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Abstract

This thesis focuses on the analysis of structural and topological network problems. In particular, in
this work the privileged subjects of investigation will be both static and dynamic social networks.
Nowadays, the constantly growing availability of Big Data describing human behaviors (i.e., the
ones provided by online social networks, telco companies, insurances, airline companies. . . ) of-
fers the chance to evaluate and validate, on large scale realities, the performances of algorithmic
approaches and the soundness of sociological theories. In this scenario, exploiting data-driven
methodologies enables for a more careful modeling and thorough understanding of observed phe-
nomena. In the last decade, graph theory has lived a second youth: the scientific community has
extensively adopted, and sharpened, its tools to shape the so called Network Science. Within this
highly active field of research, it is recently emerged the need to extend classic network analytical
methodologies in order to cope with a very important, previously underestimated, semantic infor-
mation: time. Such awareness has been the linchpin for recent works that have started to redefine
form scratch well known network problems in order to better understand the evolving nature of
human interactions. Indeed, social networks are highly dynamic realities: nodes and edges appear
and disappear as time goes by describing the natural lives of social ties: for this reason. it is
mandatory to assess the impact that time-aware approaches have on the solution of network prob-
lems. Moving from the analysis of the strength of social ties, passing through node ranking and link
prediction till reaching community discovery, this thesis aims to discuss data-driven methodologies
specifically tailored to approach social network issues in semantic enriched scenarios. To this end,
both static and dynamic analytical processes will be introduced and tested on real world data.
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The only reason for time is so that everything doesn’t happen at once.

— Albert Einstein
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Chapter 1

Introduction

Do the difficult things while they are easy
and do the great things while they are
small. A journey of a thousand miles
must begin with a single step.

— Laozi

Nowadays Complex Networks are pervasively used to model and describe the behaviors of a
wide range of real world phenomena. Social relationships, biological interactions, transportation,
commercial exchanges are only few of the several scenarios usually studied with the support of
instruments borrowed by graph theory.
Countless problems are formulated, or can be formulated, upon such structures. Moreover, when
the semantics attached to nodes and edges as well as the network structural or topological charac-
teristics change the same analytical approach developed to solve a well-defined problem can led to
results having slightly different interpretations. Even if formalizing objectively a network problem
is almost always feasible, proposing resolutive approaches to it able to guarantee high efficiency
and effectiveness regardless the type of network analyzed is a very complex task. In order to
avoid such issues researchers focused their effort into the study of peculiar typologies of networks
proposing algorithms and analytical tools specifically tailored upon their characteristics and se-
mantic definitions. Among all the fields that emerged in the last decades due to this specialization,
Social Network Analysis (henceforth SNA) is the one that makes use of graph mining techniques
to understand human behaviors.

Due to the ever growing number of social data available (Online Social Networks, Call graphs,
GPS tracks. . . ) the study of human interactions and the formalization of models which explain
collective as well as individual activities has increasingly received attention. Moreover, Social min-
ing has rapidly become one of the most interdisciplinary research playground ever: in this scenario,
thanks to the advent of the so called Big Data as well as to the development of accurate physical
models and statistical analysis tools several sociological theories (i.e. “Strength of the ties”, “Dun-
bar number”, “Six degrees of separation”. . . ) were confirmed and disproved.

Nowadays countless aspects of human sociality are analyzed in order to gain useful insights and
to make predictions on individual as well as on group activities, preferences and habits. Further-
more, among the most interesting categories of problems studied so far within the SNA scientific
community we must recall the following ones:

• Individual analysis: this first set of open problems involves to the study of the local structures
that compose complex networks. To this category belong all the problems aimed to under-
stand local properties of simple network entities (i.e. nodes and edges). The major research
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themes that fall in this class are: (i) Link Prediction, i.e. the forecast of edges that are
likely to appear in the future given the actual state of a network; (ii) Node Ranking, i.e. the
identification of the most important nodes w.r.t. a given query or set of characteristics; (iii)
Tie strength analysis, i.e. the identification and assessment of the strongest bonds among
nodes within a network; (iv) Multiplex analysis, i.e. the analysis of networks in which among
pair of nodes are present, at the same time, multiple edges carrying different semantics. In
the following we will call the problems of this category structural as well as individual.

• Collective analysis: conversely from the previous category, the problems which fall in this
set deal not exclusively with the local information attached to nodes and edges but analyze
well-defined collections of entities belonging to a complex networks. Examples of research
topics in this area are: (i) Community Discovery, i.e. the decomposition of a network in
tightly connected set of nodes; (ii) Homophily analysis, i.e. the identification of social groups
homogeneous w.r.t. a given property, or behavior; (iii) Frequent Pattern mining, i.e. the
identification and extraction of frequent topological patterns hidden within a network; (iv)
Information Diffusion and Leader detection, i.e. the identification of the sets of nodes that
are able to generate information cascades. In the following we will call the problems of such
category topological as well as collective.

The overwhelming number of approaches proposed in the last decades to tackle problems belonging
to those categories were able to lift significantly our knowledge on the laws that regulate complex
phenomena: interaction patterns were discovered, strategies to suggest behaviors as well as pieces
information to social service users proposed, innovative ways to forecast flu (as well as content)
spreading on a given social tissue studied. However, the main focus of research has concerned the
analysis of static realities: only a small ensemble of works have tried to understand the underlying
dynamics of real phenomena or, at least, to exploit them in order to provide more accurate ana-
lytical results.

A non negligible part of the networks studied within the SNA community are built upon dy-
namic, rapidly evolving, human relationships: friendships ties, working collaborations, spatial
co-locations are all examples of simple bonds among people that, as time goes by, can rise, evolve
and fall. Classical approaches try to simplify the analytical process by flattening evolutive be-
haviors, by observing only a static picture representing a single moment of the network history.
The reason behind this choice has to be identified in a QSSA (Quasi Steady State Assumption):
networks can, somehow, be “frozen” in time because the perturbations in their topology occur only
in the long run. Unfortunately this assumption holds only in very particular cases, especially when
dealing with social scenarios. A clear example is given by call graphs, in which the interactions
among users appear as a continuos flow and whose social strength decrease as time goes by: in
such context, we can easily picture the degree of oversimplification an analysis performed under
QSSA introduces.
For this reason, several strategies aimed at allowing dynamical modeling of networks have been
recently proposed. A first step on the road that starting from the analysis of completely static
networks brings to the study of fully dynamic ones is achieved by the introduction of temporal
discretization (i.e. the representation of a dynamic network through a set of static, temporal an-
notated, snapshots). Such reduction represents a first approximation towards a complete dynamic
modeling of streamed social interactions: restrict the QSSA constraint independently to each, time-
bounded, network snapshot is a way to obtain more realistic and reliable outcomes from analytical
processes aimed to describe phenomena related to complete network history. However, defining
the right temporal granularity for network partition it is not an easy task due to its context de-
pendency w.r.t. the network semantics (i.e. it is likely that interactions on a call graph posses
different degradation time or social strength than the ones that relate users in an Online Social
Network). For this reason, recently have started to appear works that analyze dynamic networks
as composed by timestamped interactions produced by continuos streams (thus avoiding temporal
discretization).
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Starting from these observations, in thesis will be presented several resolutive approaches to
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Figure 1.1: From static to dynamic: individual and collective analysis. Analyzed network problem
and their classification w.r.t. the static/dynamic and individual/collective dychotomies.

classic network problems. As shown in Figure 1.1 the narrative will develop following two main
roads: (i) we will address both static and dynamic scenarios and (ii) approach issues related to
network structure and topology. In particular this work is structured in three parts:

Part 1: Setting the Stage.
Here we introduce the preliminary notions needed to become familiar with the field of research
covered by this thesis. In Chapter 2 Graph theory definitions as well as classical findings of complex
network analysis are introduced and discussed. Chapter 3 introduces the main goal of this thesis:
here it is underlined the need of novel analytical models able to tackle classical graph problems
from an SNA perspective. Moreover, in this chapter it is discussed how the network dynamics
and evolutive patterns can influence such processes and the reasons their study represents a new
frontier of Social Network Analysis. Moreover, here we highlight the structural (individual) and
topological (collective) problems which will be addressed in the following parts of the thesis. In
Chapter 4 are introduced the related works that cover the applicative scenarios analyzed in the
rest of the work: literature regarding Temporal networks, individual and collective analysis and
diffusion processes is introduced and the major results highlighted and discussed. Chapter 5 con-
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cludes this preliminary part providing insights on some of the real world network datasets that
will be referred in the following of the thesis.

