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Abstract— In this paper we adressed the problem of finding
exciting trajectories for the identification of manipulator link
inertia parameters. This can be formulated as a constraint
nonlinear optimization problem. The new approach in the
presented method is the parameterization of the trajectories
with optimized B-splines. Experiments are carried out on a
7 joint Light-Weight robot with torque sensoring in each
joint. Thus, unmodeled joint friction and noisy motor current
measurements must not be taken into account. The estimated
dynamic model is verified on a different validation trajectory.
The results show a clear improvement of the estimated dynamic
model compared to a CAD-valued model.

I. INTRODUCTION

The knowledge of the dynamic model of a manipulator
is a key issue in many robotic applications. The controller
performance and its design in general depends on the robot
model and can be improved with it. Most manufacturers
focus on the quality of the kinematics in order to secure
sufficient positioning accuracy. The dynamic properties are
normally generated from CAD data which are not identical
to the real robot. Furthermore, in the field of motion planning
an accurate model is essential to obtain useful solutions.
Especially the mass and center of mass of each link are
important to realize exact gravitation compensation control.
The identification of the inertial parameters like mass, center
of mass and moments of inertia requires experiments with
special exciting trajectories. Most industrial robots only use
joint position sensors. The applied moments in each joint,
required for the parameter estimation, must be calculated
via the motor current and the position signal and the joint
friction must be included in the model.

In this paper we present an alternative approach for finding
exciting trajectories for the identification of robot link inertia
parameters. To solve a constraint nonlinear optimization
problem we use B-splines for the parameterization of the
trajectories. The experiments are carried out on the 7 joint
DLR Light-Weight Robot which is equipped with torque
sensors in each joint. The estimated model is verified on a
different validation trajectory and the accuracy is compared
with a CAD-valued model.

A. Related Work

The problem of finding good excitation trajectories is a
common problem in the field of parameter identification and
different approaches have been presented in the literature.
In [1] the trajectory is optimized online by minimizing the
condition number of the observation matrix. In [2], [3], [4]
and [5] the condition number of the dynamic energy model
is optimized off-line to obtain a set of optimum points. In

a second step, these optimum points are interpolated using
fifth-order polynomial functions assuming zero initial and
final velocity and acceleration. The interpolation is obtained
by a further optimization problem to fit acceleration limits in
all joints. Following, a third optimization to fit all velocity
constraints. Finally, the position constraints are verified to fit
all position limits. If they do not, a new sequence of optimum
points with smaller constraints must be started. This trial-
and-error algorithm has some uncertainty in terms of finding
practicable solutions.

A different approach for the design of exciting trajectories
was presented in [6], based on a statistical framework, which
is also performed off-line. It differs both in the parameteri-
zation of the trajectory and in the optimization criterion. The
trajectory for each joint consists of a finite sum of harmonic
sine and cosine functions, which comes with important
advantages: it allows to improve the signal-to-noise ratio
of the measured data by time-domain data averaging, as
well as allowing to specify the bandwidth of the excitation
trajectories in terms of avoiding modeling errors arising from
robot flexibility. Further it allows the calculation of the joint
velocities and accelerations analytically. The optimization
criterion here is the minimization of the uncertainty on the
estimated parameters via the covariance matrix.

II. FORMULATION OF THE IDENTIFICATION
PROBLEM

A. The DLR Light-Weight Robot

The DLR Light-Wight Robot (LWR) is a serial chain robot
with 7 rotational joints. With its ratio of payload-to-total
weight of one, it is able to handle payloads of 14 kg over
its complete dynamic range. Since the robot is equipped in
each joint with a position sensor for the motor and for the
joint, as well as a sensor for the joint torques, it can be
controlled in position, velocity and torque mode. Especially
for the torque controlled mode, it is important to use a precise
dynamic model to improve the performance of the control
algorithm. Due to the fact that the torque sensors are placed
on the output side of the joint, no friction must be identified
for the purpose of the identification. The geometric model of
the robot given by CAD data is assumed to be sufficiently
exact. The kinematics of the robot is shown in Fig. 1.

B. Formulation of the Dynamic Model

For the parameter identification different models were
used in the literature [1], [5], [7], [8], [9], [10], [11], [12],
[13] and [14]. As discussed in [3] we use here the inverse
dynamic model. An effective algorithm for estimating inertial
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Fig. 1. Kinematic configuration of the DLR LWR 4

parameters of manipulator links and loads is presented in [7]
and [10] and is recalled in this section shortly.

