3,873 research outputs found

    LER-GR: Location Error Resilient Geographical Routing for Vehicular Ad-hoc Networks

    Get PDF
    The efficiency and scalability of geographical routing depend on the accuracy of location information of vehicles. Each vehicle determines its location using Global Positioning System (GPS) or other positioning systems. Related literature in geographical routing implicitly assumes accurate location information. However, this assumption is unrealistic considering the accuracy limitation of GPS and obstruction of signals by road side environments. The inaccurate location information results in performance degradation of geographical routing protocols in vehicular environments. In this context, this paper proposes a location error resilient geographical routing (LER-GR) protocol. Rayleigh distribution based error calculation technique is utilized for assessing error in the location of neighbouring vehicles. Kalman filter based location prediction and correction technique is developed to predict the location of the neighbouring vehicles. The next forwarding vehicle (NFV) is selected based on the least error in location information. Simulations are carried out to evaluate the performance of LER-GR in realistic environments, considering junction-based as well as real map-based road networks. The comparative performance evaluation attests the location error resilient capability of LER-GR in a vehicular environment

    Geographic Centroid Routing for Vehicular Networks

    Get PDF
    A number of geolocation-based Delay Tolerant Networking (DTN) routing protocols have been shown to perform well in selected simulation and mobility scenarios. However, the suitability of these mechanisms for vehicular networks utilizing widely-available inexpensive Global Positioning System (GPS) hardware has not been evaluated. We propose a novel geolocation-based routing primitive (Centroid Routing) that is resilient to the measurement errors commonly present in low-cost GPS devices. Using this notion of Centroids, we construct two novel routing protocols and evaluate their performance with respect to positional errors as well as traditional DTN routing metrics. We show that they outperform existing approaches by a significant margin.Comment: 6 page

    A Framework to Quantify Network Resilience and Survivability

    Get PDF
    The significance of resilient communication networks in the modern society is well established. Resilience and survivability mechanisms in current networks are limited and domain specific. Subsequently, the evaluation methods are either qualitative assessments or context-specific metrics. There is a need for rigorous quantitative evaluation of network resilience. We propose a service oriented framework to characterize resilience of networks to a number of faults and challenges at any abstraction level. This dissertation presents methods to quantify the operational state and the expected service of the network using functional metrics. We formalize resilience as transitions of the network state in a two-dimensional state space quantifying network characteristics, from which network service performance parameters can be derived. One dimension represents the network as normally operating, partially degraded, or severely degraded. The other dimension represents network service as acceptable, impaired, or unacceptable. Our goal is to initially understand how to characterize network resilience, and ultimately how to guide network design and engineering toward increased resilience. We apply the proposed framework to evaluate the resilience of the various topologies and routing protocols. Furthermore, we present several mechanisms to improve the resilience of the networks to various challenges

    Intertwined localization and error-resilient geographic routing for mobile wireless sensor networks

    Get PDF
    “This is a post-peer-review, pre-copyedit version of an article published in Wireless Networks. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11276-018-1836-7”Geographic routing in wireless sensor networks brings numerous inherent advantages, albeit its performance relying heavily on accurate node locations. In mobile networks, localization of the continuously moving nodes is a challenging task and location errors are inevitable and affect considerably routing decisions. Our proposal is in response to the unrealistic assumption widely made by previous geographic routing protocols that the accurate location of mobile nodes can be obtained at any time. Such idealized assumption results in under-performing or infeasible routing protocols for the real world applications. In this paper, we propose INTEGER, a localization method intertwined with a new location-error-resilient geographic routing specifically designed for mobile sensor networks even when these networks are intermittently connected. By combining the localization phase with the geographic routing process, INTEGER can select a relay node based on nodes’ mobility predictions from the localization phase. Results show that INTEGER improves the efficiency of the routing by increasing the packet delivery ratio and by reducing the energy consumption while minimizing the number of relay nodes compared to six prevalent protocols from the literature.Peer ReviewedPostprint (author's final draft

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)
    • …
    corecore