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Large-scale layer-2 Ethernet networks are needed for important future and current appli-

cations and services including: metro Ethernet, wide area Ethernet, data center networks,

cyber-physical systems, and large data processing. However Ethernet bridging was de-

signed for small local area networks and suffers scalability and resiliency problems for

large networks. I will present the architecture and protocols of ROME, a layer-2 network

designed to be backwards compatible with Ethernet and scalable to tens of thousands of

switches and millions of end hosts. We first design a scalable greedy routing protocol,

Multi-hop Delaunay Triangulation (MDT) routing, for delivery guarantee on any connectiv-

ity graph with arbitrary node coordinates. To achieve near-optimal routing path for greedy

routing, we then present the first layer-2 virtual positioning protocol, Virtual Position on

Delaunay (VPoD). We then design a stateless multicast protocol, to support group commu-
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nication such as VLAN while improving switch memory scalability. To achieve efficient

host discovery, we present a novel distributed hash table, Delaunay DHT (D2HT). ROME

also includes routing and host discovery protocols for a hierarchical network. ROME pro-

tocols completely eliminate broadcast. Extensive experimental results show that ROME

protocols are efficient and scalable to metropolitan size. Furthermore, ROME protocols are

highly resilient to network dynamics. The routing latency of ROME is only slightly higher

than shortest-path latency.
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Chapter 1

Introduction

Ethernet, a fundamental communication technology in data link layer (layer 2), was de-

signed for a shared communication channel by a small group of end hosts. However, large

layer-2 networks, each scalable to tens of thousands of switches and connecting millions

of end hosts, are needed for important future and current applications and services [42] in-

cluding: data center networks [20], metro Ethernet [1, 5, 21, 22], wide area Ethernet [6],

cyber-physical systems [33], as well as enterprise and provider networks. As an example,

the globally-distributed database for a large corporation may scale up to millions of ma-

chines across hundreds of data centers [11]. We refer to such large-scale layer-2 networks

collectively as metropolitan-scale Ethernet.

Ethernet offers plug-and-play functionality and a flat MAC address space. Ethernet

MAC addresses, being permanent and location independent, support host mobility and facil-

itate management functions, such as trouble shooting and access control. For these reasons,

Ethernet is easy to manage. However Ethernet bridging is not scalable to a large network

because it uses a spanning tree routing protocol that is highly inefficient and not resilient

to failures. Switch memory scalability is another important concern because fast memory

such as SRAM is power-intensive and expensive. Also, Ethernet relies on network-wide

flooding for host discovery, which costs extremely high bandwidth for large networks.
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Today’s metropolitan and wide area Ethernet services provided by network oper-

ators are based upon a network of IP (layer-3) and MPLS routers which interconnect rel-

atively small Ethernet LANs [21]. Adding the IP layer to perform end-to-end routing in

these networks nullifies Ethernet’s desirable properties. IP routing protocols (such as, RIP,

OSPF, and IS-IS) are also not scalable, even though they provide shortest paths and are

much more efficient than Ethernet’s spanning tree protocol. More importantly, large IP net-

works require massive efforts by human operators to configure and manage, such as creating

subnets and assigning IP addresses.

Therefore, it is desirable to have a scalable and resilient layer-2 network that is

backwards compatible with Ethernet, i.e., its switches interact with hosts by Ethernet frames

using conventional Ethernet format and semantics.

Towards this goal, Myers et al. [42] proposed replacing Ethernet broadcast for host

discovery by a layer-2 distributed directory service. In 2007, replacing Ethernet broadcast

by a distributed hash table (DHT) was proposed independently by Kim and Rexford [26]

and Ray et al. [49]. In 2008, Kim et al. presented SEATTLE [25] which uses link-state

routing, a one-hop DHT (based on link-state routing) for host discovery, and multicast

trees for broadcasting to VLANs. Scalability of SEATTLE to metropolitan scale is limited

by link-state broadcast. In 2009, AIR [51] was proposed to replace link state routing in

SEATTLE. However, its latency was found to be larger than the latency of SEATTLE by

1.5 orders of magnitude. In 2011, VIRO [23] was proposed to replace link-state routing.

To construct a rooted virtual binary tree for routing, it uses a centralized algorithm for large

networks and a distributed algorithm for small networks. In all three papers [25, 51, 23],

simulation experiments were performed for networks of several hundred switches.

To achieve the goal of metropolitan-scale Ethernet, we present the ROME (Routing

On Metropolitan-scale Ethernet) architecture and protocols. The series of work for the

ROME architecture are summarized as follows.

1. We first present a novel geographic routing protocol, Multi-hop Delaunay Triangula-

2



tion (MDT) routing [29], that provides guaranteed delivery for an arbitrarily connect-

ed network of nodes in a d-dimensional space, for d ≥ 2. (Only Euclidean spaces are

considered in this dissertation.) The guaranteed delivery property is proved for node

locations specified by arbitrary coordinates; thus the property also holds for locations

of nodes specified by inaccurate coordinates or accurate coordinates. We show exper-

imentally that MDT routing provides a routing (distance) stretch close to 1 for nodes

in 2D and 3D when coordinates specifying node locations are accurate.1 When coor-

dinates specifying node locations are highly inaccurate, we show that MDT routing

provides a low routing (distance) stretch relative to other geographic routing proto-

cols. Nodes may also be arbitrarily located in a virtual space with packets routed by

MDT using the coordinates of nodes in the virtual space (instead of their coordinates

in physical space). In this case, MDT routing still provides guaranteed delivery.

2. We present Greedy Distance Vector (GDV) [46], the extension of MDT on virtual

coordinates. GDV is the first greedy routing protocol designed with the objective of

providing near-optimal paths for any additive routing metric. To apply GDV, each

node assigns itself a virtual position (position in a virtual space) such that the Eu-

clidean distance between any pair of nodes in the virtual space is a good estimate the

routing cost between them. Like DV routing, GDV selects as the next hop to desti-

nation t, a neighbor v that minimizes c(u,x)+ D̃(x, t) for x ∈ Pu, where D̃(x, t) is the

estimated routing cost from x to t from locally computing the distance between the

virtual positions of x and t. Since c(u,v)+ D̃(v, t) ≈ c(u,v)+D(v, t), the quality of

GDV paths is expected to be close to that of optimal DV paths. We also present the

first virtual positioning protocol for layer-2 networks, named Virtual Position by De-

launay (VPoD). VPoD makes use of the multi-hop DT structure, for the distributed

computation of node coordinates that provide near-optimal routing path for GDV.

3. Based on MDT and GDV, we design the unicast and multicast routing protocols in

1Routing and distance stretch are defined later.
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ROME. Unicast packet delivery in ROME is provided by GDV routing in the multi-

hop DT maintained by switches. In a correct multi-hop DT, ROME unicast routing

provides guaranteed delivery of any packet to the switch that is closest to the packet’s

destination location [29, 46]. We also present a stateless multicast protocol for group-

wide broadcast in ROME. A group message is delivered using the locations of its

receivers without construction of any multicast tree. Switches do not store any state

for delivering group messages.

4. To route a packet from its source host to its destination host, switches need to know

the MAC address of the destination host as well as its location. Such address and

location resolution are together referred to as host discovery. We present the ROME

protocols for host and service discovery using a new method, called Delaunay Dis-

tributed Hash Table (D2HT). Unlike host discovery in conventional Ethernet, D2HT

does not use broadcast.

5. We present the ROME protocols for routing and host discovery in a hierarchical net-

work that scales up to tens of thousands of switches and millions of hosts.

ROME is evaluated and compared using a packet-level event-driven simulator in

which ROME protocols (including GDV, MDT, and VPoD) are implemented in detail. Ev-

ery protocol message is routed and processed by switches hop by hop from source to des-

tination. Experimental results show that ROME protocols are efficient and scalable. The

routing latency of ROME is only slightly higher than the shortest-path latency. ROME pro-

tocols are highly resilient to network dynamics and switches quickly recover after a period

of churn. To demonstrate scalability, we provide simulation performance results for ROME

networks with up to 25,000 switches and 1.25 million hosts.

4



Chapter 2

Multi-hop Delaunay Triangulation

Routing

Geographic routing (also known as location-based or geometric routing) uses greedy for-

warding on the set of nodes (e.g., routers, switches, or wireless sensors) with coordinates in

a Euclidean space. At each step the sender sends the data message to a physical neighbor

that is closest to the destination in the Euclidean space. Geographic routing provides node

memory scalability because the routing state needed for greedy forwarding at each node is

independent of network size. In this dissertation, we propose to use geographic routing as a

scalable and resilient routing solution for layer-2 networks. However, to apply geographic

routing to any connected layer-2 network, a number of problems need to be solved.

Consider a network represented by a connected graph of nodes and physical links

(to be referred to as the connectivity graph). Greedy forwarding of a packet may be stuck

at a local minimum, i.e., the packet is at a node closer to the packet’s destination than any

of the node’s directly-connected neighbors. Geographic routing protocols differ mainly in

their recovery methods designed to move packets out of local minima. Nodes of a layer-2

network may have physical locations in 3D [45, 4, 16, 17], or are assigned virtual coordi-

nates in d-dimensional spaces (d > 2) [43, 13, 46]. For general connectivity graphs in 3D

5



or a higher dimensional space, face routing methods designed for 2D [8, 24, 27] are not

applicable. Furthermore, Durocher et al. [16] proved that there is no “local” routing pro-

tocol that provides guaranteed delivery, even under the strong assumptions of a “unit ball

graph” and accurate location information. Thus, designing a geographic routing protocol

that provides guaranteed delivery in d-dimensional spaces (d > 2) is a challenging problem.

We present in this chapter a novel geographic routing protocol, MDT, that provides

guaranteed delivery for a network of nodes in a d-dimensional space, for d ≥ 2. (Only

Euclidean spaces are considered in this dissertation.) The guaranteed delivery property is

proved for node locations specified by arbitrary coordinates; thus the property also holds

for node locations specified by inaccurate coordinates or accurate coordinates. We show

experimentally that MDT routing provides a routing (distance) stretch close to 1 for nodes

in 2D and 3D when coordinates specifying node locations are accurate.1 When coordinates

specifying node locations are highly inaccurate, we show that MDT routing provides a low

routing (distance) stretch relative to other geographic routing protocols. Nodes may also be

arbitrarily located in a virtual space with packets routed by MDT using the coordinates of

nodes in the virtual space (instead of their geographic locations in physical space). In this

case, MDT routing still provides guaranteed delivery.

Geographic routing in a virtual space is useful for networks without location in-

formation or networks in which the routing cost between two nodes is not proportional to

the physical distance between them. We will show that geographic routing can achieve

near-optimal routing paths by assigning nodes to locations in the virtual space such that the

Euclidean distance between each pair of nodes in the virtual space is a good estimate of

the routing cost between them. The problem is solved in Chapter 3 where we show how to

(i) make use of virtual coordinates to embed routing costs in virtual spaces, and (ii) extend

MDT routing to optimize end-to-end path costs for any additive routing metric (such as,

latency or ETT [14]).

1Routing and distance stretch are defined later.
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Figure 2.1: An illustration of connectivity, DT, and MDT graphs of a set of nodes in 2D

MDT was designed to leverage the guaranteed delivery property of Delaunay tri-

angulation (DT) graphs. For nodes in 2D, Bose and Morin proved that greedy routing in

a DT always finds a given destination node [7]. Lee and Lam [30] generalized their result

and proved that in a d-dimensional Euclidean space (d ≥ 2), given a destination location ℓ,

greedy routing in a DT always finds a node that is closest to ℓ.

Figure 2.1(a) shows a 2D space with three large obstacles and an arbitrary con-

nectivity graph. Figure 2.1(b) shows the DT graph [19] of the nodes in Figure 2.1(a). In

the DT graph, the dashed lines denote DT edges between nodes that are not connected by

physical links. The MDT graph of the connectivity graph in Figure 2.1(a) is illustrated in

Figure 2.1(c). By definition, the MDT graph includes every physical link in the connectivity

graph and every edge in the DT graph. In MDT routing, when a packet is stuck at a local
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minimum of the connectivity graph. the packet is next forwarded, via a “virtual link,” to the

DT neighbor that is closest to the destination. In short, the recovery method of MDT is to

forward greedily in the DT graph which is guaranteed to succeed.

In this chapter, we present MDT protocols for a set of nodes to construct and main-

tain a correct multi-hop DT (formal definition in Section 2.1). In a multi-hop DT, two nodes

that are neighbors in the DT graph communicate directly if there is a physical link between

them; otherwise, they communicate via a virtual link, i.e., a multi-hop path provided by

soft-state forwarding tables in nodes along the path.

MDT protocols are also designed specially for networks where node churn and link

churn are nontrivial concerns.

The MDT protocol suite consists of protocols for forwarding, join, leave, failure,

maintenance, and system initialization. The MDT join protocol was proved correct for

a single join. Thus it constructs a correct multi-hop DT when nodes join serially. The

maintenance protocol enables concurrent joins at system initialization. Experimental results

show that MDT constructs a correct multi-hop DT very quickly using concurrent joins.

The join and maintenance protocols are sufficient for a system under churn to provide a

routing success rate close to 100% and for node states to converge to a correct multi-hop

DT after churn. The leave and failure protocols are used to improve accuracy and reduce

communication cost.

MDT is communication efficient because MDT does not use flooding to discover

multi-hop DT neighbors. MDT’s search technique is also not limited by a maximum hop

count (needed in scoped flooding used by many wireless routing protocols) and is guaran-

teed to succeed when the existing multi-hop DT is correct.

For a given set of nodes, under the restrictive assumption that every node can di-

rectly communicate with every other node, Lee and Lam [30, 32] presented protocols for

the construction and maintenance of a correct distributed DT. These protocols cannot be

used for layer-2 routing because the assumption is not satisfied. Major contributions of this
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work include the definition of a correct distributed multi-hop DT, a new two-step greedy

forwarding protocol, proofs of guaranteed delivery by the new forwarding protocol and

correctness of the join protocol, as well as designing each protocol in the MDT suite to

correctly construct/repair forwarding tables in paths between multi-hop DT neighbors to

provide a correct distributed multi-hop DT.

2.1 Concepts and Definitions

A triangulation of a set S of nodes (points) in 2D is a maximal planar subdivision2 of

the convex hull of nodes in S into non-overlapping triangles such that the vertices of each

triangle are nodes in S. A DT in 2D is a triangulation such that the circumcircle of each

triangle does not contain any other node inside [19]. The definition of DT can be generalized

to a higher dimensional space using simplexes and circum-hyperspheres. In each case, the

DT of S is a graph to be denoted by DT (S).

Consider a set S of nodes in a d-dimensional space, for d ≥ 2. Each node in S

is identified by its location specified by coordinates. There is at most one node at each

location. When we say node u knows node v, node u knows node v’s coordinates. A node’s

coordinates may be accurate, inaccurate, or arbitrary (that is, its known location may differ

from its actual location). In Section 2.1.1, we present the definition of a distributed DT and

a key result from Lee and Lam [30, 32] that we need later.

2.1.1 Distributed DT

A distributed DT of a set S of nodes is specified by {< u,Nu > |u ∈ S}, where Nu represents

the set of u’s neighbor nodes, which is locally determined by u.

Definition 1. A distributed DT is correct if and only if for every node u ∈ S, Nu is

the same as the neighbor set of u in DT (S).

2A maximal planar subdivision is a subdivision such that no more edge connecting two nodes can be added
to the subdivision without destroying its planarity.
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To construct a correct distributed DT, each node, u ∈ S, discovers a set Cu of nodes

(Cu includes u). Then u computes DT (Cu) locally to determine its set Nu of neighbor nodes.

Note that Cu is information discovered by u while S is global knowledge. For the extreme

case of Cu = S, u is guaranteed to know its neighbors in DT (S). However, the communi-

cation cost for each node to discover S (using, for example, a broadcast protocol) would be

very high and not scalable. A necessary and sufficient condition [30, 32] for a distributed

DT to be correct is that for all u ∈ S, Cu includes all neighbor nodes of u in DT (S). The

condition’s necessity is obvious. Its sufficiency requires a nontrivial proof (see [32]). This

result enabled the design of efficient protocols for distributed DT construction.

2.1.2 Model assumptions

Two nodes directly connected by a physical link are said to be physical neighbors. Each

link is bidirectional. In our protocol descriptions, each link is assumed to provide reliable

message delivery.3

The graph of nodes and physical links may be arbitrary so long as it is a connected

graph. We provide protocols to handle dynamic topology changes. In particular, new nodes

may join and existing nodes may leave or fail.4 Furthermore, new physical links may be

added and existing physical links that have become error-prone are deleted.

Each node runs the same protocols. After a node boots up, it knows all of its physi-

cal neighbors. Subsequently, it discovers other nodes, including its multi-hop DT neighbors,

from sending and receiving protocol messages.

2.1.3 Multi-hop DT

A multi-hop DT is specified by {< u,Nu,Fu > |u ∈ S}, where Fu is a soft-state forwarding

table, and Nu is u’s neighbor set which is derived from information in Fu. The multi-hop DT

model generalizes the distributed DT model by relaxing the requirement that every node in

3Only links that are reliable and have an acceptable error rate are included in the connectivity graph.
4When a node fails, it becomes silent.
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Figure 2.2: MDT graph of 10 nodes

S be able to communicate directly with each of its neighbors. (In this chapter we use the

term “neighbor” to refer to a DT neighbor.) In a multi-hop DT, the neighbor of a node may

not be a physical neighbor; see, for example, nodes i and g in Figure 2.2.

For a node u, each entry in its forwarding table Fu is a 4-tuple < source, pred,succ,dest >,

which is a sequence of nodes with source and dest being the source and destination nodes

of a path, and pred and succ being node u’s predecessor and successor nodes in the path.

In a tuple, source and pred may be the same node; also, succ and dest may be the same

node. A tuple in Fu is used by u for message forwarding from source to dest or from dest

to source. For a specific tuple t, we use t.source, t.pred, t.succ, and t.dest to denote the

corresponding nodes in t.