Part 2: Social Network Analysis.
In this part are introduced novel approaches able to solve classical complex network problems when
no temporal information is taken into account. In Chapter 6 are addressed methodologies devel-
oped to solve structural network problems. In 6.1 is introduced the context of multidimensional
(multiplex) networks, i.e. networks in which multiple semantical annotated connections can, at
the same time, exist among two nodes. In 6.2 we introduce, and validate, a new measure able to
evaluate tie strength in multiplex networks; in 6.3 we propose Ubik an approach tailored to rank
individuals in semantic reach environments expressly studied to solve the human resource finding
problem. Conversely, Chapter 7 focuses on the analysis of network topologies. Within this chapter,
in 7.1, is introduced Demon an algorithm tailored to approach the Community Discovery problem
from a social perspective. The proposed algorithm partitions the network into overlapping sub-
structures searching from denser areas within nodes’ ego-networks and then merges them in order
to identify tightly connected social groups. Moving from the results obtained by this algorithm
in 7.2 is approached the problem of quantifying node labels: here we make use of the homophily
observed within communities in order to predict the overall label distribution of uncategorized
network nodes. Finally, in 7.3 is analyzed the Group Engagement problem: using the massive
social network of a VOIP provider, along with the temporal information associated to its users’
product usage, we managed to characterize the communities extracted from its underlying social
network classifying them by their different level of activeness.

Part 3: Social Networks and their Dynamics.
Moving from the results presented in the previous chapters, this last part aims to reformulate
and analyze classical network problems in dynamic scenarios. Chapter 8 covers the analysis of
time-aware approaches to network structural problems. In particular, in 8.1 an unsupervised ap-
proach to Link Prediction for multiplex networks is discussed while in 8.2 is proposed an extended
formulation for the same problem, namely the Interaction Prediction. To solve such problem it
is proposed a supervised strategy which exploits evolutionary analysis. The introduced analytical
process shows how time series forecasting and community information are able to provide meaning-
ful insights on future link formation. In Chapter 9, mirroring the organization of the previous part,
will be discussed network collective problems. Here in 9.1 an Evolutionary Community Discovery
algorithm is introduced. Tiles is one of the first approaches able to track communities life-cycles
in an online fashion: it follows a falling dominos procedure able to, looking only at local network
perturbations, update the community structures once a new interaction took place. By definition
Tiles operates analyzing an edge stream avoiding the need of imposing the temporal granularity
for network partitioning. Finally, in 10.1 is introduced a novel approach aimed at characterizing
Social Prominence on a music related online social network. Analyzing listening data of Last.fm
users as well as their social network we were able to define a methodology targeted to identify
and characterize the “leaders” which generate information cascades. Moreover, in this chapter
we propose a discussion on the structural peculiarities of listening cascades belonging to different
music genres. Finally, Chapter 11 concludes the thesis and provide some linchpins for future works.

In Figure 1.1 the two dichotomies (static vs. dynamic, individual vs. collective) are used to orga-
nize the works presented in the rest of this thesis into four planes: the upper-left one (IIo quadrant
of the cartesian plane) embeds the static-individual problems; the upper-right (Io quadrant) the
static-collective; the bottom-left (IIIo quadrant) the dynamic-individual; the bottom-right (IVo

quadrant) the dynamic-collective ones. The contributions presented in the 2nd and 3rd part of this
thesis must be seen as steps of a unique path that starting from the static-individual analysis leads
to the dynamic-collective one. In detail, moving from the analysis of enriched network structures
(multiplex) we discuss the importance that semantic plays in the definition of social contexts.
Multiplex networks allow to describe and study how each peculiar type of interaction shapes the
connectivity as well as the strength of social ties. Such information will be extensively used in our
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works: whereas in 6 the importance of multiplex modeling is discussed, in 7 we define a method-
ology able to correctly identify communities in a social environment. Our approach, which allows
each node to belong at several communities, highlights once more the underlying multiplicity of
the social contexts a person can be involved to. Moreover we show that the Demon communities
are able to bound homophily better than other state of art techniques.
Even the temporal informations attached to nodes and edges of evolving social networks can be
modeled through the adoption of multiplex graphs. When we allow an observed social phenomena
to unfold through time we can exploit such model to reformulate time-aware solutions for complex
problems such as the Link Prediction one. The 3rd part of this thesis is specifically dedicated to
this complex scenario: the analysis of evolution at individual level, studied in 8, allows the obser-
vation of micro perturbations which cause widespread mutation at the collective scale (analyzed in
9). As time goes by social contexts change, thus we need to approach community discovery using
novel time-aware methodologies. Moreover, not only local structure and topology are subject to
the action of time: information usually spread on a social graph taking advantage of user-user
interactions. In 10.1 we will see how the information content, as well as the prominence of its
owner, determine the pattern and strength of its diffusion. Even in this scenario both time and
the multiplex semantic will offer a reading key to understand the phenomenon studied.

As shown in Figure 1.1, several of the themes covered in this thesis are tightly linked within each
other and, in some cases, need to be classified as “borderline” w.r.t. the individual/collective or
static/dynamic dichotomy. In particular we will open the 2nd part of the thesis with the introduc-
tion of a model that can be used to represent both static and dynamic semantic enriched network
structures. We then cross the individual/collective axis of Figure 1.1 (at the end of Chapter 6) to
address the Link-Based object ranking problem which uses topological informations to characterize
local structures. Similarly in the 3rd part (dedicated to dynamic analysis), the individual/collective
axis is crossed (at the end of Chapter 8) when dealing with the Interaction Prediction problem:
indeed, our approach make use of network meso-scale topologies (i.e. communities) to predict
the appearance of local structures (link/interactions). Finally, we will conclude our analysis by
addressing the Social Prominence problem in which the network structure will remain frozen in
time but is subject to a diffusive process.

The last two parts of this thesis are based on peer reviewed papers published in international
conferences. In Part 2, the individual/structural analysis, described in 6.1, 6.2 and 6.3, are inher-
ited from [1, 2, 3] while the collective/topological ones presented in 7.1 from [4, 5]. Likewise, in
Part 3 the individual/structural dynamics results presented in (8.1) are gathered from [6] while the
collective/topological ones discussed in 10.1 from [7]. The papers from which are extracted sections
7.2, 7.3, 8.2 and 9.1 (presented in [8]) are currently under review.



22 CHAPTER 1. INTRODUCTION



Part I

Setting the Stage





Chapter 2

Network Analysis

The greatest moments are those when you
see the result pop up in a graph or in
your statistics analysis - that moment you
realise you know something no one else
does and you get the pleasure of thinking
about how to tell them.

— Emily Oster

In this chapter we introduce the basic notions of complex network theory. We will start our
review by discussing how networks can be represented with graphs (Section 2.1) and which are
their peculiar properties (Section 2.2). Subsequently, a short summary of network growth models
will be given (Section 2.3): this introduction is intended to provide the reader a preliminary idea
of how graph structures evolve and how synthetic dataset can be generated preserving some of the
peculiar characteristics observed in real world network.
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2.1 The Graph Representation

Graphs are mathematical structures used to model pairwise relations between entities. Usually a
graph (henceforth, equivalently referred as a “network”) is defined using the notation G = (V,E)
where V and E are sets identifying respectively its nodes, also called vertexes, and the edges
connecting them, also called links. Such structure is highly flexible and allows high expressivity:
just enriching its basilar representation we are able to convey more complex knowledge in a easily
understandable way. There are several types of both semantic and syntactic extensions of graph
structures, here we will recall some of them:
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Figure 2.1: Several graph topologies. In the first row are shown, starting from the left, an undi-
rected, a directed and a labeled graph; in the second row a multiplex, a bipartite graph and an
hypergraph.

