformations,
i-l"_['i, since important quantities -- such as the vectors w, e, and p defined later -- can then be

computed. In fact, such quantities are often a direct result of the intermediate steps of the iteration
(1).

2.2. Mapping from Joint-Space to Elbow Angle

When the arm is in a kinematically nonsingular configuration, there will generally exist one excess

joint degree-of-freedom for the task of end effector control since there are seven joint angles available
to orient and position the end-effector -- a task which requires only six degrees of freedom. As a

result, for a fixed end-effector configuration there is generally a one-dimensional subset of joint space

(a "self-motion manifold") which maps to this configuration. Actually, there are finitely many, up to
16 in the most general case, such manifolds or "poses" [3, 4]. The extra degree of freedom represented

by a self-motion manifold can be used to attain some additional task requirement, provided that this

task can be performed independently of end-effector placement [5, 6]. Furthermore, the imposition
of an auxiliary task constraint can provide sufficient additional information to uniquely determine

the joint aagles (modulo the remaining finitely many-to-one mapping property represented by the

pose [3, 4]). This scalar additional task variable is denoted by _ and is assumed to be a meaningful

parameterization of the self-motion manifolds which map to a given end-effector configuration. We say

that the "basic" task of end-effector placement has been augmented by the additional task represented

by _b. In essence, the concept of the forward kinematic map is generalized to be the (finitely many-
to-one) mapping from 0 E R 7 to (°TT, _,).

Although _, can be any additional scalar parameter which is independent of end-effector configu-

ration, we define and use the "elbow angle" to resolve the manipulator redundancy. Refer to Figures

3 and 4 where S = O1, E = 04, and W = O7 denote the origins of link frames 1, 4, and 7 respectively.

_b is defined by the angle from the vertical plane containing the shoulder-wrist line (line SW) to
the shoulder_lbow-wrist plane (plane SEW) in the right-hand sense about the vector w = W - S.

Assuming that the elbow angle _ is a meaningful parameterization of manipulator redundancy, a self-

motion is described by a rotation of the plane SEW about the line SW. Note that the elbow angle _b

is undefined when the wrist point W is anywhere on a line above the shoulder point S -- even though
this is generally not a singular configuration -- since in this case the vertical plane is not uniquely

defined. 7) is also undefined when e and w are collinear since then the plane SEW is not uniquely
defined. In the latter case, the arm is either nearly fully outstretched, or folded, and is therefore near

or at an "elbow singular" configuration [3, 7].

To derive the forward kinematic function which gives V as a function of joint angles, again consider
Figure 4. Let w = W - S, e = E - S, and let V denote the unit vector in the vertical direction of

the base frame. Let the projection of e onto w be given by d = _(_Te), _ = w/llw[I. The minimum

distance from the line SW to the point E is along the vector p = e - d = (I - _T)e. The vertical
plane is the plane which contains both w and the vertical unit vector V. The unit vector in the vertical

plane which is orthogonal to w is given by g'= g/IIgH, with g = (w x V) x w. We also define the unit
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vectorff = P/IIPI[. Note that e, w, t_, d, p, if, £, and g'can be computed during the forward kinematics

iteration (1) (see the discussion following equation (6) below).

The vector £, or equivalently £', is treated as a free vector which can slide along the line SW. In

particular, _ is moved along the line SW until its base is in contact with the base of vector p at the

point d (see Figure 4), so that ¢ is the angle from £ to p. This construction results in

= = = (2)

where c_ = cos ¢ and s_ = sin _p. This gives

tgT(_'X _) _r(£ X p) (3)
tan !l' - "_T_ gT p

The result (3) can be simplified somewhat. Defining g = w × 9, we have t = g x w, and we note that

£Tg = _'Tg = 0. This means that £ and V are coplanar, both lying in the vertical plane. Since, in

general, the vertical plane is spanned by V and _, we have

g'=aV+fliG, a= 1/(_rV), fl=-a_ T_" (4)

Substituting this result into (2) gives

which can be used with (3) to obtain

tan ¢ -
ar( x _ ar( x p) (5)

Equation (5) immediately gives the forward kinematic function which maps the joint angles 0 to the

elbow angle ¢:
_b = atan2(_T(v X p), _Tp) (6)

Note that (6) is undefined when both arguments are simultaneously zero. This occurs when the arm

is in a configuration for which e and w are collinear, or for which the wrist point W is directly above

the shoulder point S on the line through V. These indeterminacies are discussed above, and are due

to the inability to uniquely define the elbow plane SEW or the reference vertical plane, respectively.