By using the Newton-Euler approach all acting forces and
torques are calculated for each manipulator link separately.
The equation for each link can be written in parameter linear
form as

wii = AiΦi (1)

with wii as vector of forces and torques acting on joint i
caused only by the movement of joint i. The kinematic
matrix Ai describes the motion of link i and is a function
of the geometry, joint angle θi, joint velocity θ̇i and the
joint acceleration θ̈i. The parameter vector Φi consists of
the inertial parameters

Φi = [Mi,MXi,MYi,MZi, XXi, XYi, · · ·
· · ·XZi, Y Yi, Y Zi, ZZi]T

where

• Mi is the mass of link i
• MXi,MYi,MZi are the components of the first mo-

ments and
• XXi, XYi, XZi, Y Yi, Y Zi, ZZi are the components of

the inertia matrix of joint i.

The total wrench of forces and torques on joint i is the sum
of all wrenches wi,j distal to joint i. Since only the torques
in the joint axis can be measured, each joint wrench must
be reduced onto its rotation axis. The matrix expression of
the serial chain manipulator comes to

1τ1
2τ2

...
nτn

 =


K11 K12 · · · K1n

0 K22 · · · K2n

...
...

. . .
...

0 0 · · · Knn




1Φ1
2Φ2

...
nΦn

 (2)

or

τ = K Ψ (3)

where τ is the n× 1 vector of joint torques with n links, K
is the so called observation matrix or regressor matrix and
Ψ is the vector of all joint parameters Φi.

C. Estimation Procedure

Since the system of equations in (2) has 10n unknown
parameters but only n equations, N measurements along a
trajectory are required to set up an over-determined system
of linear equations

Y = Π Ψ + ρ (4)

with the observation matrix or regressor matrix Π and the
vector of all measured torques Y given by

Π =


K(1)
K(2)

...
K(N)

 ; Y =


τ (1)
τ (2)

...
τ (N)

 (5)

and the vector of errors ρ between the measured torques and
the model predicted torques.

As suggested in [3] a weighted least-squares optimization
can be used to estimate the parameters in (4)

Ψ = Arg.min
Φ
‖ρ‖2 =

(
ΠTΠ

)−1
ΠTY = Π+ Y (6)

Since the focus of this paper is the generation of exciting
trajectories for the dynamic parameter identification, the
procedure was split into two parts: firstly, the identification of
the base parameters out of Mi,MXi,MYi and MZi - here
called static parameters - and secondly, the identification of
the components of the inertia matrix of each link, here called
dynamic parameters with the static parameters assumed
known. The advantage on this sequential identification is
that for the static identification only measurements with fixed
poses are necessary, and as such uncertainties in generating
the joint velocities and accelerations are avoided. Further-
more, the optimization problem to generate exciting poses
depends only on joint positions and the number of parameters
to be optimized for the generation of the exciting trajectories
is significantly less than for the complete identification. The
identification of the static parameters was done prior to
the identification of the dynamic parameter and will not be
described here.

The set of minimal dynamic parameters Φdyn - the base
parameters - can be determined using the simple closed-form
rules of [12],[15] and [16]. With the known static parameters,
the equations of motion can be extended to

Y −ΠstatΨstat = Πdyn Ψdyn + ρ (7)

and the estimation in (6) comes to

Ψdyn =
(
ΠT
dynΠdyn

)−1
ΠT
dyn (Y −ΠstatΨstat)

= Π+
dyn (Y −ΠstatΨstat) (8)

D. Sensitivity of the Solution and Degree of Estimation

To evaluate the estimated parameters, several criteria
were proposed in the literature [2],[3],[6] and [12]. For
the level of excitation of each parameters, we use the 2-
norm condition number, which depends on the smallest
and the biggest singular value of the regressor matrix. The
smaller the condition number, the higher the excitation of
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each parameter and thus disturbances and noise decrease
their impact on the estimation. Furthermore, the accuracy
of an estimated parameter can be expressed with the relative
standard deviation. Hereby it is assumed that the observation
matrix Π is deterministic and that the torque error ρ is a
zero-mean additive independent Gaussian noise with σρ as
standard deviation. The variance-covariance matrix Cρ can
be calculated as in [12] with

Cρ = E
(
ρ ρT

)
= σ2

ρ Ir, (9)