For ease of exposition, we assume that a tuple and its “reverse” are inserted in and

deleted from Fu as a pair. For example, < a,b,c,d > is in Fu if and only if < d,c,b,a > is

in Fu. (In fact, only one tuple is stored with each of its two endpoints being both source and

destination.) A tuple in Fu with u itself as the source is represented as <−,−,succ,dest >,

which does not have a reverse in Fu.

For an example of a forwarding path, consider the MDT graph in Figure 2.2. The

DT edge between nodes g and i is a virtual link; messages are routed along the paths,

g − e − h − i and i − h − e − g, using the following tuples: < −,−,e, i > in node g, <

g,g,h, i > in node e, < g,e, i, i > in node h, and <−,−,h,g > in node i.
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Tuples in Fu are maintained as soft states. Each tuple is refreshed whenever there is

packet traffic (e.g., application data or keep-alive messages) between its endpoints. A tuple

that is not refreshed will be deleted when its timeout occurs.

Definition 2. A multi-hop DT of S, {< u,Nu,Fu > |u ∈ S}, is correct if and only

if the following conditions hold: i) the distributed DT of S, {< u,Nu > |u ∈ S}, is correct;

and ii) for every neighbor pair (u,v), there exists a unique k-hop path between u and v in the

forwarding tables of nodes in S, where k is finite.

For a dynamic network in which nodes and physical links may be added and deleted,

we define a metric for quantifying the accuracy of a multi-hop DT. We consider a node to

be in-system from when it has finished joining until when it starts leaving or has failed. Let

MDT (S) denote a multi-hop DT of a set S of in-system nodes. Let Nc(MDT (S)) be the

total number of correct neighbor entries and Nw(MDT (S)) be the total number of wrong

neighbor entries in the forwarding tables of all nodes. A neighbor v in Nu is correct when

u and v are neighbors in DT (S) and wrong when u and v are not neighbors in DT (S). Let

Nedges(DT (S)) be the number of edges in DT (S). Let Nnp(MDT (S)) be the number of

edges in DT (S) that do not have forwarding paths in the multi-hop DT of S. The accuracy

of MDT (S) is defined to be:

Nc(MDT (S))−Nw(MDT (S))−2×Nnp(MDT (S))
2×Nedges(DT (S))

(2.1)

It is straightforward to prove that the accuracy of MDT (S) is 1 (or 100%) if and

only if the multi-hop DT of S is correct.

Terminology. For a node u, a physical neighbor v that has just booted up is repre-

sented in Fu by the tuple <−,−,−,v >. A physical neighbor v that has sent a join request

and received a join reply from a DT node is said to be a physical neighbor attached to the

DT. It is represented in Fu by <−,−,v,v >. We use Pu to denote u’s set of physical neigh-

bors attached to the DT. A node in Pu will become a DT node when it finishes executing the

join protocol.
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2.2 MDT Forwarding Protocol

The key idea of MDT forwarding at a node, say u, is conceptually simple: For a packet with

destination d, if u is not a local minimum, the packet is forwarded to a physical neighbor

closest to d; else, the packet is forwarded, via a virtual link, to a multi-hop DT neighbor

closest to d.

For a more detailed specification, consider a node u that has received a data message

m to forward. Node u stores it with the format: m =< m.dest,m.source,m.relay,m.data >

in a local data structure, where m.dest is the destination location, m.source is the source

node, m.relay is the relay node, and m.data is the payload of the message. Note that if

m.relay ̸= null, message m is traversing a virtual link.

Table 2.1: MDT forwarding protocol at node u
CONDITION ACTION

1. u = m.dest no need to forward (node u is at des-
tination location)

2. there exists a node v in Pu and v =
m.dest

transmit to v (node v is at destination
location)

3. m.relay ̸= null and m.relay ̸= u find tuple t in Fu with t.dest =
m.relay, transmit to t.succ

4. there exists a node v in Pu ∪{u} clos-
est to m.dest, v ̸= u

transmit to node v (greedy step 1)

5. there exists a node v in Nu ∪{u} clos-
est to m.dest, v ̸= u

find tuple t in Fu with t.dest = v,
transmit to t.succ (greedy step 2)

6. conditions 1-5 are all false no need to forward (node u is closest
to destination location)

The MDT forwarding protocol at a node, say u, is specified by the conditions and

actions in Table 2.1. To forward message m to a node closest to location m.dest, the condi-

tions in Table 2.1 are checked sequentially. The first condition found to be true determines

the forwarding action. In particular, line 3 is for handling messages traversing a virtual

link. Line 4 is greedy forwarding to physical neighbors. Line 5 is greedy forwarding to

multi-hop DT neighbors.

The following theorem states that MDT forwarding in a correct multi-hop DT pro-
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vides guaranteed delivery.

Theorem 1 Consider a correct multi-hop DT of a finite set S of nodes in a d-dimensional

Euclidean space (d ≥ 2). Given a location ℓ in the space, the MDT forwarding protocol

succeeds to find a node in S closest to ℓ in a finite number of hops.

Proof:

1) By definition, a correct multi-hop DT of S is a correct distributed DT of S. The distribut-

ed DT maintained by nodes in S is the same as DT (S).

2) Given a correct multi-hop DT, each DT neighbor of a node u in S is either a physical

neighbor or connected to u by a forwarding path of finite length (in hops) that exists in

{Fv | v ∈ S}.

3) When a message, say m, arrives at a node, say u, if the condition in line 1, 2, or 6 in

Table 2.1 is true, then a node closest to ℓ is found. If the conditions in lines 1-3 are

all false, node u performs greedy forwarding in lines 4-5. If it succeeds to find in Pu a

physical neighbor v that is closer to ℓ than node u, message m is transmitted directly to v

(lines 4 in Table 2.1); else, greedy forwarding is performed over the set of DT neighbors

(line 5 in Table 2.1). The proof of Theorem 1 in [30] for a distributed DT guarantees

that either node u is closest to ℓ or there exists in Nu a node v that is closer to ℓ than

u. Therefore, if node u is not a closest node to ℓ, executing the greedy forwarding code

(lines 4-5 in Table 2.1) finds a node v that is closer to ℓ than node u.

4) Any other node in S that is closer to ℓ than u will not use the actions in lines 4-5 in

Table 2.1 to send message m back to node u. It is, however, possible for message m to

visit node u again in the forwarding path between two DT neighbors that are closer to

ℓ than u. In this case, the condition of line 3 in Table 2.1 must be true for m at node u.

Thus, node u executes the greedy forwarding code (lines 4-5 in Table 2.1) for message

m at most once. This property holds for every node. By 2), 3), and the assumption that
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S has a finite number of nodes, MDT forwarding finds a closest node in S to ℓ in a finite

number of hops. �

2.3 MDT Protocol Suite

In addition to the forwarding protocol, MDT includes join, maintenance, leave, failure, and

initialization protocols. The join protocol is designed to have the following correctness

property: Given a system of nodes maintaining a correct multi-hop DT, after a new node

has finished joining the system, the resulting multi-hop DT is correct. This property ensures

that a correct multi-hop DT can be constructed for any system of nodes by starting with one

node, say u with Fu = /0 initially, which is a correct multi-hop DT by definition, and letting

the other nodes join the existing multi-hop DT serially.

Two nodes are said to join a system concurrently if their join protocol executions

overlap in time. When two nodes join concurrently, the joins are independent if the sets

of nodes whose states are changed by the join protocol executions do not overlap. For a

large network, two nodes joining different parts of the network are likely to be independent.

If nodes join a correct multi-hop DT concurrently and independently using the MDT join

protocol, the resulting multi-hop DT is also guaranteed to be correct.

The maintenance protocol is designed to repair errors in node states after concurrent

joins that are dependent, after nodes leave or fail, after the addition of physical links, and

after the deletion of existing physical links (due to, for example, degraded link quality).

Experimental results show that join and maintenance protocols are sufficient for a system

of nodes to recover from dynamic topology changes and their multi-hop DT to converge to

100% accuracy.

MDT includes leave and failure protocols designed for a single leave and failure,

respectively, for two reasons: (i) A departed node has almost all recovery information in

its state to inform its neighbors how to repair their states. Such recovery information is

not available to the maintenance protocol and would be lost if not provided by a leave or
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failure protocol before the node leaves or fails. (For failure recovery, each node u pre-stores

the recovery information in a selected neighbor which serves as u’s monitor node.) Thus

having leave and failure protocols allows the maintenance protocol, which has a higher

communication cost, to run less frequently than otherwise. (ii) Concurrent join, leave, and

failure occurrences in different parts of a large network are often independent of each other.

After a leave or failure, node states can be quickly and effectively repaired by leave and

failure protocols without waiting for the maintenance protocol to run.

For a multi-hop DT, in addition to constructing and maintaining a distributed DT,

join and maintenance protocols insert tuples into forwarding tables and update some ex-

isting tuples to correctly construct paths between multi-hop neighbors. Leave, failure, and

maintenance protocols construct a new path between two multi-hop neighbors whenever the

previous path between them has been broken due to a node leave/failure or a link deletion.

2.3.1 Join protocol

Consider a new node, say w. It boots up and discovers its physical neighbors. If one of the

physical neighbors is a DT node (say v) then w sends a join request to v to join the existing

DT.5 In the MDT join protocol, a node uses the basic search technique of Lee and Lam [30]

to find its DT neighbors. First, greedy forwarding of w’s join request finds w’s closest DT

neighbor. Subsequently, w sends a neighbor-set request to every new neighbor it has found;

each new neighbor replies with a set of w’s neighbors in the new neighbor’s local view.

If more new neighbors are found in the replies, w sends a neighbor-set request to each of

them. This search process is iteratively repeated until w finds no more new neighbor in the

replies. The MDT join protocol also constructs a forwarding path between w and every one

of its multi-hop DT neighbors. A more detailed protocol description follows.

Finding the closest node and path construction. Node w joins by sending a join

request to node v with w’s own location as the destination location. MDT forwarding is

5If node w discovers only physical neighbors, it will not start the join protocol until it hears from a physical
neighbor that is attached to the DT, e.g., it receives a token from such a node at system initialization.
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used to forward the join request to a DT node z that is closest to w (success is guaranteed by

Theorem 1). A forwarding path between w and z is constructed as follows. When w sends

the join request to v, it stores the tuple <−,−,v,v > in its forwarding table. Subsequently,

suppose an intermediate node (say u) receives the join request from a physical neighbor

(say v) and forwards it to a physical neighbor (say e), the tuple < w,v,e,e > is stored in Fu.

When node z finally receives the join request of w from a physical neighbor (say d),

it stores the tuple <−,−,d,w > in its forwarding table for the reverse path. The join reply

is forwarded along the reverse path from z to w using tuples stored when the join request

traveled from w to z earlier. Additionally, each such tuple is updated with z as an endpoint.

For example, suppose node x receives a join reply from z to w from its physical neighbor e.

Node x changes the existing tuple < e,e,∗,w > in Fx to < z,e,∗,w >, where ∗ denotes any

node already in the tuple.

After node w has received the join reply, it notifies each of its physical neighbors that

w is now attached to the DT and they should change their tuple for w from <−,−,−,w >

to <−,−,w,w >.

Physical-link shortcuts. The join reply message, at any node along the path from

z to w (including node z), can be transmitted directly to w if node w is a physical neighbor

(i.e., for message m, there is a tuple t in the forwarding table such that t.dest = m.dest). If

such a physical-link shortcut is taken, the path previously set up between z and w is changed.

Tuples with z and w as endpoints stored by nodes in the abandoned portion of the previous

path will be deleted because they will not be refreshed by the endpoints.

A physical-link shortcut can also be taken when other messages in the MDT join,

maintenance, leave, and failure protocols are forwarded, but they require the stronger con-

dition: there is a tuple t in the forwarding table such that t.succ = t.dest = m.dest, that is,

the shortcut can be taken only if m.dest is a physical neighbor attached to the DT.

Finding DT neighbors. Node w, after receiving the join reply from node z, sends a

neighbor-set request to z for neighbor information. At this time, Cz, the set of nodes known
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to z includes both w and z. Node z computes DT (Cz), finds nodes that are neighbors of w in

DT (Cz), and sends them to w in a neighbor-set reply message.

When w receives the neighbor-set reply from z, w adds neighbors in the reply (if

any) to its candidate set, Cw, and updates its neighbor set, Nw, from computing DT (Cw).

If w finds new neighbors in Nw, w sends neighbor-set requests to them for more neighbor

information. The joining node w iteratively repeats the above search process until it cannot

find any more new neighbor in Nw. At this time w has successfully joined and become a DT

node.

Nodes in Cu, the set of nodes known to a node u, are maintained as hard states

in distributed DT protocols [30, 32]. In MDT protocols, nodes in Cu are maintained as

soft states. More specifically, tuples in Fu are maintained as soft states. By definition, Cu

consists of nodes in {u}∪{v | v = t.dest, t ∈ Fu} as well as new nodes that may become DT

neighbors. A new node in Cu is deleted if it does not become the destination of a tuple in Fu

within a timeout period. Furthermore, whenever a tuple t is deleted from Fu upon timeout,

each endpoint of t is deleted from Cu unless it is also an endpoint of another tuple.

Path construction to multi-hop DT neighbors. The MDT join protocol also con-

structs a forwarding path between the joining node w and each of its multi-hop neighbors.

Whenever w learns a new node y from the join reply or a neighbor-set reply sent by some

node, say x, node w sends a neighbor-set request to x, with x as the relay and y as the

destination (that is, in neighbor-set request m, m.relay = x and m.dest = y.) Note that a

forwarding path has already been established between w and x. Also, since x and y are

DT neighbors, a forwarding path exists between x and y (given that w is joining a correct

multi-hop DT). As the neighbor-set request is forwarded and relayed from w to y, tuples

with w and y as endpoints are stored in forwarding tables of nodes along the path from w to

y. The forwarding path that has been set up between w and y is then used by y to return a

neighbor-set reply to w.

Note that m.relay serves two different functions in different types of MDT protocol
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messages [28]. In a data message (also a join request message), m.relay is used to indicate

a multi-hop DT neighbor that can route the message out of a local minimum. In a neighbor-

set request message sent by a joining node (say u), m.relay is the node that previously

informed u of the new node to which the neighbor-set request is destined.

Example. Let node a in Figure 2.2 be a joining node. Suppose a has found b, c,

and d to be DT neighbors and it has just learned from b that j is a new neighbor. Node

a sends a neighbor-set request to j with b indicated in the message as the relay. Because

the existing multi-hop DT (of 9 nodes) is correct, a unique forwarding path exists between

node b and node j, which is b−e−h− j. After receiving the message, b forwards it to e on

the b−e−h− j path. At b and every node along the way to j, a tuple with endpoints a and

j is stored in the node’s forwarding table. When the neighbor-set reply from j travels back

via h, node h searches Fh and finds that node a is a physical neighbor attached to the DT

(see Figure 2.2). Node h then transmits j’s reply directly to node a. (This is an example of

a physical-link shortcut.) Subsequently, nodes a and j will select and refresh only the path

a−h− j between them. Tuples previously stored in nodes b, e, and h for endpoints a and j

will be deleted upon timeout. Lastly, from j’s reply, a learns no new neighbor other than b,

c, and d. Without any more new neighbor to query, a’s join protocol execution terminates

and it becomes a DT node.

Theorem 2 Let S be a set of nodes and w be a joining node that is a physical neighbor of

at least one node in S. Suppose the existing multi-hop DT of S is correct, w joins using the

MDT join protocol, and no other node joins, leaves, or fails. Then the MDT join protocol

finishes and the updated multi-hop DT of S∪{w} is correct.

Proof: By Theorem 1, the join request of w succeeds to find a DT node (say z)

closest to w, which sends back a joint reply. By a property of DT, node z, being closest to

w, is guaranteed to be a neighbor of w in DT (S∪{w}). A forwarding path is constructed

between w and z. Subsequently, because the multi-hop DT of S is correct, forwarding

paths are constructed between w and each neighbor it sends a neighbor-set request. After
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receiving a request from w, each neighbor of w updates its own neighbor set to include w.

They also send back replies to w. By Lemma 9 in [30], the join process finishes and Nw

consists of all neighbor nodes of w in DT (S∪{w}).

By construction, two DT neighbors select only one path to use between them by

refreshing only tuples stored in nodes along the selected path. Therefore, the path between

each pair of neighbors in DT (S∪{w}) is unique after the join. Each path also has a finite

number of hops because (i) the path from the joining node to its closest DT node (z) has

a finite number of hops (by Theorem 1), and (ii) the path from the joining node to each of

its other DT neighbors is either a one-hop path or the concatenation of two paths, each of

which has a finite number of hops. By Definition 3, the updated multi-hop DT is correct. �

In the above proof, we make use of Lemma 9 in [30] for a distributed DT in which

every node can directly communicate with every other node. Let S′ denote S∪{w}. The

main ideas used in the proof of this lemma are the following: i) The existing node z ∈ S

closest to the joining node w is a neighbor of w in DT (S′). ii) For any two neighbors of w

in DT (S′), say u and v, if the facet shared by the Voronoi cells of u and w is adjacent to the

facet shared by the Voronoi cells of v and w in DT (S′), then u and v are neighbors in DT (S).

Therefore, having found at least one neighbor in DT (S′), w can find any other neighbor in

DT (S′) by following a sequence of existing edges in DT (S). A detailed proof is presented

in [30].

2.3.2 Maintenance protocol

The MDT maintenance protocol for repairing node states is designed for systems with fre-

quent addition and deletion of nodes and physical links. For a distributed DT to be correct,

each node must know all of its neighbors in the global DT. Towards this goal, each node

(say u) runs the maintenance protocol by first querying a subset of its neighbors, one for

each simplex including u in DT (Cu). More specifically, node u selects the smallest subset

V of neighbors such that every simplex including u in DT (Cu) includes one node in V . N-
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ode u then sends a neighbor-set request to each node in V . A node z that has received the

neighbor-set request adds u to Cz and computes DT (Cz). Node z then sends a neighbor-set

reply containing neighbors of u in DT (Cz) to u.