The augmented forward kinematics mapping 0 ---*(°TT, _b) is given by (1) and (6). The quantities

and p = e - d = (I - wwT)e are first computed during the iteration (1), after which _bis computed

by (6). Note that, with

( ) 0,,)°R4 °P4 and °T7-- 0T07'4 = 0 T 1 1

quantities which are directly computed during the iteration (1), the representations of e and w in the

base (link 0) frame f0 are precisely °e = 0/'4 and °w = °PT. Also note that V is a constant vector
which is usually expressed in a frame which gives it a particularly simple form such as (0,0, 1) T or

(1,0,0) 7 •
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3. Differential Kinematics

3.1. Manipulator End-Effector Jacobian, jee

To present actual values for the end-effector Jacobian, Je_, it is first necessary to choose a

"velocity reference point," as well as a frame in which to represent the vectorial quantities which

define the columns of the Jacobian. In this section, to simplify notation, we will suppress the trailing
superscript and write the end-effector Jacobian simply as J = je+. When a velocity reference point,

a, and a representation frame, Ur, have been chosen (as discussed immediately below), we write
rg r ee

a = Ja *

Let w_ and v_ be the angular and linear velocities of a coordinate frame, U_, located at a point a

and fixed with respect to the manipulator end-effector. The point a is known as a "velocity reference

point" of the end_effector. The Jacobian, J_(O) E R _×7, relates joint rates to the frame U_ rate of
change via the linear relationship (w/, vT) T = J_(O)O and is given by [8]

In (7), Hi denotes the unit vector corresponding to the z-axis of link frame i (i.e. of Ui) while
Pa,i - P_,o. = a - Oi is the vector from the origin, Oi, of link frame i to the point a. Note that
Pi,i = O.

Let Ub denote an alternative frame fixed with respect to the end-effector and located at the

velocity reference point b. The relationship between joint rates and the rate of change of Yb is given

by (w T,vTb) T = JbO. Let U_ and Us be frames which are not necessarily fixed with respect to the

end-effector. The representations of w_ and v_ in frame U_ are denoted by _w_ and _v_. Similarly,
_Wb and _vb are the representations of wb and Vb in Us. Note that we have defined a and b to be

end-effector reference points, i.e. to be fixed with respect to the end_effector, while we have placed
no constraints on r and s.

The Jacobian, "J_, giving the rate of change of U_ represented in Ur, is related to _Jb, the
Jacobian giving the rate of change of frame Ub represented in frame Us, by [1, 9]

o)(,_J_ = 0 R, " st:)a, b " sJb (8)

where, for a 3-vector x, _ denotes the 3 x 3 skew symmetric matrix defined by ky = x × y for every

y E R 3 and P_,b -- a-b. When r = b, we write bp_ =_ bp_,b" _R_ E R 3x3 is a rotation matrix,

represented in frame U_, which gives the orientation of frame U_ with respect to frame U_. Common

choices of _Ja are given by 7j7, and °J 7. It is straightforward to show from (8) that

det rJ,_(O)"Ja(O) T = det SJb(O)"Jb(O) T (9)

for every a, b, r, and s. Since an m x n matrix M, m < n, is full rank if and only if det MM T _ O,

eq. (9) shows that the singularity of a manipulator Jacobian is independent of the choice of velocity

reference point and representation frame, and is a function purely of the manipulator configuration
variables 0.