E is called the expectation operator, Ir is the (r×r) identity
matrix and σρ is given by the unbiased estimation

σ2
ρ =

‖τ −Π Φest‖
(r − c)

2

(10)

with

r = total number of equations
c = number of parameters

The variance-covariance matrix of the estimation error is
given as

CΦest = E
[
(Φ−Φest) (Φ−Φest)

T
]

=

= Π+ Cρ

(
Π+
)T

= σ2
ρ

(
ΠT Π

)−1

(11)

With the variance-covariance matrix we can extract the
standard deviation of the estimation error σΦest,j

and its
relative value σΦest,jr

as the (j, j) element of CΦest

σΦest,j =
√

CΦest (j, j) (12)

and

σΦest,jr
= 100

σΦest,j

|Φest,j |
(13)

In [3] and [12] a parameter is assumed to be poorly identified
if the relative error deviation is in the area between 5 to 15 %
or above.

III. GENERATION OF OPTIMAL ROBOT
EXCITATION TRAJECTORIES

The parameter excitation is addressed here as a nonlinear
optimization problem.

A. Optimization Problem Formulation

The optimization problem contains a configuration space
C of dimensions C(θ) ⊆ <n, where n is the number of
robot joints and θ the vector of joint positions . The time
interval for the spline is tf . The optimization problem can
be formulated as

min
θ,tf

Γ (14)

where Γ is a predefined cost function and is described
below.

1) Cost function: The cost function for the nonlinear
optimization problem is defined as the sum of two scalars
and is defined in detail as

Γ = ξ1λ (Πdyn diag (ΦCAD)) + ξ2

 n∑
i=0

h∑
j=0

τi,j

−1

(15)

where the first summand is the condition number λ of
the product of observation matrix Πdyn and the diagonal
matrix containing the known CAD values of the respective
parameters as discussed in [4]. The second summand is
the reciprocal of the sum of the joint torques for all joints
over preselected points h of the trajectory. It was chosen to
improve the signal-to-noise ratio of the measurements. ξi are
scaling factors for each criterion.

2) Constraints: Due to the constraint of collision avoid-
ance, two different bounds for the end-effector position
are built. Firsty, the end-effector must not collide with its
environment and secondly, a self collision must be avoided.
Thus the workspace for the robot is defined for simplicity as
a cubic box around the manipulator with the conditions

xmin ≤ xee ≤ xmax (16)

with x = (x, y, z) the coordinates in the cartesian space.The
constraint for the self collision is simply defined as a sphere
around the manipulator base with the radius rscoll

rscoll ≤ xee (17)

A further constraint must be defined for the robots joint
limits. So the given intervals must not be exceeded for any
time during the trajectory for each joint

hi,min ≤ hi ≤ hi,max, i = 1, ..., n (18)

where h stands for x ⊂ {θi, θ̇i, θ̈i, τi}.

B. Parameterization of the Trajectory

Using polynomials for interpolating trajectory points, a
change of one parameter will change the complete interval
of the trajectory. Trajectories built with B-splines can be ad-
justed locally without affecting the rest of the trajectory. Due
to the fact that the trajectories for the parameter identification
must be defined in the robots joint space B-splines were used
here. The use of B-splines and the way how they can be
manipulated, in terms of searching for exciting trajectories
will be described below. Fig. (2) shows an example of a
B-spline interpolated via n+ 1 points.

A B-spline is defined between the knot interval from umin
to umax as

s (u) =

m∑
j=0

pjB
p
j (u) , umin ≤ u ≤ umax (19)

where pj are the scalar control points, Bpj are the basis
functions of degree p and m is the number of control points.
The variable u defines the knot vector. To avoid high forces
and moments on the robot during the identification process,
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Fig. 2. Spline trajectory via n+1 points [17]

at least a continuous jerk is defined here. Thus basis functions
of degree p = 4 are used as suggested in [17].