- The edges within a graphs can be undirected or directed: in the latter scenario we will refer
to such structures as directed graphs or, more concisely, digraphs (or, in absence of cycles
DAG). As example we can consider a graph representing telephone calls or email messages
between individuals: in these cases the graph will be composed of directed edges since each
call/message goes only in one direction (i.e. Figure 2.1(b));

- Graphs can be semantically enriched by introducing (possibly multiple) labels on both nodes
and edges. As an example we can consider a social graph, i.e. a network in which the nodes
identify people and the edges their relationships. As shown in Figure 2.1(c), In such context
we might be interested to enrich the graph model with the aim of reporting informations on
the type of connection elapsing among pair of nodes or regarding some particular attribute
belonging to each vertex (i.e. gender, age. . . );

- Multiple edges (even of different types) can connect, at the same time, the same pairs of nodes:
in this case the graph structure evolves in a more complex one giving birth to a multigraph
(as shown in Figure 2.1(d)). When a multigraph involves edges conveying multiple semantics
(i.e., in a social network describing ties of various category such as friendship, co-working,
. . . ) we will talk about multiplex graphs (also known as multidimentional or multirelational
graphs);

- Multiple types of nodes can be related in a graph structure: in this case we are studying k-
partite graph. An example of bipartite graph is the one which relates customers to purchased
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goods, as shown in Figure 2.1(e);

- Furthermore, edges can be modeled to bond together more than a pair of nodes at once: in
this case we will refer to a more sophisticated structure called hypergraph (Figure 2.1(f)).

In the peculiar setting of SNA (i.e., when discussing real world social networks), it is a common
practice to make use of the term entity or actor to refer a network node. In the following of the
thesis (especially in Part III) we will analyze evolving graphs. Such models are usually obtained
by enriching simple, undirected, graphs with edge and/or node labels representing their time of
appearance in the network. However, in order to maintain simple the model formulation this
enrichment is often avoided by analyzing as its proxy the decomposition of a dynamic network
in a graph sequence. We will discuss in depth the most common modeling choices for dynamic
networks in 5.2.
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2.2 Network Properties

Since the first introduction of the graph model several studies have focused their attention on the
formulation and analysis of indicators aimed to characterize its properties. All the issues nowadays
studied in the SNA field, as well as in all the other sectors which make use of graph theory as
primary investigation tool, are tackled by exploiting such indicators as source of knowledge. In
this section we will discuss some properties and indicators used to extract information from real
complex networks. In order to provide to the reader the intuition behind the measures discussed
in the following we will make use of the toy example in Figure 2.2.
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Figure 2.2: Network Properties explainatory toy example.

Degree

The first and most straightforward information that can be analyzed in a networked context is the
node degree. In graph theory, the degree of a vertex is defined as the number of edges incident
to the vertex itself (with self-loops counted twice). Furthermore, in a digraph we can distinguish
among the in-degree (capturing the number of edges entering in a node) and the out-degree (which,
conversely, describe the number of edges departing from the node). In the rest of the thesis we
will mainly analyze undirected network and use Γ(u) to identify the neighbor set of a node u ∈ V
and |Γ(u)| to denote its degree. While using more complex graph structures (i.e., multigraphs,
multiplex networks or hipergraphs) the equivalence of node degree and neighbor set cardinality
may fall apart: we will discuss this scenario in 6.1. In Figure 2.2 we can observe, for instance, that
node C has degree |Γ(C)| = 3 and neighbor set Γ(C) = {D,E, F}.

Degree Distribution

Once analyzed the number of edges incident to a given vertex we might be interested to compute
the complete degree distribution for the nodes in the graph. We define pk as the fraction of all
the vertices in the network having degree of at least k or, equivalently, the probability of choosing
uniformly at random a vertex having at most degree k. To represent the degree distribution we
can plot the histogram of pk values for all the values of k in a network G. As we will further
discuss in the following section (specifically in 2.3) if we build a graph introducing edges on nodes
pair selected uniformly at random we will get a Poisson distribution: however, real world networks
rarely shows such behavior. In [9] has been underlined that the node degree often follows a more
right-skewed distribution showing a long right tail of values that are far above the mean. These
networks are called Scale Free.
A network may follows a power law degree distribution i.e., it can contains a very high amount
of nodes with low degree and few hubs with very high degree. This phenomenon can be explained
by several theories: the most famous one is the rich-get-richer effect which states that, during the
network life-cycle the nodes having high degree are more likely to obtain new connections. This idea
introduces the concept of node aging and the degree of its strength (namely the ratio between the
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high degree vertices and the other low degree vertices) can be captured by analyzing the exponent
of the cumulative distribution’s slope. A power law can be approximated with pk ∼ k−α meaning
that the probability that a randomly chosen vertex has degree greater or equal to k follow this
function. It has been experimentally proved that in most of real word networks α takes values
between 2 and 3 [10].

Connected Components

The component to which a vertex belongs is the set of vertices that can be reached from it by
paths running along edges of the graph. All those edges that if removed cause the immediate
partitioning of a component in to two disconnected ones are called bridges. In a directed graph a
vertex has both an in-component and an out-component, which are the sets of vertices from which
the vertex can be reached and that can be reached from it. In network theory, a giant component
is a connected subgraph which contains a finite fraction of all the graph nodes. Since such concept
holds only in the limit of infinite graph size, a giant component would be composed of infinitely
many nodes event though the fraction itself could be small.It has been observed that many real
world social networks present a giant component, that collects from 70% to 100% of the nodes of
the network. Usually, the Giant Component appears when the average degree is greater than 1.
In Figure 2.2 we can observe three connected components: {A,B,C,D,E, F,G,H, I, L} (the giant
one), {N,O, P} and {M}.

Paths

Given two nodes u, v ∈ V , a path among them is defined as the sequence of edges that are crossed
during a visit starting da u and ending in v. Moreover, with geodesic path is identified the
shortest path connecting a pair of nodes. Note that there may be, and often there are, more
than one geodesic paths between two vertices. In graph theory, the shortest path problem relates
to finding a path between two nodes such that the sum of the weights of its constituent edges
is minimized. The most simple scenario involves the analysis of a specific instantiation of the
problem, in which all edges are unweighted, or their weights are all equal to one. In this case the
shortest path is the minimum number of edges to be crossed in order to go from one vertex to
another (the geodesic path). It has been observed that most vertices pair in real networks seem
to be connected by very short paths. This is the so called small-world effect [11] (which will be
further discussed in 2.3). In practice, the average length of all the geodesic paths in a network is
often quite small, much smaller than the number n of vertices belonging to it.
Strictly connected to the path definition is the diameter one. The diameter of a network is the
length (in number of edges) of the longest geodesic path between any two vertices. In real world
networks its value can be approximated with log n where n = |V |. Usually the diameter shrinks as
networks grows. This means that if we have a social network and observe new interaction among
its users the distance between its most distant entities usually became smaller and smaller [12]. In
Figure 2.2 the diameter has length 4 (in particular, an example of longest shortest path is provided
by: A→ B → E → H → L).

Centrality Measures

When studying a complex phenomenon, identify the relative importance of the agents which par-
ticipate in it is a frequent issue. In graph theory the concept of centrality is used to identify a
well defined set of measures aimed at assessing the relative importance of both nodes and edges
given their position within the network. Among all the indicators proposed in the last decades
three are certainly the most used: betweenness, closeness and eigenvector centrality.

• The betweenness centrality of a vertex is the number of geodesic paths between other ver-
tices that run through it. Similarly, this measure can be defined on edges: in this case it
relates to the number of geodesic path crossing a given link. Some studies have shown that
the node betweenness distribution follows a power law for many networks [13]. Betweenness
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centrality can also be viewed as a measure of network resilience: it tells us how many geodesic
paths will get longer when a vertex (or edge) is removed from the network.

• The closeness centrality is another centrality index which computes the average distance of
a vertex from every other vertex in the network. Obviously, in case of a graph composed by
more than one component this definition need to be revised in order to consider the distances
among the vertices connected by a path.

• Finally, eigenvector centrality assigns relative scores to all nodes in the network exploiting
the idea that connections to high-scoring nodes contribute more to the score of the node in
question than equal connections to low-scoring nodes. Google’s PageRank [14] is a variant
of the Eigenvector centrality measure. Another closely related centrality measure is Katz
centrality.