An important aspect of the decomposition (8) is that s and b can often be chosen to make the

Jacobian matrix have a particularly simple structure for the purposes of singularity analysis, efficient

evaluation, and efficient inversion. For example, in [10] an algorithm for the efficient computation of

°J0 is given. Note that J0 does not give the velocity of the base frame, 5"0, as a function of joint
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rates -- indeed, in most cases the base is assumed fixed and the base frame origin, O0, cannot be a

velocity reference point for the moving end-effector. Instead, J0 is viewed as giving the velocity of a
reference frame fixed with respect to the end-effector and instantaneously coincident with the base

frame origin, O0. The computation of

°z'x °_2 "'" °_7 ) (10)°J° = °_1 x°Po,1 °_'2 x °Po,2 -.. %7 x°Po,2

where kPi,j = Okpi,j and Pi,j = Po,,o, = Oj - Oi, naturally fits in with the forward kinematics

iteration (1), since from

o :(o
°P i - °Pi,o, we can obtain °Po,i = -°Pi and °_i × °Po,i where °_i = °Riea, e3 = (0,0,1) T. Having

°Jo, °J 7 can then be found from (see (8))

(I _) (11)°gT= o157 °go

The symbolic forms of°J0 and °J7 can be found from this procedure, but these expressions are complex

and provide little insight.

In [9], the results in [10] are extended to show that taking s = Oi and b = Oj for an appropriate
choice of link frames i and j can result in an expression ijj _ O, do _ which is not only efficient to

compute, but which simplifies singularity analysis and (for nonredundant manipulators) inversion. In

particular, to gain insight into the singularity structure of the K-1207 end-effector Jacobian (and to

obtain alternative ways of constructing °d0 and °dT) we will let b = 3 (i.e., let the velocity reference

point be the origin of link frame 3) and s = 3 (let the reference frame be link frame 3) in (9) to

arrive at an expression for 3J3. J3 should be interpreted as giving the velocity of a fictitious tool

frame which is instantaneously coincident with link frame 3. 333 is found from eq. (7) by taking

Pa,i = P3,i = Po3,0, = 03 - Oi and representing Hi and P3,i in link frame 3 to obtain 3_'i and

3_ i x 3p3,i, 3P3,i = °3P03,o,. The symbolic expression for 3J3 found in this manner is given by

3j3=

- S_.Ca $3 0 0 $4

S,. $3 C3 0 1 0

C2 0 1 0 C4

d3S2S3 + (a2C2 + al)Ss daC3 0 0 0

(daS2 + a2C2 + al)C3 -d3oC3 0 0 -a3C4 -- a4
0 --a2 0 a3 0

-C4Ss C4CsS6 + $4C6
Cs $5 $6

5'4 Ss C4 C6 - $4 Cs $6

$4(a4C5 q- as) - d5C4C5 oe5[C4(asC6 - d586 + a6) + a4S4S6]

-S5[a3S4 + ds] C5[$6(a3S4 + ds) - a6] - (asCs + a4 -t- a3C4)C6

64(a4C5 + a5) + C5(dsS4 + a3) S5[(a4C4S6 + a3S6) + S4(dsS6 - asC6 - a6)]

ltaving aJa, °J0 is found from (see eq. (8))

(I 0i) (I 0i)(° a ).3j3Ojo = 0/5 3 .°J3 = op3 . OR 00 R3
(13)
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with °P 3 _= °/)3, 0 given by

and °R 3 by

°R 3 =

{C1(d3S2 -I- a2C2 + al)_

°P3 = [$1(d3S2 -1-a2C2 -4- al) )\ d3C2 -- a2S 2

CxC2C3 - $1S3 -C, C2S3 - SxCa C,$2)
C1S3 -3L SLC2C3 C1C3 - 51C2S3 SiS2

- $2 Ca $2 $3 C2

(14)

(15)

The relative simplicity of (12) not only enables one to efficiently compute °J 7 via eqs. (11)-(15),

but also allows one to gain insight into conditions leading to Jacobian singularity. In the special case

of the zero-offset arm discussed in [2], corresponding to al .... = a6 = 0, (12) simplifies to

3jz= - 82C3 $3 0 0 $4 -C4 Ss C4 Cs $6 + $4 C6 \

$2 $3 C3 0 1 0 C5 Ss $6

C_ 0 1 0 C4 S4Ss C4C6-$4C5S6d3 $2 $3 d3C3 0 0 0 - ds C4 Cs - ds C4 $5 $6

d3S02C3 -d3S3 0 0 0 -d5S5 d5C5S6
0 0 0 0 d5 $4 Cs d5 5"4Ss $6

(16)