Node u adds new nodes found in each neighbor-set reply to Cu; it then computes

DT (Cu) to get Nu. If u finds a new neighbor, say x, in Nu, node u sends a neighbor-set

request to x if x satisfies the following condition:6

C1. The simplex in DT (Cu) that includes both u and neighbor x does not include

any node to which u has sent a neighbor-set request.

Node u keeps sending neighbor-set requests until it cannot find any more new neigh-

bor in Nu that satisfies C1. Node u then sends neighbor-set notifications to neighbors in Nu

that have not been sent neighbor-set requests (these notifications announce u’s presence and

do not require replies). The protocol code for constructing forwarding paths between node

u and each new neighbor is the same as in the MDT join protocol.

If after sending a neighbor-set request to a node, say v, and a neighbor-set reply

is not received from v within a timeout period, node v is deemed to have failed. Node u

sends a failure notification about v to inform each node in u’s updated neighbor set. These

notifications are unnecessary since MDT uses soft states; they are performed to speed up

convergence to correct node states.

Each node runs the maintenance protocol independently, controlled by a timeout

value Tm. After a node has finished running the maintenance protocol, it waits for time Tm

before starting the maintenance protocol again. The value of Tm should be set adaptively.

When a system has a low churn rate, a large value should be used for Tm to reduce com-

munication cost. We found that if each node runs the maintenance protocol repeatedly, the

node states converge to a correct multi-hop DT very quickly. (See results from our system

initialization experiments in Section 2.4.3 and churn experiments in Section 2.4.6.)

6The maintenance protocol can use the same iterative search technique used in the join protocol. However,
experimental results show that condition C1 can be used to reduce the number of neighbor-set messages sent
by the maintenance protocol without any impact on its effectiveness to find DT neighbors.
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2.3.3 Initialization protocols

Serial joins by token passing. Starting from one node, other nodes join serially using the

join protocol. The ordering of joins is controlled by the passing of a single token from one

node to another.

Concurrent joins by token broadcast. Starting from one node, other nodes join

concurrently using the join and maintenance protocols. The ordering of joins is controlled

by a token broadcast protocol. Initially, a token is installed in a selected node. When a

node has a token, it runs the join protocol once (except the selected node) and then the

maintenance protocol repeatedly, controlled by the timeout value Tm. It also sends a token

to each physical neighbor that is not known to have joined the multi-hop DT. Each token

is sent after a random delay uniformly distributed over time interval [1,τ], where τ is in

seconds. If a node receives more than one token, any duplicate token is discarded.

2.4 Performance Evaluation

2.4.1 Methodology

We evaluate MDT protocols using a packet-level discrete-event simulator in which every

protocol message created is routed and processed hop by hop from its source to destination.

We will not evaluate metrics that depend on congestion, e.g., end-to-end throughput and la-

tency. Hence, queueing delays at a node are not simulated. Instead, message delivery times

from one node to the next are sampled from a uniform distribution over a specified time

interval. Time-varying network link characteristics and interference problems are modeled

by allowing physical links to be added and deleted dynamically.

Creating general connectivity graphs. To create general connectivity graphs for

simulation experiments, a physical space in 3D (2D) is first specified. Obstacles are then

placed in the physical space. The number, location, shape, and size of the obstacles are

constrained by the requirement that the unoccupied physical space is not disconnected by
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the obstacles. (Any real network environment can be modeled accurately if computational

cost is not a limiting factor.) Nodes are then placed randomly in the unoccupied physical

space. Let R denote the radio transmission range. Physical links are then placed using the

following algorithm: For each pair of nodes, if the distance between them is larger than R

or the line between them intersects an obstacle, there is no physical link; else a physical link

is placed between the nodes with probability p. We refer to p as the connection probability

and 1− p as the missing link probability. If a graph created using the above procedure

is disconnected, it is not used. Alternatively, to replicate the connectivity graph of a real

network, missing links between neighbors can be specified deterministically rather than

with probability 1− p.

Inaccurate coordinates. In this chapter, the coordinates of nodes are simply physi-

cal locations, unless otherwise specified. We will discuss virtual coordinates in detail in the

next chapter. The known coordinates of a node may be highly inaccurate [38] because some

localization methods have large location errors. In our experiments, after placing nodes in

the physical space, their “known” coordinates are then generated with randomized location

errors. The location errors are generated to satisfy a location error ratio, e, which is defined

to be the ratio of the average location error to the average distance between nodes that are

physical neighbors. We experimented with location error ratios from 0 to 2.

Definitions. The routing stretch value of a pair of nodes, s and d, in a multi-hop

DT of S is defined to be the ratio of the number of physical links in the MDT route to the

number of physical links in the shortest route in the connectivity graph between s and d.

The routing stretch of the multi-hop DT is defined to be the average of the routing stretch

values of all source-destination pairs in S. The distance stretch of the multi-hop DT is

defined similarly with distance replacing number of physical links as metric.
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Figure 2.3: Obstacles in a 3D space

2.4.2 Design of experiments

Our simulation experiments were designed to evaluate geographic routing in the most chal-

lenging environments. In general, everything else being equal, the challenge is bigger for a

higher dimensional space, larger obstacles, a higher missing link probability, a lower node

density, a larger network size, or larger node location errors. Furthermore, we performed

experiments to evaluate MDT’s resilience to dynamic topology changes at very high churn

rates. In the geographic routing literature, no other protocol has been shown to meet all of

these challenges.

Our simulator enables evaluation of geographic routing protocols in the most chal-

lenging environments. In the simulator, any connectivity graph can be created to represent

any real network environment with obstacles of different shapes and sizes. The connec-

tivity graphs created as described above have properties of real layer-2 networks, unlike

unit-disk and unit-ball graphs used in prior work on geographic routing.7 We experimented

with obstacles of different shapes and sizes, and nodes with large location errors or arbi-

trary coordinates in 2D, 3D, and 4D. In this chapter, we present experimental results for

large obstacles, such as those shown in Figure 2.4.2, because large obstacles are more chal-

7In a recent paper on 3D routing, unit-ball graphs were still used for simulation experiments [56].
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Figure 2.4: Accuracy of multi-hop DT vs. time for concurrent joins in 3D

lenging to geographic routing than small ones; these very large obstacles may represent tall

buildings in an outdoor space or large machinery in a factory. Between neighbors that are

in line of sight and within radio transmission range, we experimented with a missing link

probability as high as 0.5.

Node density (average node degree) is an important parameter that impacts geo-

graphic routing performance. We present experiments for node densities of 13.5 for 3D and

9.7 for 2D. These node densities are relatively low compared with node densities used in

prior work on geographic routing. We found that node densities lower than 13.5 for 3D and

9.7 for 2D would result in many disconnected graphs for spaces with large obstacles and

a high missing link probability. We also conducted experiments for higher node densities

which resulted in better MDT performance, thus allowing us to conclude that MDT works

well for a wide range of node densities. When we scale up the network size in a set of

experiments, we increase the space and obstacle sizes to keep node density approximate-

ly the same. For experiments with different missing link probabilities, we vary the radio

transmission range to keep node density approximately the same.
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2.4.3 System initialization experiments

We have performed numerous experiments using our initialization protocols. In every ex-

periment, a correct multi-hop DT is constructed. Concurrent joins can do so much faster

than serial joins but with a higher message cost (see Figure 2.11 for message cost compari-

son).

Figures 2.4(b)-(c) show results from two sets of experiments using concurrent-join

initialization. In each experiment, the physical space is a 1000× 1000× 1000 3D space,

with three large obstacles, placed as shown in Figure 2.4(a). The size of one obstacle

is 200× 300× 1000. Each of the other two is 200× 350× 1000 in size. The obstacles

occupy 20% of the physical space. Connectivity graphs are then created for 300 nodes

using the procedure described in Section 2.4.1 for radio transmission range R = 305 and

link connection probability p = 0.5. The average node degree, i.e., number of physical

neighbors per node, is 13.5. The (known) coordinates of the nodes are inaccurate with

location error ratio e = 1.

The first set of experiments is for low-speed networks with one-hop message delays

sampled from 100 ms to 200 ms (average = 150 ms) and a maintenance protocol timeout

duration of 60 seconds. The second set of experiments is for faster networks with one-hop

message delays sampled from 10 ms to 20 ms (average = 15 ms) and a maintenance protocol

timeout duration of 10 seconds.

In the legend of Figures 2.4(b)-(c), “max. token delay” is maximum token delay

τ. In each experiment, note that accuracy of the multi-hop DT is low initially when many

nodes are joining at the same time.With a smaller τ, more nodes initiate their join process

earlier at about the same time, resulting in a lower MDT accuracy at the beginning. Howev-

er, accuracy improves and converges to 100% quickly for all τ values. In every experiment,

after each node’s initial join, the node had run the maintenance protocol only once or twice

by the time 100% accuracy was achieved.
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2.4.4 MDT performance in 3D

We evaluated the performance of MDT routing for 100 to 1300 nodes in 3D. We present

results from four different sets of experiments using connectivity graphs created in a 3D

space with and without obstacles, for node locations specified by accurate and inaccurate

coordinates. There are four cases:

• accurate coordinates (e = 0), few missing links (p = 0.9), no obstacle

• inaccurate coordinates (e = 1), few missing links (p = 0.9), no obstacle

• accurate coordinates (e = 0), many missing links (p = 0.5), large obstacles (obs)

• inaccurate coordinates (e = 1), many missing links (p = 0.5), large obstacles (obs)

For 300 nodes, dimensions of the physical space and obstacles are the same as in

Figure 2.4(a). For a smaller (or larger) number of nodes, dimensions of the physical space

and obstacles are scaled down (or up) proportionally. For each obs experiment, the three

obstacles are randomly placed in the horizontal plane. R = 305 is used for p = 0.5 and

R = 250 is used for p = 0.9 such that the average node degree is approximately 13.5. At

the beginning of each experiment, a correct multi-hop DT was first constructed. Routing

success rate was 100% in every experiment and is not plotted.

Figures 2.5(a)-(b) show that both routing stretch and distance stretch versus network

size are close to 1 for the easy case of accurate coordinates (e = 0), few missing links

(p = 0.9), and no obstacle. Either inaccurate coordinates (e = 1) or many missing links

(p = 0.5) and large obstacles (obs) increase both the routing stretch and distance stretch

of MDT routing. Note that both the routing and distance stretch of MDT remain low as

network size becomes large.8

Storage cost. The most important routing information stored in a node is the set of

nodes it uses for forwarding; the known coordinates of each node in the set are stored in
8Distance stretch is almost the same as routing stretch (except in 4D experiments for which physical distance

is not meaningful) and will not be shown again.
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Figure 2.5: MDT performance in 3D (average node degree=13.5)

a location table. We use 4 bytes per dimension for storing each node’s coordinates (e.g.,

12 bytes for a node in 3D); this design choice is intended for very large networks. The

coordinates of a node are used as its global identifier. Each node is also represented by a 1-

byte local identifier in our current implementation. The location table stores pairs of global

and local identifiers (e.g., 13 bytes per node for nodes in 3D). In the forwarding table, local

identifiers are used to represent nodes in tuples. To illustrate MDT’s storage cost in bytes,

consider the case of 1300 nodes, e = 1, and p = 0.5 with obstacles. The average location

table size is 540.2 bytes. The average forwarding table size is 88.8 bytes. The average

location table size is 86% of the combined storage cost. We found that this percentage is

unchanged for all network sizes (100 - 1300) in each set of experiments, indicating that the

forwarding table size is also proportional to the number of distinct nodes stored.
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In this chapter, the storage cost is measured by the average number of distinct nodes

a node needs to know (and store) to perform forwarding. This represents the storage cost of

a node’s minimum required knowledge of other nodes. This metric, unlike counting bytes,

requires no implementation assumptions which may cause bias when different routing pro-

tocols are compared. Figure 2.5(c) shows the storage cost per node versus network size. As

expected, either inaccurate coordinates (e = 1) or many missing links (p = 0.5) and large

obstacles require more storage per node due to the need for more multi-hop DT neighbors.

For comparison, the bottom curve is the average number of physical neighbors per node.

Varying obstacle locations. Each data point plotted in Figures 2.5(a)-(c) is the

average value of 50 simulation runs for 50 different connectivity graphs each of which was

created from a different placement of the obstacles. Also shown as bars are the 10th and

90th percentile values. Observe that the intervals between 10th and 90th percentile values

are small for all data points. (These intervals are also small in experimental results to be

presented in Figures 2.6 and 2.9-2.12 and will be omitted from those figures for clarity.) The

small intervals between 10th and 90th percentile values demonstrate that varying obstacle

locations has negligible impact on MDT routing performance.

Varying number and size of obstacles. Aside from varying the locations of ob-

stacles, we also experimented with varying the number and size of obstacles. In particular,

we repeated the experiments in Figure 2.5 for 6 obstacles and also for 9 obstacles. In each

such experiment, the fraction of physical space occupied by obstacles was kept at 20%. We

found the resulting changes in MDT’s routing stretch, distance stretch, and storage cost to

be too small to be visible when plotted in Figures 2.5.9 However, when we increased the

fraction of physical space occupied by obstacles from 20% to 30%, the resulting increases

in MDT’s routing and distance stretch were significant (about 6%).

9Performance measures from experiments for 9 obstacles are smaller than those from experiments for 3
obstacles by less than 0.5%.
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Figure 2.6: MDT performance in 3D and 4D (average node degree=13.5, p=0.5, obstacles)

2.4.5 MDT performance in 4D

To illustrate how MDT can be used in 4D, consider the connectivity graphs created for

the set of experiments in Figure 2.5 with many missing links (p = 0.5) and large obstacles.

Suppose the nodes have no location information. We experimented with two cases: (i) Each

node assigns itself an arbitrary location in a 4D space and sends its (arbitrary) coordinates

to its physical neighbors. These coordinates are used by MDT protocols to construct and

maintain a multi-hop DT as well as for routing. (ii) After a multi-hop DT has been con-

structed by the nodes using the initial (arbitrary) coordinates, each node then runs VPoD

[46] which is a virtual positioning protocol that does not require any node location infor-

mation, any special nodes (such as, landmarks), nor any use of flooding. Nodes use VPoD

to change their coordinates by comparing distances with routing costs to their physical and

DT neighbors. A new multi-hop DT is then constructed using the new coordinates. Af-

ter several iterations, the node coordinates will converge to achieve the following property

[46]: The distance between any two nodes in the virtual space is a good estimate of the

routing cost (in any additive metric) between them.

For the results presented in Figure 2.6, we used 1 (hop) as the routing metric be-

tween two physical neighbors. Each data point plotted in Figure 2.6 is the average value

from 50 experiments.

For comparison, we have also plotted the results for MDT routing using inaccurate
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3D coordinates, that is, the case of (e = 1, p = 0.5, obs) in Figure 2.5. Figure 2.6(a) on

routing stretch, plotted in logarithmic scale, shows that MDT routing using 4D virtual co-

ordinates is better than using inaccurate coordinates in 3D. Figure 2.6(b) on storage cost

shows that MDT routing using inaccurate coordinates in 3D is better than using 4D vir-

tual coordinates. In both figures, MDT routing using arbitrary coordinates has the worst

performance. Routing success rate was 100% in every experiment and is not shown.

2.4.6 Resilience to churn

We performed a large number of experiments to evaluate the performance of MDT protocols

for systems under churn, with 300 nodes in a 1000×1000×1000 3D physical space. Like

the experiments used to evaluate MDT routing stretch in Figure 2.5, four sets of experiments

were performed using connectivity graphs created with and without three large obstacles,

for node locations specified by accurate and inaccurate coordinates. The average node

degree is kept at approximately 13.5 for every experiment.

In a node churn experiment, the rate at which new nodes join is equal to the churn

rate; the rate of nodes leaving and the rate of nodes failing are each equal to half the churn

rate. In a link churn experiment, the churn rate is equal to the rate at which new physical

links are added and the rate at which existing physical links are deleted. In each experiment,

the 300 nodes initially maintain a correct multi-hop DT. Churn begins at time=0 and ends

at time=60 seconds.

Figure 2.7 presents results from node churn experiments for low-speed networks

where one-hop message delays are sampled from [100 ms, 200 ms]. The maintenance

timeout value is 60 seconds. The churn rate is 100 nodes/minute in Figures 2.7(a)-(b) and

varies in Figure 2.7(c). Figure 2.7(a) shows the accuracy of the multi-hop DT versus time.

The accuracy returns to 100% quickly after churn. Figure 2.7(b) shows the routing success

rate versus time. The success rate is close to 100% during churn and returns to 100%

quickly after churn. Figure 2.7(c) shows the communication cost (per node per second)
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Figure 2.7: MDT performance under node churn (ave. message delay = 150 ms, timeout
= 60 sec.)

versus churn rate.

By Little’s Law, for 300 nodes and a churn rate of 100 nodes per minute, the average

lifetime of a node is 300/100 = 3 minutes, which represents a very high churn rate for most

practical systems.

Figure 2.8 presents results from link churn experiments for low-speed networks

with a maintenance timeout value of 60 seconds. Figure 2.8(a) shows the accuracy of the

multi-hop DT versus time. The accuracy returns to 100% quickly after churn. Figure 2.8(b)

shows the routing success rate versus time. The success rate is close to 100% during churn

and returns to 100% quickly after churn. Figure 2.8(c) shows the communication cost (per

node per second) versus churn rate.

Note that the convergence times to 100% accuracy in Figures 2.7(a) and 2.8(a) and
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Figure 2.8: MDT performance under link churn (ave. message delay = 150 ms, timeout
= 60 sec.)

to 100% success rate in Figures 2.7(b) and 2.8(b) are almost the same for the four cases.

These results are typical of all churn experiments performed.