Transitivity

Another measure able to explain relevant phenomena of real world networks is the transitivity,
also known as clustering coefficient. This indicator captures the so called “triadic closure” effect:
it computes the ratio of closed triangles over all the triplets of nodes. Its final goal is to unveil the
degree to which nodes in a graph tend to cluster together. Two versions of this measure exist: a
global and a local one. The former version was designed to give an overall indication of the network
clustering, whereas the latter gives an indication of the embeddedness of single nodes. A graph is
considered small-world, if its average clustering coefficient C̄ is significantly higher than a random
graph constructed on the same vertex set, and if the graph has approximately the same mean-
shortest path length as its corresponding random graph. Local clustering coefficient is defined as:

CC(u) =
#closed triangles

#triplets
(2.1)

As an example, in Figure 2.2 we have:

CC(M) = CC(N) = CC(P ) = CC(I) = CC(L) = CC(O) = 1,
CC(C) = CC(F ) = CC(H) = 1

2 ,
CC(E) = 1

3
CC(D) = CC(A) = CC(B) = CC(G) = 0

Community Structure

One important characteristic of Social Networks, deeply connected with the aforementioned transi-
tivity, is the presence of community structures, i.e., groups of vertices that have a high density of
edges within them and a lower density in between. The presence of such mesoscale structures are
often explained by the observation that people tend to cluster in homogeneous, tightly connected,
groups. Moving from this, several works (for a detailed survey see [15]) have tackled the problem of
identifying, within complex networks, hidden communities that satisfy specific topological charac-
teristics. In social networks it is straightforward to verify that people do organize themselves into
(possibly overlapping) groups w.r.t. one or more shared characteristic (i.e., interests, occupation,
age. . . ). In this thesis we will further discuss the Community Discovery problem in 4.2.1 and, later
on, we will propose two algorithms able to provide to it a solution both in the static (Demon, 7.1)
and dynamic (Tiles, 9.1) network scenarios. Observing Figure 2.2 we can notice some dense areas
that can identify distinct communities: {A,B,C,D,E, F,G}, {H, I, L}, {N,O, P} and {M}.
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2.3 Network Models

In this section we present the most common models for synthetic graphs. The general aim of
network modeling is to capture some essential properties lying behind real-world phenomena and
replicate them while generating synthetic data, all imposing only few simple constraints (i.e., the
rich-get-richer effect explanation for power law degree distributions). As we will see each model
focuses only on few properties of real world complex networks and tries to describe how and why
they arise and providing a way synthesize structures which respect them.
The proposed overview covers some of the most studied network models: Random Graphs (subsec-
tion 2.3.1), Small World Networks (subsection 2.3.2), Scale Free Networks (subsection 2.3.3) and
Forrest Fire model (subsection 2.3.4).

2.3.1 Random Graphs

One of the most famous model produced in the 20th century is the Random Graph one. Introduced,
independently, by Solomonoff and Rapoport [16] and by Erdös and Rényi [17] the random graph
theory is one of the breakthrough that started the analysis of complex networks topologies and
characteristics.
A random graph, Gn,m, is defined as a set of n labeled nodes connected bym edges chosen randomly,

with probability p, from the |V |(|V |−1)
2 possible edges. Such definition implies the existence of

several different graphs for the same chosen value of n and m, all of them belonging to a probability
space in which every realization is equiprobable.
Since its first formulation several mathematical studies have analyzed its theoretical implications.
Some of the major results on random graphs have concerned the observations of:

• their tendency to have small diameter;

• their tendency to have degree distribution that follow a Poisson;

• their tendency to show very low clustering coefficient;

• the similarity among their diameter value and their average path length;

• the presence of a giant component if their mean degree 〈k〉 = pn < 1 and, conversely, the
presence after a phase transition for 〈k〉 > 1 of isolated trees.

This model, born in 1959, was one of the first attempt to describe, through the graph theory, social
and communication networks. The assumption that real networks have to shown Erdös and Rényi
topologies was subverted by numerous measurements done at the end of the last century on real
networks: such observations became the trigger for the study of alternative models.

2.3.2 Small World

In a paper published in 1967, the sociologist Stanley Milgram proposes an experiment [18], that be-
came very popular thanks to a play by John Guare [19], and known nowadays by the name of “Six
degrees of separation”. In his work Milgram decided to verify whether the small-world experience
(e.g., an unknown person we meet knows a person we know) is related to some real phenomenon
or is only a simple anecdotes. For his experiment the sociologist asked Midwestern volunteers to
send packages to a stranger in Boston knowing only his name and profession: packages could not
have been sent directly to the recipient, but should have been delivered only by exploiting the
personal contacts. The results shown that, on average, the number of intermediaries needed to
complete the chain was 5.51. This finding led, in 1998, Watts and Strogatz [11] to describe a
peculiar kind of networks as small-world networks, in analogy with the small-world phenomenon.
In their work, they analyzed the neural network of the worm C. Elegans, the collaboration graphs
of film actors as well as the western US power grid and found that all these networks exhibit a
small average path length and a high clustering coefficient. The latter observation was in contrast
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Figure 2.3: Small World connectivity features.

with the characteristic low clustering coefficient shown by random graphs since it recall the more
rigid structure typical of regular lattices.
Due to this observation, Watts and Strogatz decided to propose a model able to interpolate be-
tween the regular structure of lattices and the random network one. The iterative approach they
used to perform such interpolation was quite simple: starting from a circular lattices in which
each node is connected to k neighbors, they rewire with probability p an edge at a time avoiding
duplicate edges and self-loops. In a variant of this model [20], that does not contemplate rewiring,
few random edges were added to a lattices in order to lower the average path length (recreating in
this way the small-world phenomenon).

Varying the p value in the Watts and Strogatz model we can observe perturbations in the network
structure (as shown in Figure 2.3). In particular:

• with p = 0 we obtain a regular lattice with high clustering coefficient;

• with p = 1 we get a random networks that exhibit small-world properties and have low
clustering coefficient;

• for values of p that lies within the interval (0, 1) we observe networks having high clustering
coefficient together with small geodesic distances among their nodes.

Given the value of p, Watt and Strogatz analyzed the clustering coefficient C(p) and the charac-
teristic path length L(p). They observed that: (i) increasing the value of p also the number of cases
for which L(p) is almost small as Lrandom increase and (ii) at the same time C(p) >> Crandom.
This effect was justified with the observation that the rewired edges were able to introduce random
shortcuts connecting nodes otherwise distant in the original lattice.

The highly clustered nature of networks was guessed in social context by Granovetter. He proposed
an excellent sociological interpretation: (i) the social network that shapes our society is composed
of small tightly connected circles of friends and (ii) such circles are connected among them by weak
social ties. In this scenario, the rewired edges introduced by Watts and Strogatz act as the weak
ties which connect members of the societal cliques to their not-so-close acquaintances.
The small-world effect and the clustered nature of real networks were discovered in a wide range
of natural and artificial structures like the Internet [21, 22], the WWW [23, 24], the email contacts
networks [25], cellular networks [26], scientific collaboration networks [27, 28], in neural networks
[11, 29] as well as in the Messenger contacts network [30]. These findings suggest that the obser-
vations made by Milgram and Granovetter are not bound to social networks but, instead, have
broad application in both natural and technological contexts.
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2.3.3 Scale Free

Figure 2.4: Scale Free network growth as proposed by Barábasi-Albert model. Starting from a
dyad (top-left) at each itaration a new node, hilighted in white, and two new edges were added
following preferential attachment. Older nodes becames hubs as time goes by.

An aspect not taken into account by the previous models regards the presence of hubs among
the nodes: a hub is a node that is has an higher degree w.r.t. the majority of the nodes belonging
to the same network. Hubs were observed in almost all real world networks: a well-connected user
in Facebook, a celebrity in Twitter, a major airport (as the international ones in Rome, New York
or Frankfurt) a well-known scientist in a collaboration network are all examples of such particular
kind of nodes.
In order to study this property it is used the distribution P (k) (already introduced in 2.2). As
already discussed, the Erdös-Rényi model imposes a Poisson distribution for P (k): however, in
many real networks P (k) appears to be highly skewed and to decay much more slowly than a Pois-
son, mostly following a Power Law P (k) ' kγ . Networks which follow such degree distribution are
called scale-free, because they do not have a scale, that is a characteristic node.
Although this distribution is not universal in networks [31], it is very common and it can be ob-
served in several artificial and natural networks, such as the WWW [24], Internet backbone [32]
and the metabolic reaction networks [26]. On the other hand, in scientific co-authorship networks
the degree distribution is well fitted by a Power Law with an exponential cutoff, for the US power
grid it is an exponential distribution while for a social network of Mormons in Utah, P (k) is a
gaussian [31].

In 1999, Barabási and Albert [33] showed that this heavy-tailed degree distribution is due to
networks continuos expansion by the addiction of new vertices. The two scientists speculate that
new nodes preferentially attach to ones that are already well connected in such a way that “richer
nodes became richer”. On top of this two assumption, the growth over time of networks and
the preferential attachment, they proposed the Scale Free model (also known as Barabási-Albert
model). Starting at a time t0 with a low number of nodes, at every time step a new node is added
with m edges that link to different vertices already present in the network: the probability of
choosing a specific target node to connect with is proportional to its degree (an example is shown
in Figure 2.4). After t time steps the model converge to a random network with t + m0 nodes
and mt edges. This approach led to a scale-invariant state characterized by a heavy tail degree
distribution having exponent γ = 2.9 ± 0.1. Due to the huge impact caused by this model, more
sophisticated variants were proposed during the last decade in order to include, for instance, the
effects obtained by adding link rewiring, node aging (which imposes that when reached a certain
degree of maturity a node cannot accept new links), or varying the rules describing the preferential
attachment process.