3.2. Elbow Angle Jacobian, d_, and the Augmented Jacobian, jA

Let the relationship, between the rate of change of a scalar additional task variable, g,, and the
joint rates be given by ¢ = J_t?. The "augmented" Jacobian is given by

where je_ is the end-effector Jacobian discussed in Section 3.1. For the task of positioning and
orienting the end_ffector augmented by an additional task represented by ¢, the augmented Jacobian

relates joint rates to the simultaneous rates of change of the end-effector and _b. Given the end-effector

Jacobian, je_, the augmented Jacobian jA is obtained once J_ has been determined for a given task

variable _b. In this section, J6 is constructed for the case where _b describes the angle between the
vertical plane and the elbow plane SEW as defined in Section 2.

Before proceeding, it is necessary to define the Jacobians E and W which relate joint rates to
and _b respectively via d = E0 and _b = W/_, where e and w are defined in Section 2.2. _ is the

linear velocity of the manipulator elbow point E = 04, and _b is the linear velocity of the wrist point
W = 07. We have

E=(Z'lXP4,1, _2xP4,2, _3xP4,3, 0, ..., 0) (17)

W---(_1 x P7,1, ''', _6 X P7,6, 0) (18)

where P_.j = O/ - O_. Note that eqs. (17) and (18) are given in coordinate-free form and that to

provide values for E, or W, a choice of reference frame for representing _'j and P,j must be made.
[ X

Also note that (compare eqs. (7)and (18)) J_ = (_dlr)' so that any procedure for producing a value

for Jr = J_ (such as the one discussed following eq. (10)) automatically results in a value for W.
'k /

Furthermore, just as one can construct °W from knowledge of i-lTi, i = 1,..-, 7 (say in the manner
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discussedafter eq. (10)), onecan readily computevaluesfor E given the interlink homogeneous

transformations i-1Ti.

Recall the definitions of _, _, V, p, p, w, _, and e given in Section 2.2. Also recall, as discussed in

Section 2.2, that these quantities can all be computed from knowledge of the interlink homogeneous

transformations i-1Ti.

Lemma 3.1: The relationship between 0 and _, where _b is the elbow angle as defined in Section 2.2,

is given by

1 1 ^ _')T_ (19a)

which results in

j,_ (_ x _)TE + { VTw'^- Ilpll x w (20)x I1 11Ilpl------'-]

Since the elbow angle _bis given by the angle from _ to p, it is natural that _ should depend only

on _ and /5 as in eq. (19a). Equation (49a) says that only the components of _ and lb which result in
an instantaneous motion of _ and p directly towards or away from each other can produce a change in

the elbow angle, _b. Based on our earlier discussions, it should be obvious that JO can be constructed

from knowledge of the interlink homogenous transformations i-lTi. Also note that J_ is independent

of the reference frame chosen to represent the quantities in the right hand side of eq. (20).

4. Conclusions

In this paper the forward kinematic functions which give end-effector configuration and elbow

angle as a function of joint angles for the Robotics Research Model K-1207 manipulator have been
derived. Also given is the augmented Jacobian which relates joint rates to end-effector and elbow

angle rates. Omitted derivations can be found in a longer and more complete version of this paper
available from the authors. The fuller version of this paper also contains a detailed singularity analysis

of the augmented Jacobian.
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Elbow Pitch_

_Wrist Roll

Tool Plate Roll

Wrist Pitch

Dw Roll

Shoulder

9ulder Pitch

FIGURE h Robotics Research Model K-1207 Arm
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i oq_l ai-_ di Oi

1 0° 0 0 01

2 -90 o al 0 02

3 +90* as d3 03

4 -90 ° a3 0 04

5 +90 ° a4 d5 05

6 -900 as 0 06

7 +900 a6 0 07

al = +4.850 in = +12.319 cm

a2 =-4.250 in =-10.795 cm

a3=-3.125 in =- 7.938 cm
a4=+3-125 in =+ 7.938 cm

a5=-1.937 in =- 4.920 cm

a6=+1.937 in =+ 4.920 cm

d3 = ds = 21.5 in = 54.61 cm

TABLE 1: Denavit-Hartenberg Parameters of the K-1207 Arm

d 3 d 5

FIGURE 2: Robotics Research Model K-1207 Link Frame Assignment
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