2.4.7 Discussion on overheads

Nodes that implement MDT protocols incur extra storage and communication costs when

compared to a simple greedy routing protocol. The extra storage cost of MDT is the dif-

ference between the MDT storage cost and the number of physical neighbors; see Figure

2.5(c). Observe that the extra storage cost converges to an asymptotic constant as N be-

comes large. There are two types of extra communication costs: (i) communication costs

to construct a multi-hop DT initially (see Figure 2.11 in the next section); and (ii) commu-

nication costs incurred by the maintenance protocol during churn (see Figures 2.7(c) and
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Figure 2.9: Performance comparison of 2D routing protocols (average node degree=16.5)

2.8(c)). The per-node churn cost is less than 0.8 message/second for very high churn rates

and the most difficult case. Note that when the network topology is static, MDT incurs

(essentially) no extra overhead.

2.5 Performance Comparison

2.5.1 Comparison of 2D protocols

The geographic routing protocols, GPSR running on GG, RNG, and CLDP graphs [24, 27],

and GDSTR [35] were designed for routing in 2D. We implemented these protocols in our

simulator.10 The experiments in Figure 2.9 were carried out for 300 nodes in a 1000×1000

10Using, as our references, [27] for CLDP, GDSTR code from www.comp.nus.edu.sg/˜bleong/geographic/,
and GPSR, GG, and RNG code from www.cs.ucl.ac.uk/staff/B.Karp/gpsr/. GDSTR uses two hull trees [35].
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Figure 2.10: Performance comparison of 2D routing protocols (three large obstacles, aver-
age node degree=9.7)

2D space with no obstacle and few missing links (p = 0.9). The radio transmission range

is R = 150. The average node degree is 16.5. The performance results are plotted versus

location error ratio, from e = 0 (no error) to e = 2 (very large location errors).

The experiments of Figure 2.10 were carried out for 300 nodes in a 1000× 1000

2D space with three randomly placed obstacles (a 200× 300 rectangle and two 200× 350

rectangles) and many missing links (p = 0.5). The radio transmission range is R = 150.

The average node degree is 9.7. The performance results are plotted versus location error

ratio, from e = 0 to e = 1.

In Figure 2.9(a) and Figure 2.10(a) the routing success rates of MDT and GDSTR

are both 100% for all e values (it was 100% in every experiment). As the location error ratio

(e) increases from 0, the routing success rates of RNG, GG, and CLDP drop off gradually
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Figure 2.11: Initialization message cost vs. N (average node degree = 12)

from 100%. For e > 0.6 in Figure 2.9(a) and e > 0.3 in Figure 2.10(a), their routing success

rates drop significantly.

Figure 2.9(b) and Figure 2.10(b), in logarithmic scale, show that MDT has the low-

est routing stretch for all e values, with GDSTR a close second, followed by CLDP, GG,

and RNG in that order. Note that routing stretch increases as e increases for all protocols.

Figure 2.9(c) and Figure 2.10(c) show storage cost comparisons. The GPSR proto-

cols (CLDP, GG, and RNG) have the lowest storage cost, with the storage costs of GDSTR

and MDT about the same.

Comparison of graph construction costs. We compare MDT’s message cost to

construct a correct multi-hop DT with message costs of CLDP graph construction using

serial probes [27] and GDSTR hull tree construction [35]. The physical space is a 2D

square with three large rectangular obstacles, occupying 20% of the physical space. There

are many missing links (p = 0.5). Nodes have inaccurate coordinates (e = 1). The number

N of nodes is varied from 100 to 1300. For the radio transmission range R = 150, the sizes

of the physical space and obstacles are determined for each value of N such that the average

node degree is approximately 12.

In Figure 2.11, the vertical axis is in logarithmic scale. The message cost of a

protocol is the average number of messages sent per node (we did not account for message
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size differences among the protocols). Note that each GDSTR message is a broadcast

message sent by a node to all of its physical neighbors and is counted only as one message

sent. Messages sent by CLDP and MDT are unicast messages.

Figure 2.11 shows that with the average number of messages sent per node as met-

ric, GDSTR has the best message cost performance for up to 900 nodes. For more than 900

nodes MDT (serial joins) has the lowest cost. CLDP has a very high cost. Note that the

CLDP and GDSTR curves increase gradually with N. The MDT curves are flat.

2.5.2 Comparison of 3D protocols

We compare the routing performance of MDT with GRG [17] and GDSTR-3D [56]. We

implemented the basic version of GRG in our simulator. Several techniques to improve the

performance of GRG are presented for unit ball graphs [17]. Since arbitrary connectivity

graphs are used in our experiments, these techniques are not applicable and not implement-

ed.

GDSTR-3D uses two hull trees for recovery. For each tree, each node stores two 2D

convex hulls to aggregate the locations of all descendants in the subtree rooted at the node;

the two 2D convex hulls approximate a 3D convex hull at each node. We implemented

GDSTR-3D using its authors’ TinyOS 2.x source code available at Google Sites.

Unlike other geographic protocols, each node in GDSTR-3D stores 2-hop neighbors

and uses 2-hop greedy forwarding to reduce routing stretch at the expense of a much larger

storage cost per node. This performance tradeoff may not be appropriate for networks with

limited nodal storage.

A non-geographic routing protocol, VRR [9], is included in the comparison. We

implemented VRR for static networks without joins and failures.11 For each pair of virtual

neighbors, we used the shortest path (in hops) between them as the forwarding path (the

routing stretch value is 1 between virtual neighbors). Thus, the routing stretch and storage

11With reference from www.cs.berkeley.edu/˜mccaesar/vrrcode .
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Figure 2.12: Performance comparison of 3D routing protocols (average node degree=13.5)

cost results shown in Figure 2.12(b)-(c) for VRR are slightly optimistic. In VRR, each node

also stores 2-hop neighbors for forwarding.

MDT can be easily modified to use 2-hop greedy forwarding. We present results for

both MDT (which uses 1-hop greedy forwarding) and MDTv2 (which uses 2-hop greedy

fowarding).

In our experiments, the number N of nodes is varied from 100 to 1300. The physical

space and large obstacles are the same as the ones used in Figure 2.5. The average node

degree was kept at approximately 13.5. Experiments were performed using connectivity

graphs created for the following case: inaccurate coordinates (e = 1), many missing links

(p = 0.5), and three large obstacles that occupy 20% of the physical space.

Figure 2.12(a) shows that MDT (also MDTv2), GDSTR-3D, and VRR all achieve
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100% routing success rate while the routing success rate of GRG is about 86%. Fig-

ure 2.12(b), in logarithmic scale, shows that the routing stretch of GRG is very high, the

routing stretch of VRR is high for N > 300, and both increase with N. The routing stretch

of MDTv2 is the lowest and slightly lower than that of GDSTR-3D for every network size

(the differences are, however, too small to be seen in Figure 2.12(b)). MDT, which uses

1-hop greedy forwarding, ranks a close third.

In Figure 2.12(c), GDSTR-3D, VRR, MDTv2 have large per-node storage costs,

because each node stores 2-hop neighbors as well as physical neighbors. The storage cost

of MDTv2 is smaller than those of GDSTR-3D and VRR. Both GRG and MDT have much

lower storage costs because they use 1-hop greedy forwarding. The per-node storage cost of

GRG, equal to the average number of physical neighbors, is the lowest of the five protocols.

MDT versus GDSTR-3D. MDT, MDTv2, and GDSTR-3D all provide guaranteed

delivery in 3D and achieve routing stretch close to 1. GDSTR-3D has a higher storage cost

than MDTv2 and a much higher storage cost than MDT. One clear advantage MDT (or

MDTv2) has over GDSTR-3D is that MDT is highly resilient to dynamic topology changes

(both node churn and link churn) while GDSTR-3D is designed for a static topology without

provision to handle any dynamic topology change. Another advantage of MDT is that

it provides guaranteed delivery for nodes with arbitrary coordinates in higher dimensions

(d > 3).
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Chapter 3

Virtual Positioning in layer 2 and

Greedy Distance Vector Routing

Distance Vector (DV) is a well-known routing technique. In DV forwarding, a node u

chooses a physical (directly connected) neighbor v as the next hop to destination t such

that it minimizes the distance c(u,x)+D(x, t) for x ∈ Pu, where c(u,x) is the cost of link

u-x, D(x, t) is the least cost from x to t, and Pu is the set of u’s physical neighbors. Any

additive metric can be used for c(u,x) and D(x, t). If nodes have accurate distance vectors,

DV routing provides the least cost paths.

Geographic routing uses greedy forwarding as the basis, i.e., a node u selects, as

the next hop to destination t, a physical neighbor v that minimizes d(x, t) for x ∈ Pu, where

d(x, t) is the physical distance between x and t. Traditionally, geographic routing protocols

were evaluated using hop count or physical distance as the routing metric. However, other

metrics such as latency, ETX [12], and ETT [14] are also very important in network protocol

design and measurement.

In this chapter, we present Greedy Distance Vector (GDV), the first geographic rout-

ing protocol designed with the objective of providing near-optimal paths for any additive

routing metric. To apply GDV, each node assigns itself a virtual position (position in a vir-
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tual space) such that the Euclidean distance between any pair of nodes in the virtual space

is a good estimate the routing cost between them. Like DV routing, GDV selects as the next

hop to destination t, a neighbor v that minimizes c(u,x)+ D̃(x, t) for x ∈ Pu, where D̃(x, t)

is the estimated routing cost from x to t from locally computing the distance between the

virtual positions of x and t.1 Since c(u,v)+ D̃(v, t) ≈ c(u,v)+D(v, t), the quality of GDV

paths is expected to be close to that of optimal DV paths.

Many virtual coordinate schemes have been proposed for wireless networks when

node location information is unavailable [48] [18] [10] [39] [55] [36] [54]. Unlike GDV,

these schemes were not designed to predict routing costs between nodes. Instead their main

objective is to improve greedy delivery rate.

The idea of embedding latencies (routing costs) in a virtual space was used by many

virtual positioning systems, such as, GNP [43] and Vivaldi [13]. These systems, however,

were designed for hosts with Internet routing support. More specifically, GNP requires that

each node makes RTT measurements to a set of landmark nodes (some may be far away).

Vivaldi requires that each node receives latency measurements from distant nodes from

time to time.2 In layer-2 networks, each node can communicate directly with its physical

neighbors. But to communicate with distant nodes, GNP and Vivaldi require any-to-any

routing support. Therefore, they cannot be used to support GDV in layer-2 networks.

To illustrate the point that Vivaldi requires routing cost measurements to distant n-

odes, consider the 121-node grid network shown in Figure 3.1. Each node is only aware

of its local connectivity and has no location information. We enhance the Vivaldi algo-

rithm [13] with routing support such that it can sample (measure routing cost to) two-hop

neighbors as well as physical neighbors. In each adjustment period, a node samples ran-

dom nodes from its set of one-hop neighbors 100 times and its set of two-hop neighbors

100 times. Figure 3.2 shows the virtual positions of the nodes after 10 and 20 adjustment

1For GDV, the neighbor set of node u will be generalized to include both physical and Delaunay triangulation
neighbors.

2In this chapter, a node is distant iff the routing cost to that node is high.
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Figure 3.1: 121-node network in 2D physical space

periods (hop count was used as routing metric). We found that almost every node is close

to its physical neighbors in the virtual space. However, two nodes that are separated by

many hops may also be very close in the virtual space (such as, many of the nodes near

the center). Generally, there are two kinds of relationships needed for virtual positions to

predict routing costs accurately [13]:

• Local relationships: nodes with low cost should be nearby in the virtual space.

• Global relationships: nodes with high cost should be far away in the virtual space.

Clearly, in this example, two-hop Vivaldi performs well for local relationships but poorly

for global relationships. Routing support to sample two-hop neighbors is not sufficient for

Vivaldi to work properly for layer-2 networks.

In this chapter, we present a novel virtual positioning protocol for layer-2 networks,

named Virtual Position by Delaunay (VPoD). VPoD makes use of the multi-hop DT of a

set of nodes located in a Euclidean space [29]. Given a set of nodes running VPoD, the

nodes are initially located in a virtual space (2D, 3D, or higher dimension) fairly arbitrarily.

Each node u then uses an adjustment algorithm to move its position in the virtual space by

comparing D(u,v), its routing cost to node v in the multi-hop DT, with D̃(u,v), the distance
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(b) After 20 adjustment periods

Figure 3.2: Virtual positions constructed by 2-hop Vivaldi

between u and v in the virtual space, where node v is either a physical neighbor or a multi-

hop DT neighbor of u. Any additive metric can be used for routing costs. While prior

virtual positioning protocols require routing cost information from some distant nodes to

be effective, we discovered that VPoD performs very well using just routing costs from a

node to its physical and DT neighbors; such cost information can be piggybacked in MDT

protocol messages exchanged by neighbors.

The contributions of this work are the following:

• GDV is the first geographic routing protocol designed to optimize end-to-end path

costs using any additive routing metric, in particular, routing metrics that capture

network and link characteristics other than physical distances.

• GDV and VPoD are designed for layer-2 networks without location information.

Therefore, no localization protocol is needed.

• As a geographic protocol, GDV’s storage cost per node remains low as network size

(N) increases. Routing cost estimates are computed locally using virtual positions.

Unlike DV, there is no need for nodes to exchange distance-vector messages of size

O(N).
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• VPoD performs very well in preserving both local and global distance relationships

between nodes in the virtual space. Every node runs the same protocols. VPoD does

not require special nodes, such as, beacons and landmarks, and does not use flooding.

• Experimental results show that GDV and VPoD have good routing performance on

both wireline and wireless network topologies.

3.1 Virtual Position Construction

We present the Virtual Position by Delaunay (VPoD) protocol to construct virtual positions

for routing cost prediction in a layer-2 network. Each node only knows the link costs to its

physical neighbors. The routing metric can be any one that is additive, such as, hop count,

latency, ETX, and ETT, etc. Distances in the virtual space and routing costs are measured

in the same units. Hence comparison, addition, and subtraction can be operated directly on

distances and routing costs.3

3.1.1 Main ideas of VPoD

To start VPoD, an arbitrary starting node generates a token and broadcasts the token to the

network.4 Each node with a token runs the VPoD protocol. It first initializes its position

in the virtual space by a simple algorithm. It then runs MDT protocols to participate in

the construction of a multi-hop DT of the nodes using their locations in the virtual space.

We modified the MDT protocols to record routing costs from each node to its multi-hop

DT neighbors. Each node then iteratively adjusts its position by checking the positions of

its physical and multi-hop DT neighbors to reduce prediction errors. For a node u, VPoD

provides two types of adjustments:
3Hereafter, whenever we say distance, we refer to the Euclidean distance between two nodes in the virtual

space rather than the physical distance between the nodes.
4The starting node may be selected by any leader election protocol using a simple criterion, e.g., largest ID.

Duplicate tokens received by nodes are ignored and do not affect VPoD.

44



Node a

J A AJ

Node b

token

Node c

token

J: Join period

A: Adjustment period

u

adj() adj() adj() adj() adj() adj()

J A AJ

adj() adj() adj() adj() adj() adj()

J A AJ

adj() adj() adj() adj() adj() adj()

init(): execute Initialization()

adj(): execute Adjustment()

: adjustment timeout of node u

a

b

c

init()

init()

init()

Figure 3.3: Main structure of VPoD

1. Adjustments with physical neighbors to preserve local relationships: If its distance to

a physical neighbor v is larger than its link cost to v, u adjusts its position so that its

distance to v is smaller.

2. Adjustments with DT neighbors to preserve global relationships: If its distance to a

multi-hop DT neighbor v is smaller (larger) than the routing cost from u to v, u adjusts

its position so that its distance to v is larger (smaller).

The main structure of VPoD is presented in Figure 3.3. Each node runs the protocol

upon receiving a token. After initializing its position, it runs the MDT join and mainte-

nance protocols during a period of time, called J period, to participate in constructing the

multi-hop DT. In the subsequent adjustment period, called A period, the node executes the

adjustment algorithm iteratively to change its position in the virtual space. The multi-hop

DT needs to be re-constructed after several adjustment iterations because many nodes may

have changed their positions. In this manner, each node alternates between execution of

the MDT protocols and the adjustment algorithm. The initialization, MDT join and mainte-
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nance protocols, and adjustment algorithm will be described in more detail in the sections

to follow.

Note that after receiving the initial token, each node runs asynchronously. Different

nodes may start their J and A periods at slightly different times. Each node uses its own

timer to control the beginning and end of each period. After an adjustment execution, each

node sends its new virtual position and estimated error to its physical neighbors and multi-

hop DT neighbors. After a number of alternating J and A periods, the node positions in the

virtual space converge and distances can be used to predict routing costs between nodes.

The MDT protocols are then run one more time to update the multi-hop DT. VPoD does

not require any landmark or perimeter node and uses no flooding. Every node in the network

runs the same VPoD protocol.

We ran VPoD for the 121-node grid network in Figure 3.1. The results are shown

in Figure 3.4. Note that the initial node positions are quite arbitrary. After 10 adjustment

periods, the topology in the virtual space looks similar to that in the physical space. After 20

adjustment periods, all local and global relationships are preserved; compare Figure 3.4(c)

with Figure 3.1 where nodes are numbered. Note that adjustment periods for VPoD and

2-hop Vivaldi are defined differently. Experimental results in Figure 3.13 (to be presented)

show that 2-hop Vivaldi uses much more storage and communication costs per adjustment

period than VPoD.

3.1.2 Position initialization

After receiving a token, each node initializes its position in the virtual space before for-

warding the token to others. In our current implementation, the initial position of node u is

determined as follows.

• If u is the starting node, u sets its position to the origin. Otherwise, at least one

physical neighbor of u has initialized its position, namely, the token’s sender.

• If only one physical neighbor, say v, of u has initialized its position, u sets its position
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Figure 3.4: Virtual positions constructed by VPoD

at a random position on the circle or sphere centered at v. The radius is the link cost

between u and v.