2.3.4 Forest Fire

Once characterized the Scale Free and Small World phenomena, several models were proposed
in order to describe, and build, networks having both those desirable properties. One of them,
probably the most famous, is the Forest Fire[12] one. Proposed by Leskovec, this growth model tries
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to introduce community structure (which appear in almost all the social-like real networks) into
the generative process. In particular, the authors’ aim is to simulate the shrinking diameters that
have been observed in complex networks, i.e., the fact that real networks tend to have heavy-tailed
distributions for in- and out-degrees and a densification power laws which makes them become
denser over time. The latter condition strictly relates to the community structure, previously
taken into account by other models (i.e., copying model [34, 35]).
In order to perform this task, Leskovetc defines a basic version of the model in the following way:
nodes arrive one at a time and form out-links to a subset of the earlier nodes; to form out-links, a
new node v attaches to a node w in the existing graph and then it begins burning links outward
from w, linking with a certain probability to any new node it discovers. This process could be
intuitively seen as the strategy by which an author of a paper identifies references to include in
the bibliography. He or she finds a first paper to cite, chooses a subset of the references in that
paper (modeled here as random), and continues recursively with the papers discovered in this way.
Depending on the bibliographic aids being used in this process, it may also be possible to chase
back-links to papers that cite the paper under consideration. Similar scenarios can be considered for
social networks: a new computer science graduate student arrives at a university, meets some older
students who introduce him/her to their friends and the introductions may continue recursively.
Adding edges in this way, each node connecting only with entities that are closer to its center of
gravity, the community structure arise very quickly.



Chapter 3

Complex Networks and Time

We both step and do not step in the same
rivers. We are and are not.

— Heraclitus

One of the most challenging task in data mining regards the analysis of temporal annotated
data. Temporal annotated sequences can be built from data produced by a wide spectrum of hu-
man related processes ranging from social interactions to mobility traces and financial operations.
The ability to extract information from such timestamped observations became crucial when we
need to make inference on the behaviors of time-evolving complex systems. Without loss of gener-
ality, we can state that the ultimate goal of temporal data mining is to discover hidden relations
between sequences and subsequences of events in order to describe and/or forecast the behaviors
of the observed phenomena.

Network mining problems do not differ from other classical data mining ones. A wide range of
analysis can be performed on static networks, however the phenomena we are used to observe, as
well as the world we live in, are constantly evolving: as time goes by relationships change, links
are substituted by new ones, new collaborations arise and old ones fall apart.
Freezing networks in time is certainly very useful in order to observe, study and categorize some of
their peculiar traits but it is not enough if we are interested in understanding the dynamics that
regulate their lives. Hence, for some of the most interesting network problems can be provided
augmented formulations that take into account the role played by time.
Looking at the plethora of evolutionary issues nowadays studied in the complex networks field, we
can build a simple, even if not extensive, classification:

• Individual Dynamics:
In this category fall all those problems which analyze how local structures, edges and nodes,
rise and fall (i.e. Link/Node Prediction, Dynamic Vertex Coloring. . . );

• Collective Dynamics:
Here the main focus is analyzing how topology changes when local structures do (i.e. Evolu-
tionary Community Discovery, Frequent Patterns. . . );

• Diffusion Processes:
To this last category belong all those tasks whose aim is to understand how information flow
on network structures (both in the case of static and dynamic structure/topology);

This three families of problems can be logically seen as a hierarchy as shown in Figure 3.1: In-
dividual Dynamics analysis tries to explain how, at a local level, nodes connect and how existing
links vanish or strengthen through time; Collective Dynamics analysis models the behaviors of set
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of nodes and edges; Diffusion looks at the whole network in order to understand how its structure
and topology facilitate (or make it difficult) the spreading of “informations”.

Moreover, as already discussed in chapter 1, we can think to individual/structural and collec-
tive/topological analysis as part of a dichotomy. Since in this particular dichotomy “tertium non
datur” do not holds (several applications can benefit by mixed structural-topological approaches),
we can picture diffusive processes as examples of tasks in which individual and collective behaviors
are exploited in conjunction in order to model more complex phenomena.

Individual Dynamics

Collective Dynamics

Diffusion
Processes

Local Level

Community Level

Global Level

Figure 3.1: From the local to the global level: dynamic network problems and their classification.

The dependences from these three layers can be tackled in several ways: (i) they can be “ig-
nored” in order to propose models that fit a specific purpose and provide a straightforward, easily
understandable, answer to a specific problem (i.e., simulate virus spreading on a static network);
(ii) they can be “assumed” in order to simulate dynamic behavior using as starting point data
without temporal annotation (i.e., imposing an underlying network growth model to produce new
node/edges when forecasting new interactions); (iii) finally, they can be directly “exploited” by
embedding in the analysis the real dynamics expressed by the data (i.e., tracking community evo-
lution using as input the real sequences of node and edges appearance and disappearance). All
these approaches carry advantages as well as drawbacks. Working with fine grained data without
making abstractions on general behaviors (“let the data talk”) will produce very realistic results
that can’t be transferred from the analyzed domain to a different one. Conversely, adopting a
more general framework will lead to less precise approaches which can be easily adapted to a wide
range of phenomena. In the following chapters, whenever possible, we will provide analytical tools
guided by the knowledge extracted from real data more than frameworks based on general models.

Moreover, in order to be tackled with a data mining perspective, the analytical tools we design
demand the availability of temporal annotated network datasets. Fortunately, thanks to the ever
growing availability of Big Data, nowadays semantic rich social tissues can be in depth analyzed:
online social networks, as well as telephone call and mail exchange logs, are valuable resources
that can be used as proxies to estimate offline social dynamics. When dealing with social data
understand the role time plays to shape structure and topology of a network lead to a deeper
comprehension of the dynamics expressed by the observed context. Individuals act independently
one from another and, at least to some extent, can be described by their own local information
(i.e., their characteristic interaction time as well as the structure of their ego-network): however,
like neurons in a nervous system, their actions often concur to the specification of precise and more
complex group-related functions (i.e., they can establish collaboration or organize themselves in
self regulated organizations/social circles). All these dynamics show a common leitmotif: they are
highly complex and difficult to forecast and model.

In this thesis we will analyze a subset of problems for each of the identified classes and present
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novel approaches designed to solve them. Indeed, we will describe analytical processes aimed at
solving both static and dynamic formulations of a well-defined set of network problems: from
chapter to chapter we will highlight the impact that the temporal dimension has on the results we
were able to obtain.
In order to do that we will narrow our field of investigation from the general complex networks
analysis to the more specific field of the SNA. Thanks to the ever growing usage of online (and of-
fline) communication services, social ties are among the most volatile structures that we are able to
track and observe: for this reason they represent the perfect fit for a combined static and dynamic
analysis able to unveil some of the leading traits of evolving interconnected structures. The choice
of this particular setup, as will be underlined in Chapter 4, is often pursued in literature since
(i) it makes possible to provide ad-hoc models that solve network problems using real world data
and (ii) it allows the validation of the obtained results through the adoption of well-established
sociological theories which are often able to explain the observed phenomena.

Once defined our settings, in the following sections we present a preliminary introduction to
the structural and topological network problems (respectively in 3.1, 3.2) that will be extensively
discussed in the rest of this thesis.
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3.1 Local Structures

Among all the network related topics studied in the last decades, the analysis of nodes and edges
local surroundings is the one that has attracted ever growing attentions. Henceforth, we will call
the problems belonging to this category “structural” (or equivalently “individual”) since their aim
is to understand how local structures can be exploited in order to unveil meaningful knowledge at
the node/edge level. In this section we will briefly introduce three problems that will be addressed
in the rest of the thesis: Ties strength, Link Prediction and Link-Based Object Ranking.

Ties Strength

Figure 3.2: Graphical representation of tie strength in a social context.