Since we set up the splines in the joint space of the
manipulator the dimension of the spline can be reduced to
the time dimension.

s (t) =

m∑
j=0

pjB
p
j (t) , tmin ≤ t ≤ tmax (20)

Now, with the given points qk , k = 0, ..., n which should
be interpolated at the time instants tk, the unknown control
points pj , j = 0, ...,m must be found under the condition

s(tk) = qk, k = 0, ...n (21)

At first, it is important to define the knot vector u. In the
case of spline order p = 4 it should be definded as

u = [t0, ..., t0,
t0 + t1

2
, ...,

tk−1 + tk
2

, ...,

...,
tn−1 + tn

2
, tn, ..., tn]

The number of the beginning and ending knots must be p+1
and the total number of knots is defined with

nknot = n+ 2p+ 1 (22)

and the number of unknown control points are

m = (n+ 1) + p (23)

In order to obtain the unknown control points pj , a linear
system by summarizing the n+ 1 equations can be build for
each point qk at the time tk

qk =
[
Bp0(tk), Bp1(tk), ..., Bpm−1(tk), Bpm(tk)

]
p (24)

with

p = [p0, p1, . . . , pm−1, pm]
T
, k = 0, ..., n (25)

For the identification trajectory some boundary conditions
should be fulfilled like zero initial and final velocity and
acceleration:

s(1)(t0) = v0 (26)
s(2)(t0) = a0 (27)
s(1)(tn) = vn (28)
s(2)(tn) = an (29)

To add these constraints, the ith derivatives of a spline can
be written in general as

s(i)(tk) = [Bp
(i)

0 (tk), Bp
(i)

1 (tk), ...,

..., Bp
(i)

m−1(tk), Bp
(i)

m (tk)]p (30)

with the ith derivative of the basis function Bp
(i)

j (tk) (for
the calculation, see [17])

The complete spline can be summarized in matrix form as

Ap = c (31)

with the matrix of basis functions A and the given trajectory
points

c = [q0, v0.a0, q1, ..., qn−1, am, vn, qn]
T (32)

Finally, the control points p can be obtained by solving the
determined linear system of equations (31) and the complete
B-spline can be built with the given constraints (for more
detail, see [17]).

C. Method of Solution
The described optimization problem is solved as a nonlin-

ear programming problem (NPL) by satisfying the inequality
constraints described above at all selected trajectory points.
For solving the NPL a Sequential Quadratic Programming
algorithm from Matlab was used.

In each iteration step, at the beginning a new B-spline
trajectory is calculated up to its second derivative. Out of
the new B-spline a total number of h points are selected and
both the weighted condition number and the joint torques are
calculated. The extraction of the discrete trajectory points
is equally distributed along the complete B-spline. This
is be done to minimize the computation effort during the
optimization process. Furthermore, the time resolution of
the B-spline trajectory is chosen greater for the same reason
compared to the final solution of the B-spline.

To find a global optimum of the solution we run the
optimization serveral times with ramdom initial guesses for
the starting parameters.

IV. EXPERIMENTAL RESULTS
The identification was made for the LWR 4 and the exper-

imental conditions are described below. For the workspace
following boxes are defined in [m]

−1.3 ≤ xee ≤ 1.5 (33)
−1.3 ≤ yee ≤ 1.5 (34)

0.3 ≤ zee ≤ 1.5 (35)
rscoll ≤ 0.3 (36)

and for the joint position limit constraints in [◦]

−170 ≤ θi ≤ 170, i = 1, 3, 5 (37)
−120 ≤ θi ≤ 120, i = 2, 4 (38)
−45 ≤ θi ≤ 80, i = 6 (39)
−30 ≤ θi ≤ 60, i = 7 (40)

0.3 ≤ xee (41)
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The vector for the joint velocity and acceleration constraints
in [rad/s] or [rad/s2] are

θ̇min,max = ± [1.88, 1.88, 2.22, 2.22, 3.56, 3.20, 3.20] (42)

θ̈min,max = ± [5.23, 5.23, 8.72, 8.72, 8.72, 17.45, 17.45] (43)

The torque limits are given in [Nm]

τmin,max = ± [200, 200, 100, 100, 100, 30, 30] (44)

A globally optimized trajectory comes to a condition
number of λ = 22.98 and it is shown for axis two in Fig. (3).
Random trajectories without optimization show condition
numbers of about λ ≈ 120. The dashed lines in the figure de-
pict the joint limits. The markers on the position graph show
the optimized position points. Further, the initial and final
conditions for the velocity and accelerations are fullfiled. In
order to improve the signal-to-noise ratio, the identification
trajectory was optimized with a known payload. The payload
data are obtained from a CAD model assumed to be highly
precise due to its simple geometry.