• If two or more physical neighbors of u have initialized their positions, u chooses the

two that are farthest apart, and computes the mid-point between the two nodes. In

order to avoid degenerate cases (three or more nodes on a line), the actual position of

u is set to a random position a short distance to the mid-point.
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Table 3.1: Notation of VPoD
Pu physical neighbor set of node u
Nu DT neighbor set of node u
Fu forwarding table of node u
xu virtual position of node u, a vector
eu estimated position error of node u
D̃(v, t) Euclidean distance between the virtual posi-

tions of v and t
c(u,v) cost of the link from u to v
D(v, t) routing cost from node v to node t
∆u adjustment timeout value of node u
cc, ce tuning parameters to control the amounts of

change in node position and position error

3.1.3 Multi-hop DT with extensions to support VPoD

We first briefly introduce Delaunay triangulation (DT). A triangulation of a set S of nodes

(points) in 2D is a subdivision of the convex hull of nodes in S into non-overlapping trian-

gles such that the vertices of each triangle are nodes in S. A DT in 2D is a triangulation such

that the circumcircle of each triangle does not contain any other node inside [19]. The def-

inition of DT can be generalized to a higher dimensional Euclidean space using simplexes

and circum-hyperspheres. In each case, the DT of S is a graph to be denoted by DT (S).

The model of a distributed DT in [31, 32] assumes that each node can directly

communicate with every other node in the system. For layer-2 routing, the multi-hop DT

model [29] was formulated as an extension of the distributed DT model as follows:

Definition 1: A multi-hop DT is specified by {< u,Nu,Fu > |u ∈ S}, where Fu is a

soft-state forwarding table and Nu is u’s set of DT neighbors locally computed by u from

information in Fu.

Definition 2: A multi-hop DT of S, {< u,Nu,Fu > |u ∈ S}, is correct if and only if

the following conditions hold: i) for every node u ∈ S, Nu is the same as the neighbor set

of u in DT (S); ii) for every neighbor pair (u,v) in DT (S), there exists a unique k-hop path
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between u and v in the forwarding tables of nodes in S, where k is finite.

A DT neighbor of node u may be a physical neighbor if it is directly connect-

ed to u. If a DT neighbor of u is not a physical neighbor, it is said to be a multi-hop

DT neighbor. In MDT protocols, each entry in u’s forwarding table Fu is a 4-tuple, <

source, pred,succ,dest >, where dest may be a physical or DT neighbor. To meet the re-

quirements of VPoD, each entry in MDT protocols used by VPoD is extended to a 6-tuple

< source, pred,succ,dest,cost,error >, where error is the estimated position error of the

dest node. If dest is a physical neighbor of u, cost is the link cost to dest. If dest is a

multi-hop DT neighbor, cost is the routing cost to dest. In tuples where dest is neither a

physical nor DT neighbor, both cost and error are empty.

We made another change to MDT join and maintenance protocols to accommodate

VPoD as follows. In [29], nodes are globally identified by their coordinates which do

not change. In VPoD, each node’s virtual position is arbitrary and changes over time.

Therefore, nodes in VPoD are identified by globally unique identifiers which are included

in MDT messages. However, MDT protocols running under VPoD do not require a location

service to provide a mapping from global identifiers to virtual positions. Nodes that are

physical neighbors exchange messages and learn the updated virtual positions of each other.

Also, during execution of the MDT protocols, whenever node u learns a new node x from

node v, the message from v to u includes both the global identifier and virtual position of

x. When the MDT protocols finish execution, each node knows the global identifiers and

virtual positions of all of its physical and DT neighbors.

Additionally, during execution of the MDT join and maintenance protocols, every

pair of DT neighbors exchange two messages, Neighbor Set Request and Neighbor Set Reply.

Each of these messages carries its source node’s position error and is also used to record

the routing cost of the reverse path from its destination node to its source node. When the

MDT protocols finish execution, every node knows the cost and error values of each of its

DT neighbors. Also, a path from the node to each of its DT neighbors has been stored in
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Adjustment(): 

1. esum  0;  // summed error of this adjustment, initialized to 0;

2. for all v in Pu Nu do 

3.    if (v Pu and ( , ) ( , )D u v D u v ) or v Nu – Pu then

4.       t  tuple in Fu such that t.dest =v;

5.       ev t.error;

6.       f eu/(eu+ ev);   // confidence of this update

7.       xu xu + cc×f×[D(u, v) – ( , )D u v ]× ˆ( )
u v

u x x ;

                            // ˆ( )
u v

u x x  is a unit vector in the direction of xu - xv

8.       esum esum + |D(u, v) – ( , )D u v | / ( , )D u v ;

// add the error of this sample

9.    end if

10. end for

11. enew esum/|Pu Nu|;   // average error

12. eu eu×(1 – ce) + enew ×ce;

13. Send the updated xu and eu to all nodes in Pu Nu;

Figure 3.5: Pseudocode of the VPoD adjustment algorithm at node u

forwarding tables of nodes along the path. The error values of physical neighbors that are

not DT neighbors are exchanged by link-layer keep-alive messages.

Experimental results show that MDT protocols construct a correct multi-hop DT

very quickly at system initialization. The protocols are highly resilient to churn, i.e., fre-

quent and dynamic topology changes due to addition and deletion of nodes and links. They

are also communication efficient because they do not use flooding to discover multi-hop

DT neighbors [29].

3.1.4 Adjustment algorithm

During each execution of the adjustment algorithm (see pseudocode in Figure 3.5 with

notation defined in Table 3.1), a node u may change its position multiple times to find a

position in the virtual space with less prediction error. Before algorithm execution, node
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u first computes its distances D̃(u,v) to its physical and DT neighbors using their current

virtual positions. (Note that its DT neighbor set and routing costs to DT neighbors do not

change during algorithm execution.) Then, u updates its position (executes lines 4-7 of

pseudocode) with respect to every multi-hop DT neighbor and some physical neighbors.

Specifically, for a physical neighbor v, u updates its position with respect to v if u’s distance

to v is larger than u’s routing cost to v, that is, D̃(u,v)> D(u,v) (see line 3 of pseudocode).

During execution of the adjustment algorithm, there is no message exchange between node

u and other nodes. At the end of algorithm execution, node u sends its updated position and

position error to all of its physical and DT neighbors.

When node u makes a position adjustment with respect to v, it moves its position in

the direction of [D(u,v)− D̃(u,v)]× û(xu − xv), where xu and xv are position vectors, and

û(xu − xv) is a unit vector in the direction of xu − xv. The magnitude of the movement is

proportional to the magnitude of D(u,v)− D̃(u,v), where D(u,v) is routing cost from u to v

and D̃(u,v) is distance between them. If D(u,v)< D̃(u,v), u moves towards v; if D(u,v)>

D̃(u,v), u moves away from v. The magnitude of the movement is also proportional to the

confidence value f of this adjustment computed as follows. If v has a large position error,

the position error of v may propagate to u. To mitigate such error propagation, neighbors

with large position errors should have less influence in position updates than those with

small errors. Similar to Vivaldi, each node u maintains a local variable eu for its estimated

position error. The confidence value f of the adjustment is defined to be

f =
eu

eu + ev

The update rule for each neighbor v that causes a position change is:

xu = xu + cc × f × [D(u,v)− D̃(u,v)]× û(xu − xv)

where cc is a tuning parameter to be determined (see Section 3.3.4). The value of D(u,v) is
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available to u in the cost field of the tuple in Fu whose dest field is v. Note that for a multi-

hop DT neighbor v, the cost field does not always store the minimum routing cost from u

to v, because the path in the multi-hop DT may not be the shortest one. However, since the

main goal of adjusting with a multi-hop DT neighbor v is to move u away from v, we found

that an over-estimate of the routing cost works effectively (because if D(u,v) > D̃(u,v), u

moves away from v).

After updating its position, node u also needs to update its estimated position error.

For each update caused by neighbor v, u computes the prediction error ẽv by

ẽv = |D(u,v)− D̃(u,v)|/D̃(u,v)

If v does not cause an update, ẽv = 0. After checking all neighbors, u computes the average

over all of its physical and DT neighbors:

enew = ∑ ẽv/|Nu ∪Pu|

The position error of node u is then updated by a moving average:

eu = eu × (1− ce)+ enew × ce

where ce is another tuning parameter in the range (0, 1). The initial value of eu is 1. We use

ce = 0.25 in our experiments.

At the end of the adjustment algorithm, node u sends the updated values of xu and

eu to all neighbors (physical and DT).

3.1.5 Adaptive adjustment timeout

The number of Adjustment() executions for node u during an adjustment period is deter-

mined by ⌈ Ta
∆u
⌉, where Ta is the duration of the adjustment period and ∆u is the adjustment
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timeout period of node u. One challenge is the choice of a proper value of ∆u at different

stages of the virtual position construction process. At the beginning of an A period, using

small timeouts can help nodes rapidly find approximate positions. When node positions

are relatively stable, the positions should be refined slowly for them to converge. Also the

multi-hop DT constructed in the previous J period needs to be updated after several Adjust-

ment() executions. If Adjustment() is executed too frequently with an outdated multi-hop

DT, node positions may oscillate and do not converge.

We use an adaptive timeout technique to achieve fast and accurate convergence. The

initial timeout ∆u0 is set to a small value, e.g., 2 sec. After that, each node calculates the

average position error of its physical and DT neighbors, denoted by ē. The timeout is then

changed to

∆u = min(∆u0/ē,Ta)

Note that position errors are initialized to 1 and will decrease with time. When the virtual

positions converge and become relatively stable, ē trends towards 0 and results in a large

∆u. Experimental results for different values of timeout are presented in Section 3.3.2.

3.2 Greedy Distance Vector (GDV) Routing

In GDV basic (see pseudocode in the left column of Figure 3.6), when node u has a packet

to forward, it uses the virtual positions of its physical neighbors and the destination t to

compute estimated routing costs. GDV basic does not use MDT. Furthermore, GDV basic

does not assume the use of VPoD; virtual positions of nodes may be provided by any vir-

tual positioning protocol that can effectively embed routing costs into a virtual space (like

VPoD). For each physical neighbor y ∈ Pu, the estimated routing cost from u to t via y is

Ry = c(u,y)+ D̃(y, t). Using GDV basic, node u selects the physical neighbor v such that

Rv = min
y∈Pu

Ry. To avoid routing loops, GDV requires that D̃(v, t)< D̃(u, t), i.e., v is closer to

the destination than u in the virtual space. If Rv < D̃(u, t) is satisfied, then D̃(v, t)< D̃(u, t)
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GDV_basic(u, t):      

1. For each physical neighbor y,  

Ry c(u, y) + ( , )D y t ;

2. Let v be the physical neighbor 

that minimizes Ry;

3. if  Rv < ( , )D u t  then

  send the packet to v;

4. else 

  GR(u, t);

// geographic routing 

5. end if 

GDV(u, t):

1. For each physical neighbor y,

Ry c(u, y) + ( , )D y t ;

2. For each multi-hop DT neighbor y,  

Ry D(u, y) + ( , )D y t ;

3. Let v be the neighbor that minimizes Ry;

4. if  Rv < ( , )D u t  then

  send the packet to v directly or by the 

multi-hop path; 

5. else 

 MDT_greedy(u, t);

6. end if

Figure 3.6: GDV pseudocode at node u to destination t

holds, and u sends the packet to v. Note that lines 1-3 in left column of Figure 3.6 perform

DV routing with distance vectors computed locally rather than communicated and stored.

In line 4 in left column of Figure 3.6, GDV basic switches to a geographic routing

protocol, GR, based upon greedy forwarding with some recovery method to move packets

out of local minima. (Almost any existing geographic routing protocol may be used as GR.)

GR uses the virtual positions of nodes for its forwarding decision without any consideration

of link costs. When a node, say w, receives a packet that is in GR recovery, w skips lines

1-3 in the GDV basic pseudocode and runs GR. (This detail is omitted in Figure 3.6.)

Since a multi-hop DT is already constructed by VPoD, the version of GDV we

use in this chapter (see pseudocode in the right column of Figure 3.6) also makes use of

the set of multi-hop DT neighbors to improve routing performance and provide guaranteed

delivery. We know that MDT forwarding in a correct multi-hop DT provides guaranteed

delivery in d-dimensional spaces, d ≥ 2, as well as a routing stretch close to 1.

Using GDV, when node u has a packet to forward, it uses the virtual positions of

its physical and multi-hop DT neighbors and the destination t to compute estimated routing

costs. VPoD provides u with the virtual position, routing cost, and a forwarding path to
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each of its multi-hop DT neighbors. For every multi-hop DT neighbor y, node u computes

the estimated routing cost via y to t, Ry = D(u,y)+ D̃(y, t). Using GDV, u selects the node

v such that Rv = min
y∈Pu∪Nu

Ry. If Rv < D̃(u, t), u sends the packet to v directly if v is a physical

neighbor, or by the multi-hop path to v if v is a multi-hop DT neighbor (line 4 in right

column of Figure 3.6).

If Rv < D̃(u, t) is not satisfied, node u runs MDT-greedy using virtual positions of

nodes without any consideration of routing costs (line 5 in right column of Figure 3.6).

When a node, say w, receives a packet that is being forwarded in a virtual link and w is

not the virtual link’s destination, it skips lines 1-4 in the GDV pseudocode and runs MDT-

greedy. (This detail is omitted in Figure 3.6.) Since executing line 4 in the GDV pseudocode

strictly reduces a packet’s distance to its destination in the virtual space, it is straightforward

to prove that GDV provides guaranteed delivery because MDT-greedy provides guaranteed

delivery.

3.2.1 GDV for different routing metrics

GDV can use any routing metric that DV uses, such as, hop count, latency, ETX, ETT,

energy consumption, and propagation distance, etc. Both GDV and DV require a metric

m that is positive and additive. The metric, however, may be asymmetric, namely, it is not

required that m(u,v) = m(v,u) for two physical neighbors, u and v. The following example

illustrates GDV’s requirement of additivity and non-requirement of symmetry. In MDT

protocols, when node a sends a Neighbor Set Request message to node b along the path

a-x-y-b, the message’s routing cost field is initialized to zero at node a. Then node x adds

c(x,a) to the field. Later, node y adds c(y,x) to the field. Finally, node b adds c(b,y) to the

field. The cumulative value provides node b, the destination of the message, its routing cost

back to node a. Subsequently, node b sends a Neighbor Set Reply message to a along the

reverse path and node a obtains from the message its routing cost to b. Note that the costs

of b-a and a-b paths may be different.
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When a routing metric captures more network and link characteristics (such as, link

quality by ETX [12] and both link quality and capacity by ETT [14]) the metric can be

used to provide higher throughput for shortest-path routing. GDV is a geographic routing

protocol designed to take advantage of such routing metrics. We found that even when hop

count is used as the routing metric, GDV has better routing stretch performance than prior

geographic routing protocols. This is because the distance in virtual space is better than the

geographic distance in physical space for predicting routing stretch.

3.3 Performance Evaluation

3.3.1 Methodology

We evaluate the performance of GDV using a packet-level discrete-event simulator. Queu-

ing delays are not simulated because we do not evaluate performance metrics that depend

on congestion, e.g., end-to-end throughput and latency. Instead, random message delivery

times from one node to the next are sampled from a uniform distribution over a specified

time interval.

Performance criteria. GDV works for any routing metric that is positive and addi-

tive. For this chapter, we used two common metrics in our experiments, namely, hop count

and ETX. When using hop count as metric, we evaluate the routing stretch of each proto-

col. The routing stretch value between a pair of source and destination nodes is defined

to be the ratio of the hop count in the selected route to the hop count in the shortest route

in the connectivity graph. When using ETX as metric, we evaluate the average number of

transmissions used to deliver a packet from a source node to a destination node. The rout-

ing stretch and number of transmissions shown in the figures are the average values over

all source-destination pairs in the network. Using hop count as metric, we compare GDV

with MDT-greedy. Using ETX as metric, we compare GDV with NADV [34].5 To give

5PRR×distance [52] is similar to NADV with PRR = 1/ETX.
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advantage to NADV and MDT-greedy in the comparisons, we used accurate node locations

for NADV and MDT-greedy in our experiments.6

We measure the storage cost of a routing protocol by counting the number of distinct

nodes a node needs to know (and store) to perform forwarding, and computing the average

value over all nodes. This represents the storage cost of a node’s minimum required knowl-

edge of other nodes. It has been validated that the overall storage cost for forwarding is

linearly proportional to the number of distinct nodes stored [29]. This metric, unlike count-

ing bytes, requires no implementation assumptions which may cause bias when different

routing protocols are compared.

Creating general connectivity graphs and ETX values. We used the link-layer

simulator developed by the authors of [52] to create connectivity graphs and link costs (ETX

values) of wireless networks. Initially, N nodes are randomly placed in a 2D space. The

packet reception rate (PRR) between two nodes is computed as a function of the distance,

node density, and other parameters including path loss exponent, shadowing standard de-

viation, modulation and encoding schemes, output power, noise floor, preamble and frame

lengths, and randomness. We use the default values for all parameters [52]. If the packet

reception rate between two nodes is greater than 0.1, a physical link is placed between the

two nodes in the connectivity graph. The ETX value of the link (in each direction) is the

inverse of the PRR value. For wireline networks, we use real ISP topologies by the Rocket-

fuel project [53] and synthetic topologies generated by BRITE network topology simulator

[40].

For some experiments, we also randomly placed some large obstacles in the 2D

space. Nodes are not placed in space occupied by obstacles. If the line between two nodes

intersects any obstacle, there is no physical link between the nodes.