The advent of OSNs (Online Social Networks) has completely redefined the way we conceive
social relationships: indeed, such instruments have broken the constraints of time and geography
that limited our social world. In these virtual environments establishing new friendships is imme-
diate and effortless, so it is reasonable to think that the number of our social bonds could approach
to infinite, removing the social boundaries of our modern, technological era. However, OSNs have
allowed us to build massive networks of weak ties: acquaintances and non intimate ties we use
all the time to reach out persons, business requests, speaking engagements, or ideas and advice.
Despite such enormous quantity of acquaintances, recent works have revealed two major aspects
online real social networks that mirror real world social contexts:

• people still have the same circle of intimacy as ever [36, 37],

• the formation of friendships is strongly influenced by the geographic distance, thus breaking
down the illusion of living in a “global village” [38, 39].

People users tend to interact intensely with a small subset of individuals, carrying out social
grooming in order to maintain and nurture strong, intense ties. Strong ties connect us with the
friends we really trust, people whose social circles tightly overlap with our own and, often, they
are also people that are most like us. Although such trusted friendships are not so important
in the spreading of information [40], new ideas [41], or for finding a job [42], they can affect our
emotional and economic support [43, 44] and often join together to lead organizations through
times of crisis [45]. Unfortunately, the majority of social media do not incorporate explicitly tie
strength notions during the creation and management of relationships, and treat all their users the
same: friend or stranger, with little or nothing in between. A first attempt to take into account
the social role of friendships was done by Facebook and Google+ by the introduction of the so
called “circles”. Users of such platforms can use circles as a way to organize their contacts in a sort
of address book, creating different groups for relatives, work colleagues, close friends and so on.
However, such conceptual organization of contacts does not provide quantitive information about
the real strength of the ties, but only the nature of relationships between users and the context in



3.1. LOCAL STRUCTURES 39

which they take place. For example, the presence of a user in the circle of work colleagues does
not necessarily imply the existence of a strong tie, and does not provide any explicit quantification
of the importance of his relationships with other members of the same group. Actually, it does
not exist a formal, unique and shared definition of tie strength, and literature has often provided
very personal interpretations of Granovetter’s intuition: “the strength of a tie is a (probably linear)
combination of the amount of time, the emotional intensity, the intimacy (mutual confiding) and
the reciprocal service which characterize the tie” [46]. The most frequently used measurements of
tie strength in social networks are based on the number of conversations between users [36], or, in
the mobile phone context, on the duration of calls [40]. However, in our opinion these common
approaches suffer two major shortcomings. Firstly, the number and intensity of conversations
strongly depend from user to user, making it difficult to understand which of these conversations
are dedicated to intimate relationships. Secondly, they do not take into account that strong ties
must be powered by a form of social grooming, that is mainly based on geographical proximity
and face-to-face contacts.

Link Prediction

Figure 3.3: Link Prediction: an example.

Reasoning on networks evolution a very urgent question to answer arises: is there any rule that
regulates the rising of new edges? or similarly, there exists couples of nodes that are most likely to
establish a connection than the others?
As we have seen before, a wide set of models were studied with the aim to understand and reproduce
real networks traits: all those models are generative, and mimic the processes of networks growth
over time. Here we are interested to address a slightly different issue: we know the nodes of our
network (we assume that no other nodes could be added in successive time steps) and want to study
the probability that two of them became neighbors in the future. Suggest new friendships on a
social network, co-authorship on a professional network or interesting products of an online-market
are certainly facilities that online services nowadays need to offer to their users. Link Prediction
group tighter all those problems: it is defined as the problem of identifying, given a snapshot of a
network G at a time t0, the top-k edges that are most likely to appear among its set of nodes, at a
time t1, restricting the prediction to those nodes that are not connected by edges during the first
observation.

Correctly predict a new link in a (often) sparse network is a hard task to accomplish: for this reason
several approaches were proposed in order to study this evolutive aspect of complex networks, using
both supervised and unsupervised methodologies. In particular, unsupervised approaches are built
upon on local (neighborhood-based), or global (path-based), topological aspects relative to the
pairs of nodes for which a prediction is needed. Those methodologies, given their simple nature,
were shown to be able to guarantee around 10% of correct predictions in several OSN datasets:
given the complexity of the problem, this value that could seem very low is actually a very good
result. In order to improve such results, supervised approaches that exploit not only network
topology but even semantic informations attached to its nodes (and edges) were proposed: we will
discuss them in detail in 4.1.2.
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Link-Based Object Ranking

Among the most prominent issues in network analysis, surely the most famous one among the
link mining tasks, is the link-based object ranking (LBR). The objective of LBR is to exploit the
link structure of a graph to provide an ordering (i.e., a ranking) of its vertexes. In the context
of web information retrieval, the PageRank[14] and HITS[47] algorithms are the most notable
approaches to LBR.

- PageRank simulates a web surfing with a random walk where the surfer randomly selects
and follows links and, with a certain probability, jumps to a new web page to start another
traversal of the graph. The rank of a given web page in this context is given by the fraction
of time that the surfer would spend in it if the random process were iterated ad infinitum.
This can be determined by computing the steady-state distribution of the random process.

- HITS assumes a slightly more complex process, modeling the web as being composed of two
types of nodes: hubs and authorities. Hubs are web pages that link to many authoritative
pages. Authorities are web pages that are linked to by many hubs. Each page in the web is
assigned hub and authority scores (which get the same value in the limit case of an undirected
graph). These scores are computed iteratively by updating the scores of a page looking only
to the scores of the pages in its immediate neighborhood.

Within the SNA, LBR is considered a core analysis task. In this context, the final goal become
to rank individuals in a given social network in terms of a measure of their importance, referred
to as centrality. As discussed before, measures of centrality have been the subject of research
in the SNA community for decades. These measures characterize some aspect of the local or
global network structure as seen from a given individual’s position in the network. Several social
scenarios can benefit from ad-hoc ranking approaches: expertise finding, collaborative filtering and
recommender systems are only few examples.

Multidimensionality

friends

colleagues
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Figure 3.4: Example of multidimensional networks

In recent years, complex networks have been receiving increasing attention by the scientific
community, also due to the availability of massive network data from diverse domains, and to the
outbreak of novel analytical paradigms which pose relations and links among entities, or people,
at the center of investigation. Inspired by real-world scenarios (i.e social networks, technology
networks, the Web, biological networks) wide, multidisciplinary, and extensive research has been
devoted to the extraction of non trivial knowledge from such complex topologies. Most of the
networks studied so far are monodimensional, i.e., networks in which is allowed a single edge
between each pair of nodes. In this context, graph analytics has focused to the characterization
and measurement of local and global properties (such as diameter, degree distribution, node/edge
centrality, connectivity) and to the formulation of more sophisticated problems (i.e., all the issues
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based on graph mining and aimed at finding subgraph patterns).
However, in the real world, networks are often multidimesional, i.e., there might be multiple
connections between any pair of nodes (two examples in Figure 3.4). Therefore, multidimensional
analysis is needed to distinguish among different kinds of interactions, or equivalently to look at
interactions from different perspectives.
Dimensions in network data can be either explicit or implicit. In the first case the dimensions
directly reflect the various interactions in reality; in the second case, the dimensions are defined by
the analyst to reflect different qualities of the interactions that can be inferred from the available
data. Those complex systems are referred also as multislice, networks with explicit dimensions are
named multiplex, and, often, temporal information is used to derive dimensions for the network
where other semantics are not available.
Examples of networks with explicit dimensions are social networks where interactions represent
information diffusion: email exchange, instant messaging services and so on. An example of network
with implicit dimensions is an on-line social network with several features: in Facebook, while the
social dimension is explicit, two users may be connected implicitly by their like on posts of shared
friends or by their favorited pages or groups they belong to. Moreover, different dimensions may
reflect different types of relationship, or different values of the same relationship.
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3.2 Topologies

Moving from the analysis of local network entities, a second and equally relevant field of research
regards the study of more complex network topologies. Henceforth, we will call the problems be-
longing to this category “topological” (or equivalently “collective” ) since their aim is to understand
how to unveil coherent patterns hidden within complex networks and how to use them in order
to make inferences on the behaviors of well defined sets of nodes and edges. In this section we
will briefly introduce three graph mining problems that will be addressed in the rest of the thesis:
Community Discovery, Social Engagement and Network Quantification.

Community Discovery

The problem of extracting communities from a graph, or of dividing its vertexes into communities,
has been approached from several perspectives [15]. Algorithms for community extraction have
appeared in practically all scientific fields: starting from social network analysis to physics, and
computer science. This multiplicity of approaches is probably due to the absence of a formal and
shared definition of network “community”. Indeed, each algorithm proposed so far extract coherent
network substructures which maximize a given topological objective function: however, in the last
decades, several objective functions where proposed in order to evaluate the goodness of network
partitions leading to the rising of several families of CD approaches. Among the most frequently
used evaluation function we can recall: modularity, clustering coefficient and conductance.

