6 research outputs found

    Analysis of Large-Scale Traffic Dynamics in an Urban Transportation Network Using Non-Negative Tensor Factorization

    No full text
    International audienceIn this paper, we present our work on clustering and prediction of temporal evolution of global congestion configurations in a large-scale urban transportation network. Instead of looking into temporal variations of traffic flow states of individual links, we focus on temporal evolution of the complete spatial configuration of congestions over the network. In our work, we pursue to describe the typical temporal patterns of the global traffic states and achieve long-term prediction of the large-scale traffic evolution in a unified data-mining framework. To this end, we formulate this joint task using regularized Non-negative Tensor Factorization, which has been shown to be a useful analysis tool for spatio-temporal data sequences. Clustering and prediction are performed based on the compact tensor factorization results. The validity of the proposed spatio-temporal traffic data analysis method is shown on experiments using simulated realistic traffic data

    TSCMF: Temporal and social collective matrix factorization model for recommender systems

    Get PDF
    In real-world recommender systems, user preferences are dynamic and typically change over time. Capturing the temporal dynamics of user preferences is essential to design an efficient personalized recommender system and has recently attracted significant attention. In this paper, we consider user preferences change individually over time. Moreover, based on the intuition that social influence can affect the users’ preferences in a recommender system, we propose a Temporal and Social CollectiveMatrix Factorization model called TSCMF for recommendation.We jointly factorize the users’ rating information and social trust information in a collective matrix factorization framework by introducing a joint objective function. We model user dynamics into this framework by learning a transition matrix of user preferences between two successive time periods for each individual user. We present an efficient optimization algorithm based on stochastic gradient descent for solving the objective function. The experiments on a real-world dataset illustrate that the proposed model outperforms the competitive methods.Moreover, the complexity analysis demonstrates that the proposed model can be scaled up to large datasets

    Modeling user preference dynamics with coupled tensor factorization for social media recommendation

    Get PDF
    An essential problem in real-world recommender systems is that user preferences are not static and users are likely to change their preferences over time. Recent studies have shown that the modelling and capturing the dynamics of user preferences lead to significant improvements on recommendation accuracy and, consequently, user satisfaction. In this paper, we develop a framework to capture user preference dynamics in a personalized manner based on the fact that changes in user preferences can vary individually. We also consider the plausible assumption that older user activities should have less influence on a user’s current preferences. We introduce an individual time decay factor for each user according to the rate of his preference dynamics to weigh the past user preferences and decrease their importance gradually. We exploit users’ demographics as well as the extracted similarities among users over time, aiming to enhance the prior knowledge about user preference dynamics, in addition to the past weighted user preferences in a developed coupled tensor factorization technique to provide top-K recommendations. The experimental results on the two real social media datasets—Last.fm and Movielens—indicate that our proposed model is better and more robust than other competitive methods in terms of recommendation accuracy and is more capable of coping with problems such as cold-start and data sparsity

    Alignment of multi-cultural knowledge repositories

    Get PDF
    The ability to interconnect multiple knowledge repositories within a single framework is a key asset for various use cases such as document retrieval and question answering. However, independently created repositories are inherently heterogeneous, reflecting their diverse origins. Thus, there is a need to align concepts and entities across knowledge repositories. A limitation of prior work is the assumption of high afinity between the repositories at hand, in terms of structure and terminology. The goal of this dissertation is to develop methods for constructing and curating alignments between multi-cultural knowledge repositories. The first contribution is a system, ACROSS, for reducing the terminological gap between repositories. The second contribution is two alignment methods, LILIANA and SESAME, that cope with structural diversity. The third contribution, LAIKA, is an approach to compute alignments between dynamic repositories. Experiments with a suite ofWeb-scale knowledge repositories show high quality alignments. In addition, the application benefits of LILIANA and SESAME are demonstrated by use cases in search and exploration.Die Fähigkeit mehrere Wissensquellen in einer Anwendung miteinander zu verbinden ist ein wichtiger Bestandteil für verschiedene Anwendungsszenarien wie z.B. dem Auffinden von Dokumenten und der Beantwortung von Fragen. Unabhängig erstellte Datenquellen sind allerdings von Natur aus heterogen, was ihre unterschiedlichen Herkünfte widerspiegelt. Somit besteht ein Bedarf darin, die Konzepte und Entitäten zwischen den Wissensquellen anzugleichen. Frühere Arbeiten sind jedoch auf Datenquellen limitiert, die eine hohe Ähnlichkeit im Sinne von Struktur und Terminologie aufweisen. Das Ziel dieser Dissertation ist, Methoden für Aufbau und Pflege zum Angleich zwischen multikulturellen Wissensquellen zu entwickeln. Der erste Beitrag ist ein System names ACROSS, das auf die Reduzierung der terminologischen Kluft zwischen den Datenquellen abzielt. Der zweite Beitrag sind die Systeme LILIANA und SESAME, welche zum Angleich eben dieser Datenquellen unter Berücksichtigung deren struktureller Unterschiede dienen. Der dritte Beitrag ist ein Verfahren names LAIKA, das den Angleich dynamischer Quellen unterstützt. Unsere Experimente mit einer Reihe von Wissensquellen in Größenordnung des Web zeigen eine hohe Qualität unserer Verfahren. Zudem werden die Vorteile in der Verwendung von LILIANA und SESAME in Anwendungsszenarien für Suche und Exploration dargelegt

    Social Network Dynamics

    Get PDF
    This thesis focuses on the analysis of structural and topological network problems. In particular, in this work the privileged subjects of investigation will be both static and dynamic social networks. Nowadays, the constantly growing availability of Big Data describing human behaviors (i.e., the ones provided by online social networks, telco companies, insurances, airline companies. . . ) offers the chance to evaluate and validate, on large scale realities, the performances of algorithmic approaches and the soundness of sociological theories. In this scenario, exploiting data-driven methodologies enables for a more careful modeling and thorough understanding of observed phenomena. In the last decade, graph theory has lived a second youth: the scientific community has extensively adopted, and sharpened, its tools to shape the so called Network Science. Within this highly active field of research, it is recently emerged the need to extend classic network analytical methodologies in order to cope with a very important, previously underestimated, semantic information: time. Such awareness has been the linchpin for recent works that have started to redefine form scratch well known network problems in order to better understand the evolving nature of human interactions. Indeed, social networks are highly dynamic realities: nodes and edges appear and disappear as time goes by describing the natural lives of social ties: for this reason. it is mandatory to assess the impact that time-aware approaches have on the solution of network problems. Moving from the analysis of the strength of social ties, passing through node ranking and link prediction till reaching community discovery, this thesis aims to discuss data-driven methodologies specifically tailored to approach social network issues in semantic enriched scenarios. To this end, both static and dynamic analytical processes will be introduced and tested on real world data
    corecore