We will first present experimental results for 200-node networks. In section 3.3.7,

the number of nodes is varied from 100 to 1000.
6MDT-greedy provides guaranteed delivery for nodes with inaccurate or arbitrary coordinates. However, its

routing stretch is lower when node locations are known more accurately.
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Figure 3.7: Routing performance of GDV, MDT, and NADV for different timeout values

3.3.2 Adaptive adjustment timeout

We conducted many experiments for different values of adjustment timeout. We show

representative results for a 200-node network in Figure 3.7. Nodes are in a 100m×100m 2D

physical space. The average number of physical neighbors per node is 14.5. VPoD assigns

node positions in a 3D virtual space. Routing performance versus adjustment period number

(which represents time) is presented for hop count used as metric in Figure 3.7(a) and for

ETX used as metric in Figure 3.7(b). The duration of an adjustment period is Ta = 20

seconds. Note that when the adjustment timeout is a small value (2 seconds), nodes can

find their approximate positions after two periods. However, the routing performance keeps

oscillating after that. On the other hand, using a large adjustment timeout (10 seconds)

slows down the convergence. Adaptive timeout is the best strategy. Using adaptive timeout,

the convergence is as fast as using a small timeout and the quality of virtual positions after

convergence is similar to that from using a large timeout. We used adaptive timeout for all

other experiments to be presented in this chapter.
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Figure 3.8: Normalized singular values for different network sizes

3.3.3 Choice of Dimensionality

We use Principal Component Analysis (PCA) to determine whether a low-dimensional s-

pace can be used to effectively model routing costs of practical networks. We then use it

to find an appropriate dimensionality to use and we present experimental results to validate

the PCA results.

PCA relies on Singular Value Decomposition (SVD). The input of SVD is an N×N

matrix M, where each element mi j is the routing cost from node i to node j. SVD factors

M into the product of three matrices: M = U · S ·V T , where S is a diagonal matrix with

nonnegative elements si. The diagonal elements are called singular values of M, which are

ordered non-increasingly.

From M = U · S ·V T , we have mi j =
N
∑

k=1
skuikv jk. If singular values s1, ...,sd are

much larger than the rest, we may approximate mi j by mi j ≈
d
∑

k=1
skuikv jk. This means that

the routing cost matrix M can be embedded in a d-dimensional Euclidean space with low

errors.

Figure 3.8 shows our experimental results for networks of 200, 600 and 1000 nodes.

Each data point represents the average result from 20 different networks. The routing costs

in the input matrix are measured in hop count for experiments in Figure 3.8(a), and in ETX
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Figure 3.9: Routing performance of GDV, MDT, and NADV for 2D, 3D, and 4D

for experiments in Figure 3.8(b). The singular values shown are normalized. The first three

singular values are much larger than the remaining ones. Also as the network size increases,

the third singular value increases in magnitude, which implies that the third dimension is

more important for a larger network size.

We have performed many experiments for different networks embedded in 2D, 3D,

and 4D virtual spaces. Figure 3.9 shows representative results of routing performance for

2D, 3D and 4D, using the same 200-node network for experiments in Figure 3.7. After 10

adjustment periods, the routing performance of GDV is better than MDT and NADV for all

three virtual spaces. For 4D, the routing performance is close to the converged value after

just one or two adjustment periods. 2D requires many more adjustment periods to converge.

Note that the converged values of 4D are not much better than those of 3D. This observation

is consistent with the PCA results in Figure 3.8.

From the PCA and experimental results, 2D or 3D are good choices. As to be shown

in Section 3.3.6, both the storage and communication costs of VPoD in 4D are significantly

higher than those in 2D or 3D.
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Figure 3.10: Routing performance of GDV, MDT, and NADV for different values of tuning
parameter cc

3.3.4 Impact of tuning parameter

The tuning parameter cc controls the size of movement in position updates. We tried differ-

ent values of cc using the same network used for experiments shown in Figure 3.7. A 3D

virtual space is used for VPoD. Figure 3.10 shows that a smaller value (cc = 0.02) causes

slower convergence in the first few adjustment periods but its convergence is still quite fast

and accurate. When a large value (cc = 0.3) is used, the convergence is fast at the begin-

ning, but there are oscillations in the ETX experiments (see Figure 3.10(b)). VPoD with

cc = 0.3 still finds good virtual positions after 20 adjustment periods. Empirically, VPoD is

quite robust to different values of cc because VPoD uses two other adaptive values to con-

trol adjustments, i.e., confidence and timeout. We used cc = 0.1 for all other experiments

presented in this chapter.

3.3.5 Impact of obstacles

The physical space of practical wireless networks may include large obstacles that block

wireless transmissions. Thus we also evaluated GDV for networks with obstacles. In these

experiments, each obstacle is a 10m×10m square. We randomly placed four obstacles

in a 100m×100m physical space with the same 200-node network used for experiments
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Figure 3.11: Routing performance of GDV, MDT, and NADV with four randomly placed
obstacles
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Figure 3.12: Routing performance of GDV, MDT, and NADV vs. number of obstacles

in Figure 3.7. We also quantitatively compared VPoD with Vivaldi, by running GDV on

virtual positions constructed by them. Similar to the experiments in Figure 3.2, we allow

each node of Vivaldi to sample both one-hop and two-hop neighbors. The results are shown

in Figure 3.11. GDV on VPoD outperforms both MDT and NADV on actual locations and

it outperforms GDV on Vivaldi by a very large margin. (We found the performance of GDV

on Vivaldi to be consistently poor. For the sake of clarity of presentation, we will omit

results for GDV on Vivaldi in Figures 3.12, 3.14, and 3.15 to be presented.)

Next we varied the number of obstacles from 0 to 10 in the 100m×100m physical
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Figure 3.13: Storage cost and communication cost of VPoD and Vivaldi

space for 200-node networks. The results are shown in Figure 3.12. Each data point is the

average value of 20 simulation runs for 20 different networks. For comparison, we also

show the optimal values of shortest path routing using ETX as metric in Figure 3.12(b).

In the same figure, the average number of transmissions of NADV increases from 7.44 (0

obstacle) to 12.73 (10 obstacles), while that of GDV on VPoD (3D) increases from 5.31 (0

obstacle) to 6.57 (10 obstacles). Note that the routing performance of GDV on VPoD is

fairly close to that of optimal routing.

3.3.6 Storage and communication costs

A multi-hop DT requires extra storage for multi-hop DT neighbors. The amount of extra

storage varies during the course of the VPoD construction. At the beginning, most DT

neighbors are not physical neighbors because the initial positions are fairly arbitrary. When

VPoD has converged, the physical and DT neighbor sets have a large overlap. We evaluated

both storage and communication costs using the same 200-node network for experiments

in Figure 3.7. Figure 3.13(a) shows storage cost over time. The routing metric is hop

count. (Results for the ETX metric are similar and not shown.) All three curves of GDV

on VPoD start from high values and then drop after two adjustment periods. The storage

cost of VPoD in 2D after convergence is very close to those of MDT and NADV on actual
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Figure 3.14: Routing performance of GDV, MDT, and NADV versus N

locations. The storage cost of VPoD in 4D after convergence is much higher than those in

2D and 3D, but still lower than that of two-hop Vivaldi. NADV requires each node to store

physical neighbors only and has the lowest storage cost.

The average number of control messages sent per node in each adjustment period

for constructing virtual positions is shown in Figure 3.13(b) for VPoD and Vivaldi. The

message cost of VPoD includes both the multi-hop DT construction and adjustment update

messages. The routing metric is hop count. (Results for the ETX metric are similar and not

shown.) VPoD in 2D has the lowest message cost, which is about 20 messages per join-

and-adjustment period. After convergence, the message costs of VPoD in 3D and 4D are

about 60 and 140 messages, respectively, per join-and-adjustment period. Two-hop Vivaldi

requires many more messages. We do not show message costs for MDT and NADV on

actual locations. Given location information, they require a one-time construction with low

message costs. But they require localization methods which have message and other costs

to provide accurate location information.

3.3.7 Varying the number of nodes

We evaluate the performance of GDV for network size (N) from 100 to 1000 nodes. For

200-node experiments, the size of the physical space is 100m×100m. For a smaller (or
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Figure 3.15: Storage cost and routing success rate of GDV, MDT, and NADV versus N

larger) number of nodes, the size of the physical space is scaled down (or up) proportionally

such that the average number of physical neighbors per node is kept at 14.5. No obstacles

are placed. Each data point shown is the average value of 20 simulation runs for 20 different

networks.

Figure 3.14(a) shows routing stretch versus N. GDV on VPoD performs better than

MDT on actual locations. (Note that MDT has been shown to provide the lowest routing

stretch when compared to other geographic routing protocols [29].) The routing stretch

values of both GDV and MDT remain low as N increases.

Figure 3.14(b) shows that the average number of transmissions increases with N

for all protocols (including optimal routing). NADV increases a lot more than GDV. For

N =1000, the average number of transmissions of GDV is only half of that of NADV.

Figure 3.15(a) shows storage cost versus N. NADV has the lowest cost, followed

in order by MDT, GDV on VPoD (2D), and GDV on VPoD (3D). The storage costs for all

protocols remain low as N increases.

Figure 3.15(b) shows the routing success rates of different protocols. GDV and

MDT both provide guaranteed delivery (the routing success rate was 100% in every exper-

iment). The routing success rate of NADV is below 100% and decreases with N because

NADV’s recovery method from local minima does not work well for general connectivity
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Figure 3.16: Routing performance of GDV under churn

graphs used in the experiments.

3.3.8 Resilience to dynamic topology changes

GDV and VPoD are highly resilient to dynamic network topology changes (churn) because

VPoD uses MDT which is highly resilient. For the same 200-node network used for the

experiments in Figure 3.9, we introduced node churn after the 10th adjustment period and

at the beginning of the 11th join period. At the same time, 150 nodes (out of 200 nodes)

failed and 150 new nodes joined. Each failed node became silent. Each new node chose its

position in the virtual space to be the center of the positions of its physical neighbors that

have a position error less than 1. Its own position error is set to 1.

Figure 3.16 shows the routing performance of GDV using VPoD in 2D, 3D, and

4D. Note that the routing performance for each routing metric (hop count or ETX) becomes

worse immediately after churn. However, routing performance quickly converges to a low

value after several adjustment periods (just 2-3 periods for 3D). The routing performance

after 20 periods in total is as good as the performance shown in Figure 3.9 for experiments

with a static topology. These and similar results from other churn experiments show that

GDV and VPoD are very resilient to dynamic topology changes.

66



b

ac

e

d

Figure 3.17: An example of pruning

3.4 Performance of GDV on wireline networks

GDV has minimal assumptions: connected graph and bidirectional links. Hence GDV can

also be applied on wireline networks for intra-domain or layer-2 routing. In this section we

evaluate the performance of GDV using real and synthetic wireline network topologies.

We first use three router-level topologies collected by the Rocketfuel project [53],

each of which belongs to a single AS. We discover that a real router-level topology usually

contains some nodes that have only one or two neighbors, e.g., some edge routers. Main-

taining a multi-hop DT for a network including these nodes is very inefficient. It is because

most DT neighbors of these nodes are multi-hop neighbors, incurring both high communi-

cation and storage cost. Furthermore, these nodes do not have enough physical neighbors

for position adjustment. To deal with this problem, we design two schemes, pruning and

two-hop neighbor support, to improve the performance of GDV on real router-level topolo-

gies.

Pruning: A node with one physical neighbor does not need to participate in the

multi-hop DT, because it has only one access to other nodes, such as nodes b, d and e in

the example of Figure 3.17. Before starting VPoD, each of these nodes sends a PRUNED

message to its parent, i.e., the only physical neighbor. The PRUNED message indicates

that the sender declines to participate in the multi-hop DT, and will simply use the parent’s

position as its own position for receiving data messages. When a node, say c in Figure 3.17,
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finds that there is only one physical neighbor that is not pruned (node a), it also sends a

PRUNED message to the physical neighbor. Hence nodes b, c, d and e all use a’s position,

and a will store their identifiers to forward messages to them. In this way, any tree sub-graph

attached to the remaining network topology will be pruned, and only the root participates

in the multi-hop DT. Every node in the tree uses the root’s virtual position. A data message

whose destination is in the tree will be routed to the root and then forwarded.

Two-hop neighbor support: For nodes that do not have enough physical neighbors

for position adjustment, they can randomly explore some two-hop neighbors and include

them into their physical neighbor sets. For each two-hop neighbor w stored by node u,

the “link cost” c(u,w) is assigned to be min
v∈Pu

∩
Pw

c(u,v) + c(v,w). The succ field in the

corresponding tuple is the physical neighbor that minimizes c(u,v)+ c(v,w). Since GDV

and VPoD use any additive routing metric, a two-hop neighbor can be considered the same

as a physical neighbor in protocol execution.

To determine whether a low-dimensional space can represent accurately the routing

cost of router-level networks, we show in Figure 3.18 the normalized singular values of the

routing cost matrices, after pruning, of AS1755, AS3967 and AS6461. The first two or

three singular values are much larger than the remaining ones for all three topologies. From

the results, VPoD in low dimensions (2D-4D) is good for real router-level topologies.

Figure 3.19 shows the GDV routing stretch on the AS1755 network in 2D and 3D,

with and without pruning and two-hop neighbor support. The original GDV on VPoD

has relatively high routing stretch. The converged routing stretch values are about 2.5 and

1.8 for 2D and 3D, respectively. The reason might be that some nodes with few physical

neighbors are not able to determine their proper positions. However, pruning and two-hop

neighbor support significantly improve the routing stretch. After applying these schemes,

the converged values are 1.27 and 1.15 for 2D and 3D respectively. Experiments on AS3967

and AS6461 topologies show similar results.

We then conduct experiments on synthetic router-level topologies generated by the
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Figure 3.18: Normalized singular values for Rocketfuel router-level topologies
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Figure 3.19: GDV Routing stretch on AS1755 topology

BRITE internet topology generator [40] to evaluate the performance of GDV for networks

with different values of N. Each data point shown is the average value of 10 simulation runs

for 10 different networks. Figure 3.20(a) shows routing stretch versus N, and Figure 3.20(b)

shows storage cost versus N. Similar to the results of GDV on wireless topologies, the

routing stretch and storage cost remain low as N increases, for both 2D and 3D.
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Figure 3.20: Routing stretch and storage cost of GDV versus N
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Chapter 4

ROME Protocols

4.1 Unicast and Multicast Routing in ROME

Consider a network of switches with an arbitrary topology (any connected graph). Each

switch selects one of its MAC addresses to be its identifier. End hosts are connected to

switches which provide frame delivery between hosts. Ethernet frames for delivery are

encapsulated in ROME packets. Switches interact with hosts by Ethernet frames using

conventional Ethernet format and semantics. ROME protocols run only in switches. Link-

level delivery is assumed to be reliable.

4.1.1 Virtual space for switches

A Euclidean space (2D, 3D, or a higher dimension) is chosen as the virtual space. The num-

ber of dimensions and the minimum and maximum coordinate values of each dimension are

known to all switches. Each switch determines for itself a location in the space represented

by a set of coordinates.

Location hashing. To start ROME protocols, each switch boots up and assigns

itself an initial location randomly by hashing its identifier, IDS, using a globally-known hash

function H. The hash value is a binary number which is converted to a set of coordinates.
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Our protocol implementation uses the hash function MD5 [50], which outputs a 16-byte

binary value. 4 bytes are used for each dimension. Thus locations can be in 2D, 3D, or

4D.1

Consider, for example, a network that uses a 2D virtual space. For 2D, the last 8

bytes of H(IDS) are converted to two 4-byte binary numbers, x and y. Let MAX be the

maximum 4-byte binary value, that is, 232 − 1. Also let mink and maxk be the minimum

and maximum coordinate values for the kth dimension. Then the location in 2D obtained

from the hash value is (min1+
x

MAX (max1−min1), min2+
y

MAX (max2−min2)), where each

coordinate is a real number. The location can be stored in decimal format, using 4 bytes per

dimension. Hereafter, for any identifier, ID, we will use H(ID) to represent its location in

the virtual space and refer to H(ID) as the identifier’s location hash or, simply, location.

Switches discover their directly-connected neighbors and, using their initial loca-

tions, proceed to construct a multi-hop DT [29]. Switches then update their locations using

VPoD and construct a new multi-hop DT as described in Subsection 3.1.

Unicast routing. Unicast packet delivery in ROME is provided by GDV routing in

the multi-hop DT maintained by switches. In a correct multi-hop DT, GDV routing provides

guaranteed delivery of any packet to the switch that is closest to the packet’s destination

location [29, 46].

4.1.2 Hosts

Hosts have IP and MAC addresses. Each host is directly connected to a switch called its

access switch. An access switch knows the IP and MAC addresses of every host connected

to it. The routable address of each host is the location of its access switch in the virtual

space, also called the host’s location. Hosts are not aware of ROME protocols and run ARP

[44], DHCP [15], and Ethernet protocols in the same way as when they are connected to a

conventional Ethernet.
1Conceptually, a higher dimensional space gives VPoD more flexibility but requires more storage space and

control overhead. Our experimental results show that VPoD’s performance in 2D is already very good.
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4.1.3 Stateless multicast and its applications

To provide the same services as conventional Ethernet, ROME needs to support group-

wide broadcast or multicast, for applications, such as, VLAN, teleconferencing, television,

replicated storage/update in data centers, etc.

A straightforward way to deliver messages to a group is by using a multicast tree

similar to IP multicast [25]. When there are many groups with many hosts in each group,

the amount of multicast state stored in switches can become a scalability problem.

We present a stateless multicast protocol for group-wide broadcast in ROME. A

group message is delivered using the locations of its receivers without construction of any

multicast tree. Switches do not store any state for delivering group messages.

The membership information of stateless multicast is maintained at a rendezvous

point (RP) for each group. The RP of a group is determined by the location hash H(IDG),

where IDG is the group’s ID. The switch whose location is closest to H(IDG) serves as the

group’s RP. The access switch of the sender of a group message sends the message to the

RP by unicast. GDV routing guarantees message delivery to the switch closest to H(IDG).