From a SNA perspective, communities are perhaps the most basilar bricks that make possible the
analysis of complex phenomena: indeed, being able to identify tightly connected sets of nodes
allow an in depth analysis of the human sociality. Thanks to the increasing availability of online
social network data, we have witnessed the appearance of a wide number of algorithms tailored to
capture specific characteristics expressed by human interactions. Such profusion of methodologies
has given the opportunity to validate and disprove several sociological theories. For instance, ob-
serving the social structure of several OSNs was noticed that the neighborhood of a single node is
often composed by a huge number of peers belonging to different semantic contexts (i.e., school,
work, sport related. . . ). However, not all the node’s acquaintances can be considered as “real”
ones: conversely from the real world experience, in online services the action of establish a new ties
has no cost: thus, most of the links observed in an OSN does not represent relations existing in
real life. Hence, CD solutions in ONS contexts need to take care of both this observations: social
groups need to be homogeneous w.r.t. some semantic information (when available) and to avoid
the overestimation of user’s sociality.

Moreover, as time goes by people tend to modify their social relationships: travels, job changes,
rising of new interests are only few examples of the causes that lead to a perturbation (and in
some case even to the ending) of the interactions and connections. This dynamic evolution is
mostly evident on the social tissue described by communities. Obviously the data produced by
OSNs are not expected to describe the evolution of a real world community. Online the timing
for the born and ending of a relationships are quicker than the ones we are used to in our daily
experience: nonetheless we can speculate that the mechanisms that regulate evolutions are, to
some extent, alike. Nowadays, community evolution tracking and forecasting represents one of the
most challenging task in the dynamic network analysis field.

Social Engagement

The increasing availability of Big Data describing customers behavior has changed the way Com-
panies advertise their services. Online shopping site as well as OSNs are nowadays collecting data
on their users activities and sociality in order to extract information which can guarantee them an
edge on competitors.
In this scenario, being able to identify how much users are engaged to a specific product/service
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offered by a brand (i.e., Skype video call, Facebook chat rooms, Dropbox file sharing, Google online
document editing. . . ) is a powerful tool that can be used to drive decision on future commercial
strategies. Service Engagement was studied from different point of views: economics, statistics,
sociology are only some of the fields that, often with different purposes, have tried to capture the
underlying reasons that drive users to adopt a specific product.
Moreover, the success of a product/service is often due to the virality it is able to achieve. In order
to broaden the diffusion of a specific product it becomes mandatory identify a fertile ground, a set
of potential users that are likely to be interested to it.
Several SNA studies have shown that homophily is a property that can be observed in almost
all human social networks: peoples tend to cluster homogeneously by age, location, interests and,
more important in our scenario, tastes. Social communities are perhaps the basic bricks that can
bound such phenomenon and that can provide an indicator able to shows who to target when
programming an advertising campaign.
The study of “Product Engagement” nowadays is evolved in the analysis of “Social Engagement”:
by leveraging on social ties and homophily novel analytical tools can be proposed both to describe
and forecast how a service is used by sets of deeply connected customers.

Network Quantification

Moving from what have been said on Community Discovery and Social Engagement, another in-
teresting problem which poses its grounds on the existence of homophilic behaviors within well
defined network substructures is the quantification one.

Many real-world applications require to estimate and monitoring of the distribution of a population
across different classes. An example of such applications is the important task to determining the
percentage (or “prevalence”) of unemployed people across different geographical regions, genders,
age ranges or even temporal observations. In the literature, this task has been called Quantification
[48, 49, 50, 51, 52].

Quantification is closely related to classification: however, the goal of classification is different,
since in classification we are interested in correctly guessing the true class label of each single
individual. Instead, in quantification we are interested in classifying individuals with the goal of
estimating the class prevalence, so it is not strictly necessary to classify correctly each single in-
dividual. Classification and quantification are different because, while a perfect classifier is also a
perfect quantifier, not necessarily a good classifier is also a good quantifier. Indeed, a classifier that
on the test set generates a similar number of misclassified items in the different classes is a good
quantifier because the compensation of the misclassifications leads towards a perfect estimation of
the class distribution.

Most of the works that have been proposed so far address the quantification problem taking into
consideration data presented in conventional attribute format. Since the ever-growing availabil-
ity of web and social media we have a flourish of networking data representing a new important
source of information. In this scenario an interesting question arises: how can the quantification
be performed on data describing relationships among the entities of a system?

The impact of quantification techniques for networking data is potentially high: this because
today we are witnessing an ever more effective dissemination of social networks and social media
where people express their interests and disseminate information on their opinions, about their
habits, and their wishes. The possibility to analyze and quantify the percentage of individuals
with specific characteristics or a particular behavior could help the analysis of many social aspects.
For example, analyzing Facebook or Google+, platforms in which people can set their education
level, we could estimate the level of education of a population. Similarly, we could determine the
distribution of the political orientation or the geographical origin of the social network population.
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3.3 Diffusion of Information

Even when we consider network structures as static objects, not allowing creation and removal of
edges and nodes, there are interesting problems that are strictly related with temporal analysis.
One of the most famous is the diffusion of Information problem. Users in a social network com-
municate (i.e., in Facebook they can publish on their wall, express their approval through likes and
tags on photos and posts of their friends), exchange informations (i.e., in a professional network
news on positions openings) search and promote topics and trends (i.e., hashtags in Twitter). Some
of these actions performed by users on a social network could generate cascading phenomena: the
aim of studies which approach diffusive phenomena is to understand how they are related to social
influence, how information spread recursively from a user to his friends and how this process can
define tribe or communities. Two main elements that regulate those kind of processes have been
studied:

Time: how rapidly actions became viral? Is there a temporal threshold (or number of hops)
for which the diffusion process ends? What is the distribution of temporal intervals among
“hops” expected for an information to stop its spread?

Causes: does every action necessary lead to a cascading effect or some kind of topological
features are needed?

Moreover we can identify several real world tasks whose final goal concern the analysis of how
informations spread through a network. An examples, which will be further discussed in the 3rd

part of this thesis, regards the identification of the most prominent users within a social network
w.r.t. their sharing actions (i.e., the users that facilitate the diffusion of a specific music genre in
an online music-driven social network).



Chapter 4

Related Works

The answers you get from literature
depend on the questions you pose.

— Margaret Atwood

Moving from the descriptions given in 3.1 and 3.2, in this chapter we present the relevant state
of the art for the complex network problems analyzed in the rest of the thesis. Moreover, we
will focus on the literature regarding network issues which can be formulated both for static and
dynamic scenarios.
In 4.1 is discussed the state of art for each individual/structural problem introduced in 3.1. Like-
wise, in 4.2 is reported the state of art for the collective/topological ones introduced in 3.2. More-
over, in section 4.3 is proposed a self-contained collection of related works regarding Information
Diffusion. Finally, in 4.4, a brief review on temporal networks works and applications is provided.
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4.1 Local Structures: Individual Entities analysis

The analysis of network nodes and of their immediate surroundings is one of principal key to read
and understand a complex system. In 3.1 we introduced three of the most relevant tasks belonging
to this category: Tie Strength, Link Prediction and Link-Based Object Ranking. Here we will revise
the relevant state of the art for these well-known problems (respectively in 4.1.1, 4.1.2 and 4.1.3).
Moreover, in 4.1.4 we will discuss relevant works in the field of multiplex networks and how this
enriched network model has been used in order to tackle some classical tasks from a different angle.

4.1.1 Tie Strength

The problem of measuring the strength of ties in social contexts represent a subtle issue which
intersects, often unnoticed, a wide range of network problems. From Link Prediction to network
Quantification passing through Community Discovery, a vast number of network tasks estimate
implicitly or explicitly which edges are the most important for the graph: for this reason ties
analysis can be seen as a mandatory step to take before moving ahead on the road that leads to
more complex problems.
The concept of Tie Strength was introduced by Mark Granovetter in his seminal paper “The
Strength of Weak Ties” [46]. There he proposed four main factors shaping the strength of a tie:
amount of time, intimacy, intensity and reciprocal services. Subsequent research expanded the list
adding demographic and socio-economic status [53], emotional support [54] and network topology
[55]. In [56], authors used survey data from three metropolitan areas to discover the predictors of
tie strength. Onnela et al. [40] utilized the duration of calls as a measure for tie strength, and
observed that social networks are robust to the removal of the strong ties but fall apart after a
phase transition if the weak ties are removed. Gilbert and Karahlios [57] presented a predictive
model that maps social media data to tie strength, reaching the 85% accuracy in distinguishing
between strong and weak ties. Recent works on multiplex networks have addressed the problem of
identify strong connections among nodes linked via several dimensions: an example is [58] in which
the authors analyzed, separately, the degree distributions of the various dimensions, highlighting
the need of novel analytical tools for the multidimensional study of hubs.