0 5 10 15 20
−2

0

2

θ
M

2

l

θ
2
 [

ra
d

]

Exciting trajectory − axis 2

0 5 10 15 20
−2

0

2
dθ

M
2

−dθ
M

2

d
θ

2
 [

ra
d

/s
]

0 5 10 15 20
−5

0

5
ddθ

M
2

−ddθ
M

2

d
d

θ
2
 [

ra
d

/s
2
]

time [s]

0 5 10 15 20 25
−50

0

50

d
d

d
θ

2
 (

je
rk

) 
[r

a
d

/s
3
]

time [s]

Fig. 3. Optimized trajectory for axis 2

The joint position and torque data were sampled with
1ms. To overcome the problem of noisy measurement data,
some filter strategies were used as presented in [3] and [5].
For this purpose, the position data were filtered using a zero-
phase digital IIR lowpass butterworth filter in both direction
with a cut-off frequency of 30Hz. The torque data with high
frequency torque ripple was filtered similarly. The filtering
procedure was processed with the Matlab decimate function.

A. Estimated Parameters

The estimated dynamic base parameters for the LWR
are listed in Tab. I. As you can see from the values of
relative standard deviation, most parameters are sufficiently
estimated after the criterion given at the end of Sec. II-
D. Especially all parameter with a high influence on the
dynamics are well estimated. You can see a slight trend
on small valued parameters to decline in the quality of
estimation. Due to the low influence to the dynamics this
effect might be tolerated.

TABLE I
IDENTIFIED INERTIA BASE PARAMETERS OF LWR4 AND RELATIVE

STANDARD DEVIATION. PARAMETER VALUES ARE EXPRESSED IN

[kgm2]

Parameter Value σΦr%

ZZ1 0.0057 0.429
XX2 0.0057 1.523
YZ2 0.0583 0.824
ZZ2 0.0005 4.237
XX3 0.0573 2.458
YZ3 0.0331 1.019
ZZ3 0.0005 3.287
XX4 0.0054 4.367
YZ4 0.0516 0.994
ZZ4 0.0005 2.597
XX5 0.0004 6.579
YZ5 0.0506 1.354
ZZ5 0.0289 4.322
XX6 0.0004 7.324
ZZ6 0.0033 2.328
ZZ7 0.0001 1.397

B. Model Validation

The quality of the obtained dynamic parameters is verified
with a different validation trajectory. This trajectory was also
built with B-splines, but the points were chosen randomly.
After filtering the signal data as described in IV, torque
differences were calculated both for torques predicted with
the estimated dynamic parameters and torques predicted with
the CAD data with respect to the measured torques. In
Fig. (4) you can see the torque differences as error levels
with their occurence over the measured validation trajectory
for the joints 2-7. For joint 2 to 6 the torque errors show
clearly decreased. Only for joint 7 the error occurence seems
to be equal for both models, but in terms of the error level
of about 1Nm this can be accepted.

V. DISCUSSION AND CONCLUSION

A. Discussion

The results in Tab. I show that the presented method using
a B-spline parameterisation for the optimization problem can
be used for the identification of dynamic parameters. From
Fig. (4) it is evident that the estimated model has significantly
more data points with lower error values than the CAD-
valued model. The use of torque sensors improves the torque
data compared to the method of indirectly obtaining the
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Fig. 4. Error occurence (torque difference) for a validation trajectory between the measured torques and the predicted torques of estimated model or CAD
model respectively

torques via noisy measurements of motor current. Since the
presented method is formulated as an optimization problem
with strict constraints, the robustness of the formulation is
much higher than that which uses the interpolation with 5th

order polynomial functions with a trial-and-error solution as
presented e.g. in [2] and [3]. The method of using trajectories
composed of a finit sum of harmonic sine and cosine func-
tions presented in [6] is able to control the bandwidth of the
periodic trajectories in order to avoid critical frequencies of
the robots flexibilities. To avoid such critical frequencies with
the method presented here, the obtained exciting trajectory
could be analysed after the optimization with an FFT method.

B. Conclusion

In this paper we addressed the problem of finding optimum
exciting trajectories for the identification of robot link inertia
parameters. For this purpose a constraint nonlinear optimiza-
tion problem was formulated and solved using a trajectory
parameterization with B-splines. In the experimentation a
DLR Light-Weight Robot with torque sensors in each of the
7 joints was used. A validation of the estimated model with
a different validation trajectory shows clearly improvements
on the accurray compared to a CAD-valued model.
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