The RP then forwards the message to other group members (receivers) as follows:

The RP partitions the entire virtual space into multiple regions. To each region with one or

more receivers, the RP sends a copy of the group message with the region’s receivers (their

locations) in the message header (actually the ROME packet header). The destination of

the group message for each region is a location, called split position (SP), which is either (i)

the closest receiver location in that region, or (ii) the mid-point of the two closest receiver

locations in the region. By GDV routing, the group message will be routed to a switch

closest to the SP. This switch will in turn partition its region into multiple sub-regions and

send a copy of the group message to the SP of each sub-region. Thus a multicast tree rooted

at the RP grows recursively until it reaches all receivers. The tree structure is not stored

anywhere. At each step of the tree growth, a switch computes SPs for the next step based

on receiver locations in the group message it is to forward.
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Figure 4.1: Example of stateless multicast

We present an example of stateless multicast in Figure 4.1(a). The group consists of

7 hosts a,b,c,d,e, f ,g, connected to different switches with locations in a 2D virtual space

as shown. Switch S1 serves as the RP. Host a sends a message to the group by first sending

it to S1. Upon receiving the message, S1 realizes that it is the RP. S1 partitions the entire

virtual space into four quadrants and sends a copy of the message by unicast to each of

the 3 quadrants with at least one receiver. The message to the northeast quadrant with four

receivers (d,e, f , and g) is sent to a split position, SP1, which is the midpoint between the

locations of d and e, the two receivers closest to S1. The message will then be routed by
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GDV to S2, the switch closest to SP1.

Subsequently, S2 partitions the space into four quadrants and sends a copy of the

message to each of the three quadrants with one or more receivers (see Figure 4.1(b)). For

the northeast quadrant that has two receivers, the message is sent to the split position, SP2,

which is the midpoint between the locations of f and g. The message to SP2 will be routed

by GDV to S3, the switch closest to SP2, which will unicast copies of the message to f and

g.

At any time during the multicast, when a switch realizes that a receiver is a directly-

connected host, it can transmit the message directly to the host and removes the host from

the set of receivers in the message to be forwarded.

In ROME, for each group, its group membership information is stored in only one

switch, the group’s RP. For this group, no multicast state is stored in any other switch. This

is a major step towards scalability. The tradeoff for this gain is an increase in communica-

tion overhead from storing a set of receivers in the ROME header of each group message.

Experimental results in Subsection 5.6 show that this communication overhead is small.

This is because when the group message is forwarded by the RP and other switches, the

receiver set is partitioned into smaller and smaller subsets.

The implementation of stateless multicast, as described, is not limited to the use

of a 2D space. Also, partitioning of a 2D space at the RP, or at a switch closest to a SP,

is not limited to four quadrants. The virtual space can be partitioned into any number of

regions evenly or unevenly. A study of other virtual spaces and partitioning methods for

implementing stateless multicast will be future work.

Stateless multicast for VLAN. Members of a VLAN are in a logical broadcast do-

main; their locations may be widely distributed in a large-scale Ethernet. ROME’s stateless

multicast protocol is used to support VLAN broadcast. When a switch detects that one of

its hosts belongs to a VLAN, it sends a Join message to location H(IDV ), where IDV is the

VLAN ID. By GDV, The Join message is routed to the switch closest to H(IDV ), which is
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the RP of the VLAN. The RP then adds the host to the VLAN membership. The protocol

for a host to leave a VLAN is similar. VLAN protocols in ROME are much more efficient

than the current VLAN Trunking Protocol used in conventional Ethernet [2]. The num-

ber of global VLANs is restricted to 4094 in conventional Ethernet [21]. There is no such

restriction in ROME because stateless multicast does not require switches to store VLAN

information to perform forwarding.

4.2 Host and Service Discovery in ROME

Suppose a host knows the IP address of a destination host from some upper-layer service. To

route a packet from its source host to its destination host, switches need to know the MAC

address of the destination host as well as its location, i.e., location of its access switch. Such

address and location resolution are together referred to as host discovery.

4.2.1 Delaunay distributed hash table

The benefits of using a DHT for host discovery include the following: (i) uniformly dis-

tributing the storage cost of host information over all network switches, and (ii) enabling

information retrieval by unicast rather than flooding. The one-hop DHT in SEATTLE [25]

uses consistent hashing of identifiers into a circular location space and requires that every

switch knows all other switches. Such global knowledge is made possible by link-state

broadcast, which limits scalability.

In ROME, the Delaunay DHT (or D2HT) uses location hashing of identifiers into a

Euclidean space (2D, 3D, or a higher dimension) as described in Subsection 4.1.1. D2HT

uses greedy routing (GDV) in a multi-hop DT where every switch only needs to know its

directly-connected neighbors and its neighbors in the DT graph. Furthermore, each switch

uses a very efficient search method to find its multi-hop DT neighbors without broadcast

[29].

In D2HT, information about host i is stored as a key-value tuple, ti =< ki, vi >,
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where the key ki may be the IP (or MAC) address of i, and vi is host information, such as

its MAC address, location, etc. The access switch of host i is the publisher of i’s tuples. A

switch that stores < ki, vi > is called a resolver of key ki. The tuples are stored as soft state.

To publish a tuple, ti =< ki, vi >, the publisher computes its location H(ki) and

sends a publish message of ti to H(ki). Location hashes are randomly distributed over the

entire virtual space. It is possible but unlikely that a switch exists at the exact location

H(ki). The publish message is routed by GDV to the switch whose location is closest

to H(ki), which then becomes a resolver of ki. When some other switch needs host i’s

information, it sends a lookup request message to location H(ki). The lookup message is

routed by GDV to the resolver of ki, which sends the tuple < ki, vi > to the requester. A

publish-lookup example is illustrated in Figure 4.2.

4.2.2 Host discovery using D2HT

In ROME, the routable address of host i is i’s location ci, which is the location of its access

switch. There are two key-value tuples for each host, for its IP-to-MAC and MAC-to-
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location mappings.

In a tuple for host i, the key ki may be its IP or MAC address. If ki is the MAC

address, value vi includes location ci and the unique ID, Si, of i’s access switch. If ki is the

IP address, the value vi includes the MAC address, MACi, as well as ci and Si. Note that the

host location is included in both tuples for each host.

After a host i is plugged into its access switch Si with location ci, the switch learns

the host’s IP and MAC addresses, IPi and MACi, respectively [25]. Si then constructs two

tuples: < MACi, ci, Si > and < IPi, MACi, ci, Si >, and stores them in local memory. Si

then sends publish messages of the two tuples to H(IPi) and H(MACi).

Note that each switch stores two kinds of tuples. For a tuple with key ki stored by

switch S, if S is i’s access switch, the tuple is a local tuple of S. Otherwise, the tuple is

published by another switch and is an external tuple of S. Switches store key-value tuples

as soft state.

Each switch interacts with directly-connected hosts using frames with conventional

Ethernet format and semantics. When a host j sends its access switch S j an ARP query

frame with destination IP address IPi and the broadcast MAC address, S j sends a lookup

request to location H(IPi), which is routed by GDV to a resolver of IPi. The resolver sends

back to S j the tuple < IPi, MACi, ci, Si >. After receiving the tuple, the access switch S j

caches the tuple and transmits a conventional ARP reply frame to host j. When j sends

an Ethernet frame with destination MACi, the access switch S j retrieves location ci from its

local memory and sends the Ethernet frame to ci. If S j cannot find the location of MACi

in its local memory because, for instance, the cached tuple has been overwritten, it sends a

lookup request which is routed by GDV to H(MACi) to get the MAC-to-location mapping

of host i.

All publish and lookup messages are unicast messages. Host discovery in ROME is

accomplished on demand and is flooding-free.
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4.2.3 Reducing lookup latency

Reducing the lookup latency for host discovery is a significant concern. We designed and

evaluated three techniques to speed up key-value lookup, including using multiple inde-

pendent hash functions to publish each key-value tuple at multiple locations, hashing to a

smaller region in the virtual space, and taking shortcuts for fast responses.

Multiple location hashes. For each host i, the access switch Si can publish more

than one copy of the tuple < ki, vi > into the network: Si applies m independent hash

functions on ki and gets m different location hashes H1(ki), ..., Hm(ki). It then sends m

publish messages to these locations and let switches closest to them store the key-value

mapping. If a switch wants to request < ki, vi >, it first computes the m location hashes,

evaluates the distances from its own location to the m locations, and then selects the nearest

one as the destination of the lookup request. According to the property of the VPoD virtual

space, shorter distance means approximately lower routing cost or latency. Thus using more

hash functions trades a higher storage cost for a lower latency. We will demonstrate this

trade-off in the experimental results.

Hashing to a smaller region: To further reduce the lookup latency in ROME,

switches can map location hashes to a smaller virtual region. For example, suppose the 2D

virtual space of switches is ([0, 100], [0, 100]), and virtual distance is an accurate estimate

of routing latency. If location hashes are distributed over the entire virtual space, the worst-

case latency between sending a lookup request and receiving its reply is 282.8. If the hash

results are mirrored to a smaller region ([25, 75], [25, 75]), the worst-case lookup latency

is 212.1. The average latency is also reduced by using a smaller hash region. However,

this technique can introduce load imbalance among switches: switches in the region have

to store more mapping tuples than the switches outside.

Shortcuts. If there exist a small number of popular hosts in the network, caching

is an effective way to provide fast response to lookup request. Each access switch can

maintain a cache list that stores the locations of the most popular hosts requested by the
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hosts attached to it.

A lookup request sent to location H(ki) does not have to reach the resolver that is

closest to H(ki). Any intermediate switch S can immediately reply to the request for host

information and stop forwarding it, under one of three conditions: (1) S is the access switch

of i; (2) S is a resolver of i for a different hash function; (3) i’s location was previously

discovered by S and stored in S’s cache.

4.2.4 Maintaining consistent key-value tuples

A key-value tuple < ki,vi > stored as an external tuple in a switch is consistent iff (i) the

switch is closest to the location H(ki) among all switches in the virtual space, and (ii) ci is

the correct location of i’s access switch. At any time, some key-value tuples may become

inconsistent as a result of host or network dynamics.

Host dynamics. A host may change its IP or MAC address, or both. A host may

change its access switch, such as, when a mobile node moves to a new physical location or

a virtual machine migrates to a new system.

Network dynamics. These include the addition of new switches or links to the

network as well as deletion/failure of existing switches and links. MDT and VPoD protocols

have been shown to be highly resilient to network dynamics (churn) [29, 46]. Switch states

of the multi-hop DT as well as switch locations in the virtual space recover quickly to

correct values after churn. The following discussion is limited to how host and network

dynamics are handled by switches in the role of publisher and in the role of resolver in

D2HT.

As a publisher, each switch ensures that local tuples of its hosts are correct when

there are host dynamics. For example, if a host has changed its IP or MAC address, the

host’s tuples are updated accordingly. If a new host is plugged into the switch, it creates

tuples for the new host. New as well as updated tuples are published to the network. In

addition to these reactions to host dynamics, switches also periodically refresh tuples they
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previously published. For every local tuple < ki, vi >, S sends a refresh message every Tr

second to its location H(ki). The purpose of a refresh message is twofold: (i) If the switch

closest to location H(ki) is the current resolver, timer of the soft-state tuple in the resolver

is refreshed. (ii) If the switch closest to H(ki) is different from the current resolver, the

refresh message notifies the switch to become a resolver.

As a resolver, each switch sets a timer for every external tuple stored in local mem-

ory. The timer is reset by a request or refresh message for the tuple. If a timer has not been

reset for Te time, timeout occurs and the tuple will be deleted by the resolver. Te is set to a

value several times that of Tr.

For faster recovery from network dynamics, we designed and implemented a tech-

nique, called external tuple handoff. When a switch detects topology or location changes

in the multi-hop DT, it checks the location H(ki) of every external tuple < ki, vi >. If the

switch finds a physical or DT neighbor closer to H(ki) than itself, it sends a handoff mes-

sage including the tuple to the closer neighbor. The handoff message will be forwarded

by GDV until it reaches the switch closest to H(ki), which then becomes the tuple’s new

resolver.

4.2.5 Using Multicast to publish/update tuples

A switch may need to send publish or refresh messages for multiple tuples at a same time.

For example, a switch can use the same timer to control the time Tr to send refresh messages

for all tuples. In these cases, switches may use the stateless multicast protocol discussed in

Section 4.1.3 to send the publish or refresh messages. Experimental results in 5.6 show that

using multicast can greatly reduce the control overhead compared to using unicast.

4.2.6 DHCP server discovery using D2HT

In a conventional Ethernet, a new host broadcasts a Dynamic Host Configuration Protocol

(DHCP) discover message to find a DHCP server. Each DHCP server that has received the
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discover message allocates an IP address and broadcasts a DHCP offer message to the host.

The host broadcasts a DHCP request to accept an offer. The selected server broadcasts a

DHCP ACK message. Other DHCP servers, if any, withdraw their offers.

In ROME, the access switch of each DHCP server publishes the server’s information

to a location using a key known by all switches, such as, “DHCPSERVER1”. When the

access switch of a host receives a DHCP discover message, the message is routed by GDV

to the location of a DHCP server, without use of flooding. There is no duplicate DHCP offer.

To be compatible with a conventional Ethernet, the access switch replies to the host with a

DHCP offer and later transmits a DHCP ACK in response to the host’s DHCP request.

4.3 ROME for Hierarchical Ethernet

A metropolitan or wide area Ethernet spanning across a large geographic area typically

has a hierarchical structure comprising many access networks interconnected by a core

network [22]. Each access network has one or more border switches. The border switches

of all access networks form the core network. Consider a hierarchical network consisting

of 500 access networks each of which has 2000 switches. The total number of switches is 1

million. At 100 hosts per switch, the total number of hosts is 100 millions. We believe that

a 2-level hierarchy is adequate for metropolitan scale in the foreseeable future.

4.3.1 Routing in a hierarchical network

For hierarchical routing in ROME, separate virtual spaces are specified for the core network

and each of the access networks, called regions. Every switch knows the virtual space of its

region (i.e., dimensionality as well as maximum and minimum coordinate values of each

dimension). Every border switch knows two virtual spaces, the virtual space of its region

and the virtual space of the core network, called backbone.

The switches in a region first discover their directly-connected neighbors. They

then use MDT and VPoD protocols to determine their locations in the region’s virtual space
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Figure 4.3: Routing in a hierarchical Ethernet

(regional locations) and construct a multi-hop DT for the access network. Similarly, the

border switches use MDT and VPoD protocols to determine their locations in the virtu-

al space of the backbone (backbone locations) and construct a multi-hop DT for the core

network. Each border switch sends its information (unique ID, regional and backbone lo-

cations) to all switches in its region.

The Delaunay DHT requires the following extension for hierarchical routing: Each

key-value tuple < ki,vi > of host i stored at a resolver includes additional information, Bi,

which specifies the IDs and backbone locations of the border switches in host i’s region.

When a host sends an Ethernet frame to another host, its access switch obtains, from

its cache or using host discovery, the destination host’s key-value tuple, which includes

border switch information of the destination region. This information allows the access

switch to determine whether to route the frame to its destination using intra-region routing

or inter-region routing.
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Intra-region routing. The sender’s access switch indicates in the ROME packet

header that this is an intra-region packet. The routable address is the regional location of

the access switch of the receiver. The packet will be routed by GDV to the access switch of

the receiver as previously described. In the example of Figure 4.3, an intra-region packet

is routed by GDV from access switch S1 to destination host’s access switch S2 in the same

regional virtual space.

Inter-region routing. For a destination host in a different region, an access switch

learns, from the host’s key-value tuple, information about the host’s border switches and

their backbone locations. This information is included in the ROME header encapsulating

every Ethernet frame destined for that host. We describe inter-region routing of a ROME

packet as illustrated in Figure 4.3. The origin switch S1 computes its distances in the region-

al virtual space to the region’s border switches, S3 and S4. S1 chooses S3 which is closer to

S1 than S4. The packet is routed by GDV to S3 in the regional virtual space. S3 learns from

the ROME packet header, S5 and S8, border switches in the destination’s region. S3 com-

putes their distances to destination S7 in the destination region’s virtual space. S3 chooses

S5 because it is closer to the destination location. The packet is then routed by GDV in the

backbone virtual space to S5. Lastly, the packet is routed, in the destination region’s virtual

space, by GDV from S5 to S7, which extracts the Ethernet frame from the ROME packet

and transmits the frame to the destination host.

Note that at the border switch S3, it has a choice of minimizing the distance traveled

by the ROME packet in the backbone virtual space or in the destination region’s virtual

space. In our current ROME implementation, the distance in the destination region’s virtual

space is minimized. This is based upon our current assumption that the number of switches

in an access network is larger the number of switches in the core network. This choice at a

border switch is programmable and can be easily reversed. Lastly, it is not advisable to use

the sum of distances in two different virtual spaces (specified independently) to determine

routing because they are not comparable. This restriction may be relaxed but it is beyond
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the scope of this dissertation.

4.3.2 Host discovery in a hierarchical network

As illustrated in Figure 4.4, the key-value tuple < ki,vi > of host i is published to two

resolvers in the entire network, namely: a regional resolver and a global resolver. The

regional resolver is the switch closest to location H(ki) in the same region as host i; it is

labeled by Sr1 in the figure. The publish and lookup protocols are the same as the ones

presented in Subsection 4.2.2. To find a tuple with key ki, a switch sends a lookup message

to position H(ki) in its own region. A regional resolver provides fast responses to queries

needed for intra-region communications.

However, switches outside of the host’s region cannot find its regional resolver.

Therefore, the key-value tuple < ki,vi > of host i is also stored in a global resolver to

respond to host discovery for inter-region communications. The global resolver can be

found by any switch in the entire network. As shown in Figure 4.4, to publish a tuple
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< ki,vi > to its global resolver, the publish message is first routed by GDV to the regional

location of one of the border switches in the region, labeled by SB1 in the figure. SB1

computes location H(ki) in the backbone virtual space and includes it with the publish

message which is routed by GDV to the border switch closest to backbone location H(ki)

in the core network, labeled by SB2 in the figure. Switch SB2 serves as the global resolver

of host i if it has enough memory space. Switch SB2 can optionally send the tuple to a

switch in its region such that all switches in the region share the storage cost of the global

resolver function (called two-level location hashing). In two-level location hashing, the

publish message of tuple < ki,vi > sent by SB2 is routed by GDV to a switch closest to the

regional location H(ki) (labeled by Sr2 in the figure) inside SB2’s access network. Sr2 then

becomes a global resolver of host i.

To discover the key-value tuple < ki,vi > of host i, a switch S j first sends a lookup

message to location H(ki) in its region. The lookup message arrives at a switch Su closest

to H(ki), as illustrated in Figure 4.4 (upper left). If S j and host i were in the same region,

Su would be the regional resolver of i and it would reply to S j with the key-value tuple of

host i. Given that S j and host i are in different regions, it is very unlikely that Su happens to

be a global resolver of host i (however the probability is nonzero). If Su cannot find host i’s

tuple in its local memory, it forwards the lookup message to one of the border switches in its

region, SB3 in Figure 4.4. Then SB3 computes location H(ki) in the backbone virtual space

and includes it with the lookup message, which is routed by GDV to the border switch SB2

closest to H(ki). In the scenario illustrated in Figure 4.4, SB2 is not host i’s global receiver

and it forwards the lookup message to switch Sr2 closest to the regional location H(ki),

which is the global resolver of host i.

In the above examples, the core and access networks use different virtual spaces but

they all use the same hash function H. We note that different hash functions can be used

in different networks. It is sufficient that all switches in the same network (access or core)

agree on the same hash function, just like they must agree on the same virtual space.
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Chapter 5

Performance Evaluation of ROME

5.1 Methodology

The ROME architecture and protocols have been designed with the objectives of scalability,

efficiency, and reliability. ROME was evaluated using a packet-level event-driven simula-

tor in which ROME protocols as well as the protocols, GDV, VPoD, and MDT [29, 46]

used by ROME are implemented in detail. Every protocol message is routed and pro-

cessed by switches hop by hop from source to destination. Since our focus is on routing

protocol design, queueing delays at switches were not simulated. Packet delays from one

switch to another on an Ethernet link are sampled from a uniform distribution in the interval

[50 µs,150 µs] with an average value of 100 µs. This abstraction, aside from speeding up

simulation runs, allows performance evaluation and comparison of routing protocols unaf-

fected by congestion issues. The same abstraction was used in the packet-level simulator of

SEATTLE [25].

For comparison with ROME, we implemented SEATTLE protocols in detail in our

simulator. We conducted extensive simulations to evaluate ROME and SEATTLE in large

networks and dynamic networks with reproducible topologies. For the link-state protocol

used by SEATTLE, we use OSPF [41] in our simulator. The default OSPF link state broad-
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cast frequency is once every 30 seconds. Therefore, in ROME, each switch runs the MDT

maintenance protocol once every 30 seconds.

In ROME, a host’s key-value tuple may be published using one location hash or two

location hashes. In the case of publishing two location hashes for each tuple, the area of the

second hash region is 1/4 of the entire virtual space.

Performance criteria. Storage cost is measured by the average number of entries

stored per switch. These entries include forwarding table entries and host information en-

tries (key-value tuples).

Control overhead is communication cost measured by the average number of con-

trol message transmissions, for three cases: (i) network initialization, (ii) network in steady

state, and (iii) network under churn. Control overhead of ROME for initialization includes

those used by switches to determine virtual locations using VPoD, construct a multi-hop

DT using MDT protocols, and populate the D2HT with host information for all hosts. Con-

trol overhead of SEATTLE for initialization includes those used by switches for link-state

broadcast and to populate the one-hop DHT with host information for all hosts. During

steady state (also during churn), switches in SEATTLE and ROME use control messages

to detect inconsistencies in forwarding tables as well as key-value tuples stored locally and

externally. Extra control messages are used to repair inconsistencies in forwarding tables

and key-value tuples to recover from churn.

We measure two kinds of latencies to deliver ROME packets: (i) latency of the first

packet to an unknown host, which includes the latency for host discovery, and (ii) latency

of a packet to a discovered host.

To evaluate ROME’s (also SEATTLE’s) resilience under churn, we show the routing

failure rates of first packets to unknown hosts and packets to discovered hosts. Successful

routing of the first packet to an unknown host requires successful host discovery as well as

successful packet delivery by switches from source to destination.

Network topologies used. The first set of experiments used the AS-6461 topology
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Figure 5.1: Performance comparison by varying the number of hosts

with 654 routers from Rocketfuel data [53] where each router is modeled as a switch. To

evaluate the performance of ROME as the number of switches increases, synthetic topolo-

gies generated by BRITE with the Waxman model [40] at the router level were used. Every

data point plotted in Figures 5.2, 5.3, and 5.5 is the average of 20 runs from different topolo-

gies generated by BRITE. Upper and lower bars in the figure show maximum and minimum

values of each data point (these bars are omitted in Figure 5.3(c) for clarity). Most of the

differences between maximum and minimum values in these figures are very small (many

not noticeable) with the exception of latency values in Figures 5.3(a) and (b).
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5.2 Varying the number of hosts

For a network with n switches and m hosts, a conventional Ethernet requires O(nm) storage

per switch while SEATTLE requires O(m) storage per switch. We found that ROME also

requires O(m) storage per switch with a smaller absolute value than that of SEATTLE. We

performed simulation experiments for a fixed topology (AS-6461) with 654 switches. The

number of hosts at each switch varies. The total number of hosts of the entire network

varies from 5,000 to 50,000. We found that the storage costs of ROME and SEATTLE

for forwarding tables are constant, while their storage costs for host information increase

linearly as the number of hosts increases. In Figure 5.1(a), the difference between the

storage costs of ROME and SEATTLE is the difference in their forwarding table storage

costs per switch. The host information storage cost of ROME using two (location) hashes

is close to, but not larger than, twice the storage cost of ROME using one hash.

Figures 5.1(b) and 5.1(c) show the control overheads of ROME and SEATTLE,

for initialization and in steady state. We found that the control overheads for constructing

and updating SEATTLE’s one-hop DHT and ROME’s D2HT both increase linearly with

m and they are about the same. However, the figures show that ROME’s overall control

overhead is much smaller than that of SEATTLE. This is because ROME’s forwarding

table construction and maintenance are flooding-free and thus much more efficient.

5.3 Varying the number of switches

In this set of experiments the number n of switches increases from 300 to 2,400 while the

average number of hosts per switch is fixed at 20. Thus the total number of hosts of the

network also increases linearly from 6,000 to 48,000. The results are shown in Figure 5.2.

Note that each y-axis is in logarithmic scale.

Figure 5.2(a) shows storage cost versus n. Note that while the storage cost of SEAT-

TLE increases with n, ROME’s storage cost is almost flat versus n. At n = 2400, ROME’s
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Figure 5.2: Performance comparison by varying the number of switches

storage cost is less than 1/20 of the storage of SEATTLE.

Figures 5.2(b) and (c) show that the control overheads of ROME for initialization

and in steady state are both substantially lower than those of SEATTLE. These control

overheads of ROME increase slightly with n. This is because the paths from publishers to

resolvers in a larger network are longer.

5.4 Routing latencies

These experiments were performed using the same network topologies (with 20 hosts per

switch on average) as in Subsection 5.3. Figure 5.3(a) shows the latency (in average number

of hops) of packets to discovered hosts. Note that ROME’s latency is not much higher than
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Figure 5.3: Latency vs. number of switches

the shortest-path latency of SEATTLE.

Figure 5.3(b) shows the latency of first packets to unknown hosts for SEATTLE and

for ROME using one and two hashes. This latency includes the round-trip delay between

sender and resolver, and the subsequent latency from sender to destination. By using two

hashes instead of one, the latency of ROME improves and becomes very close to the latency

of SEATTLE. At n= 300, the latency of ROME (2-hash) is actually smaller than the latency

of SEATTLE.

We also performed experiments to evaluate ROME and SEATTLE latencies in hy-

brid networks, where 20% of the switches are replaced by wireless switches. The packet

delay of a wireless hop is sampled uniformly from [5 ms,15 ms] with an average value of

10 ms, much higher than 100 µs for a wired connection. Figure 5.3(c) shows that SEATTLE
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Figure 5.4: Performance under network dynamics

still has the lowest latency, but the difference between SEATTLE and ROME is negligible.

5.5 Resilience to network dynamics

We performed experiments to evaluate the resilience of ROME using two hashes and SEAT-

TLE under network dynamics for networks with 1,000 switches and 20,000 hosts. Before

starting each experiment, consistent forwarding tables and DHTs were first constructed.

During the period of 0-60 seconds, new switches joined the network and existing switches

failed. The rate at which switches join, equal to the rate at which switches fail, is called the

churn rate. Figure 5.4(a) shows the routing failure rates to discovered hosts as a function of
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time for ROME and SEATTLE. Different curves correspond to churn rates of 20, 60, and

100 switches per minute. At these very high churn rates, the routing failure rate of ROME

is close to zero. The routing failure rate of SEATTLE is relatively high but it converged to

zero after 100 seconds (40 seconds after churn stopped).

Figure 5.4(b) shows routing failure rates to unknown hosts versus time. Both SEAT-

TLE and ROME experienced many more routing failures which include host discovery fail-

ures. The routing failure rate of ROME at the churn rate of 100 switches/minute is still less

than that of SEATTLE at the churn rate of 20 switches/minute.

Figure 5.4(c) shows the control overhead (per switch per second) during a period of

churn and recovery versus churn rate. The control overhead of SEATTLE is very high due

to link-state broadcast. The control overhead of ROME is about two orders of magnitude

smaller than that of SEATTLE.

ROME has much smaller routing failure rates and control overhead because each

switch (using the MDT maintenance protocol) can find all its neighbors in the multi-hop

DT of switches very efficiently without broadcast.

5.6 Performance of multicast

Both SEATTLE and ROME provide multicast support for services like VLAN. SEATTLE

uses a multicast tree for each group which requires switches in the tree to store some mul-

ticast state. ROME uses the stateless multicast protocol described in Subsection 4.1.3. We

performed experiments using the same network topologies (with 20 hosts per switch on av-

erage) as in Subsection 5.3. The average multicast group size is 50 or 250 in an experiment.

The number of groups is 1/10 of the number of hosts.

Figure 5.5(a) shows the average number of transmissions used to deliver a group

message versus the number n of switches. For multicast using a tree, this is equal to the

number of links in the tree. SEATTLE used few transmissions than ROME in experiments

for average group size 250. ROME used fewer transmissions in experiments for average
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Figure 5.5: Performance of multicast

group size 50.

Figure 5.5(b) shows the amount of multicast state (average number of groups) per

switch in SEATTLE versus n. (ROME’s multicast is stateless.) Each switch in SEATTLE

stores multicast state for a large number of groups, i.e., thousands in these experiments.

(Group membership information stored at rendezvous points is not included because it is

needed by both ROME and SEATTLE.) On the other hand, ROME requires the packet

header of each group message to store a subset of hosts in the group. (SEATTLE does not

have this overhead.) Figure 5.5(c) shows the average number of hosts in a ROME packet

header. For experiments in which average group size is 50, the number is around 3. For

experiments in which average group size is 250, the number is about 6.
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Figure 5.6: Using multicast to publish or update tuples

We evaluated the performance of using multicast to publish or update key-value

tuples. Suppose every switch publishes (or refreshes) its local tuples at the same time. The

average number of hosts for each switch is 20 or 50 in an experiment, and the number

of hash functions is 1. Figure 5.6(a) shows the average number of transmissions used to

publish (or refresh) tuples versus the number n of switches by unicast/multicast. When the

average number of hosts per switch is 20, multicast provides about 70% reduction in the

number of transmissions used by unicast. When the average number of hosts per switch is

50, multicast provides about 80% reduction in the number of transmissions used by unicast.

Figure 5.6(b) shows the average number of destinations in a multicast packet header. The

average number is about 5 in the case of 20 hosts per switch and about 6 in the case of 50

hosts per switch.

5.7 Performance of a very large hierarchical network

We use a hierarchical network consisting of 25 access networks of 1000 switches each

(generated by BRITE at router level). Two switches in each access network serve as border

switches in a backbone network of 50 switches with topology generated by Brite at AS level.

Kim et al. [25] discussed ideas for a multi-level one-hop DHT. Based upon the discussion,
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Figure 5.7: Latency comparison for a very large hierarchical network

we implemented in our packet-level event-driven simulator an extension to SEATTLE for

routing in a hierarchical network, which we refer to as ”OSPF+DHT”.

We performed experiments for this network of 25,000 switches for 250K to 1.25

million hosts. Figure 5.7 shows the routing latencies for ROME and OSPF+DHT. ROME’s

latency to a discovered host is very close to the shortest-path latency of OSPF+DHT, much

closer than the latencies in single-region experiments shown in Figure 5.3(a). ROME’s

latency to an unknown host is also very close to the shortest-path latency of OSPF+DHT.

Figure 5.8 shows the storage cost per switch, control overheads for initialization and in

steady state. The performance of ROME is about an order of magnitude better than the

OSPF+DHT approach.
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(b) Control overhead for initialization
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Figure 5.8: Performance comparison for a very large hierarchical network
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Chapter 6

Summary and Future Work

6.1 Summary

Large-scale networks such as Metro Ethernet and data center networks, bring new chal-

lenges to current network infrastructures. In traditional routing techniques, such as span-

ning tree or shortest-path routing, each node, such as a switch, router, or wireless sensor, is

required to store a large amount of routing state proportional to the network size. However,

node memory is hard to scale. For example, high-speed memory for switch forwarding ta-

bles is expensive and power-intensive. Furthermore, spanning tree or shortest path routing

is not resilient to network dynamics.

In my dissertation research, we focus on designing network infrastructure and pro-

tocols for scalable, resilient, and self-managing layer-2 networks. We started by considering

replacing shortest-path routing protocols which are expensive in both storage and control

overhead, with a more efficient and scalable routing technique. We proposed to use greedy

routing that makes routing decision based on node virtual locations. Greedy routing does

not always choose the shortest path, but is scalable because the routing state at each node

is independent of network size. Moreover, in my protocols, failure recovery at each node

under churn is limited to a small subset of all nodes. Prior to my work, greedy routing is
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generally considered applicable to only wireless networks with several unrealistic assump-

tions. We discovered how to make greedy routing technique work in any layer-2 network

including Ethernet and wireless networks.

We solved a number of core problems in designing this network infrastructure:

1. Scalable and resilient routing: We design MDT protocols that provide guaranteed de-

livery on a multi-hop DT. The guaranteed delivery property is proved for any connect-

ed network topology, with node locations specified by any coordinates in a Euclidean

space. MDT protocols have fast convergence, strong resilience, and scalability in

both storage and control overheads.

2. Addressing by virtual positioning: Although MDT provides delivery guarantee for

nodes with arbitrary coordinates, greedy routing finds near-optimal paths only when

the virtual distance between two nodes reflects the actual routing cost. We designed

VPoD, the first network virtual positioning protocol in layer 2. VPoD enables each

node to compute a position in a virtual space for itself, such that the Euclidean dis-

tance between any pair of nodes in the virtual space is a good estimate of the routing

cost between them, for any additive metric. GDV is a greedy routing protocol on

VPoD coordinates that achieves both scalability of greedy routing and near-optimal

routing path.

3. Scalable group communication: We present a stateless multicast protocol for group-

wide broadcast or multicast in ROME. A group message is delivered using the loca-

tions of its receivers without construction of any multicast tree. Switches do not store

any state for delivering group messages. Stateless multicast provides switch memory

scalability for group communication in large Ethernet-based networks.

4. Efficient host discovery: Traditional name services use either a central name server

such as DNS, or flooding such as conventional Ethernet. We propose to use D2HT for

host discovery which has two major advantages: (i) uniformly distributing the storage
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cost of host information over all network switches, and (ii) enabling information

retrieval by unicast rather than flooding.

To demonstrate scalability, we provide simulation performance results for ROME

networks with up to 25,000 switches and 1.25 million hosts. Experimental results show that

ROME protocols are efficient and scalable. ROME protocols are highly resilient to network

dynamics and its switches quickly recover after a period of churn. The routing latency of

ROME is only slightly higher than the shortest-path latency.

6.2 Future Work

Building on the current research work of improving the scalability and resilience of large

network infrastructures, we plan to expand our research in several directions. We will

investigate the requirements of recent and future network applications, and address new

research problems that emerge in the corresponding network infrastructures.

Some possible research topics include:

Software-defined networking (SDN): SDN is a new approach to build scalable

and easy-to-manage networks to handle big data collection, processing and storage. Us-

ing a centralized controller, SDN simplifies the control plane management of a network.

However, SDN also brings new challenges, such as single point of failure and extra traf-

fics to/from the controller. Moreover, SDN does not solve the scalability problem of the

data plane, especially when switches/routers have to store a big routing table for hosts and

VLANs. On the other hand, the ROME architecture is completely distributed and provides

scalability in both control plane and data plane, which is desired for very large network-

s. I will investigate the features of real networks to find optimal designs between fully

centralized and fully distributed approaches.

Building efficient and reliable network infrastructures for ecosystems sup-

porting big data analytics: Distributed systems and networks play two important roles

in increasing the potential of big data: (1) collecting, transferring, and storing data, and
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(2) delivering immediate actions on data insights. Many system and network characteristics

significantly affect the performance of big data analytics, such as availability and resiliency,

burst handling and queuing, oversubscription, data node bandwidth, and network latency.

Each of these characteristics brings along new research issues, and choosing the right trade-

off between them is also crucial.

Scalable multicast for large-scale data communication: Multicast is a crucial

technique to make efficient use of the available network bandwidth of data center networks,

which is used by many applications such as MapReduce and file replication. Due to limited

switch memory and the large number of multicast groups, IP multicast that requires every

switch to store multicast state is not scalable. Multicast based on the use of Bloom filter

has also been proposed, but false positives cause traffic leakage and routing loops [37]. The

stateless multicast protocol proposed in ROME [47] is a scalable solution. One potential

problem is that the extra storage in packet headers increases the bandwidth overhead. We

are designing a multicast protocol that has no extra storage in packet headers, while requir-

ing very few switches to store multicast state. The multicast packet is delivered by recursive

unicast at a number of levels. Multicast state is only stored at a few switches called split

points (SP), which forward the packet to SPs of the next level. Intermediate switches be-

tween SPs are free of multicast state. The main challenge of this design is how to determine

the SPs at each level.
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