4.1.2 Link Prediction

Many papers have addressed the Link Prediction problem (hereafter also referred to as LP), propos-
ing both supervised and unsupervised strategies. In order to provide an overview of the solutions
proposed so far, we can categorized the most relevant LP approaches into four groups [59]:

• similarity based strategies;

• maximum likelihood algorithms;

• probabilistic models;

• supervised learning algorithms.

In the first group fall all those approaches that define pairwise measures of similarity as pre-
dictive scores for node couples. All the links not yet present in the network are ranked according
to their scores: the higher the similarity among a node pair the higher the likelihood that a link
among them will arises in the future. Despite its simplicity, define a node similarity measure
is a non-trivial challenge. A similarity index can be very simple or very complicated, it may
work well for some networks while fails for some others. In this group, [60] presented a solution
based on the preferential attachment principle, while [61] and [62] introduce models based on the
quantitative characteristics of common neighbors. A very thorough survey on similarity based
LP approaches is [63], in which the authors empirically compare many different models proposing
a way to standard validate the accuracy of the obtained results (Precision-Recall and ROC curves).
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The second group of methods is based on maximum likelihood estimation [64, 65, 66, 67] and
move their steps following the results empirical studies which suggest that many real world networks
exhibit hierarchical organization. These algorithms require the existence of an organizing principle
which shapes the network structure in order to identify detailed rules and specific parameters that
maximize the likelihood of the observed structure. From the viewpoint of practical applications,
an obvious drawback of maximum likelihood methods is that they are very time consuming. In
addition, maximum likelihood methods are probably not among the most accurate ones. Since the
likelihood of any non-observed link can be calculated according to given rules and parameters the
most interesting researches in this sub-field are the ones that try to avoid parameters tuning.

The third group of LP algorithms is based on probabilistic Bayesian estimation [68, 69, 70].
Probabilistic models aim at abstracting the underlying structure from the observed network, and
then predicting the missing links by using the learned model. Given a target network, the proba-
bilistic model will optimize a built in target function to produce a model composed of a group of
parameters that can best fit the observed data of the target network. Then the probability of the
existence of a non observed link will be estimated by conditional probability.

The last group of methods employs supervised machine learning techniques. Link prediction
through supervised learning algorithms was introduced in [63] where the authors studied the use-
fulness of graph topological features by testing them on a co-authorship networks dataset. Starting
from the obtained scores, and knowing if a link will be present or not in future, a classifier is trained
and then used to predict new links.

Since supervised methods are proved to reach better performances both in terms of Area Under
ROC (AUCROC) and precision than unsupervised ones, after [63], a wide set of models exploiting
several different classification strategies have been proposed. In [71] topological features as well as
node attributes of dynamic social network are applied to a covariance matrix adaptation evolution
strategy to optimize the prediction. Principal component regression is the algorithm used in [72]
to determine the weight of of statistically independent predictor variables. Frequent sub-graph
mining based approaches are the ones proposed in [73] and [74], where the first one allows also
for the prediction of new nodes. A rank aggregation approach is proposed in [75]. In such work
the authors rank the list of unlinked nodes according to some topological measures, then at the
new instant time each measure is weighted according to its performance in predicting new links.
The learned weights are used in a reinforcing way to forecast subsequent network statuses. In [76]
the authors use textual and topological features to predict new citations applying SVM. Finally in
[77] tensor factorization is used to select the more predictive topological attributes, whilst in [78]
important factors for link prediction are examined and it is provided a general, high-performance
framework for the prediction task.

As shown in [59], despite the higher precision supervised approaches as well as maximum
likelihood and stochastic approaches can be prohibitively time consuming for networks having over
10000 nodes. In order to reduce the computational complexity several approaches such as [79] make
use of clustering and community information to improve the precision of link prediction methods.
These analyses suggest that clustering information, no matter the algorithm used, improves link
prediction accuracy. Finally, other works [80, 81] show that exploiting time series which model the
evolution of continue univariate node characteristics features substantially helps in solving the link
prediction task.

In order to efficiently approach the Link Prediction task, it is crucial to identify and calculate
a valuable set of graph structural features. When dealing with large-scale graphs that may include
millions of vertices and links, one of the challenges is the computationally intensive extraction of
such features. Several studies related to link prediction such as [82, 83, 84, 85, 86] try to suggest for
each topological structure of a network the best features to use. For example, in [82] is analyzed the
relation between network structure and the prediction performance of link prediction algorithm,
while in [83] is shown that only small set of features are essential for predicting new edges and that
contacts between nodes with high centrality are more predictable than nodes with node centralities.
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Moreover, the authors claim that on network with low clustering coefficient LP methods perform
poorly, while, as the clustering coefficient grows, the accuracy is drastically improved.

4.1.3 Link-Based Object Ranking

Ranking nodes according to their importance in a network is a classical problem in complex net-
work analysis [87]. Ranking algorithms play a vital and crucial role in complex scenarios such as
search engines and social networks. Millions of people use these tools every day and researchers
continue the exploration of these algorithms in order to extract significant information. There
exist a considerable number of ranking algorithms each one following a different approach and
focusing on different aspects of complex networks and reflecting the variety of strategies that are
possible to apply. In the past decades several approaches to tackle this task there have been
proposed: surely the most popular ones being PageRank, SALSA and some of their derivative
[14, 88, 89]. Moreover, some algorithms have been designed to provide multiple rankings in order
to better capture the relative importance of node in-going and out-goring connections. The oldest
and best-known approach is HITS [47], which provides two rankings (hub and authorities). An-
other example is topic-sensitive PageRank [90], that can provide an arbitrary number of rankings.

Lastly, some ranking algorithms able to deal with multidimensional networks were proposed:
often, however, their outputs strictly relate to the ones computed by PageRank on the monodi-
mensional scenario obtained by collapsing all the network dimensions into a single one. This branch
of research has been thoroughly tackled in recent years, as in [91, 92, 93]. Ranking procedures
can also be described in order to produce different results depending on specific query involving a
subset of the dimensions of the network: the most famous algorithm able to satisfy this request is
TOPHITS [94] which, just like HITS, provides two different rankings, hubs and authorities.

4.1.4 Multiplex Networks

Most real life networks are intrinsically multidimensional, and some of their properties may be
lost if the different dimensions are not taken into account. In other cases, it is natural to derive
multiple dimensions connecting a set of nodes from the available data to the end of analyzing some
phenomena.
In order to study this complex scenario a framework that extends the classical graph theory is
needed. Reasoning on multidimensional networks seems clear that the usual graph model is not
enough to represent all the available information. In their work “Foundations of Multidimensional
Network Analysis” Berlingerio et al. [95], using a multigraph representation, proposed and eval-
uated on real datasets a wide spectrum of measurements that are able to capture the interplay
among dimensions and to overcome some limits that made the classical monodimensional measures
unsuitable in this complex scenario.
Likewise, several researchers have started reasoning on multidimensional/multiplex networks and a
wide range of network problems were revised in order to deal with these more complex structures.
As example, in [96] is tackled the problem of identify communities in time-dependent multiplex
network while in [97] multidimensional hubs are analyzed. Moreover, the multigraph approach
discussed in [95] is not the only proposed so far: among all the recently proposed models, the one
based on tensor analysis and decomposition is often adopted (as in [98]).
A particular field in which multiplex analysis is increasingly receiving attention is the one offered
by the Social Internetworking Scenarios.

Internetworking Scenario

Nowadays, the growing diffusion as well as the increasing sizes of Online Social Networks (OSNs)
makes the analysis of Social Internetworking Scenarios (SISs) extremely challenging. In a SIS, a
user can join multiple OSNs and two users can interact with each other even though they joined
different OSNs and did not know each other. While OSNs have been extensively studied in the last
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years, the most peculiar aspects of Social Internetworking Scenarios have not been yet investigated,
especially from the Social Network Analysis perspective. Many researchers started to collect large
amounts of data from OSNs and to apply techniques of classical Social Network Analysis on them.
The results they obtained are numerous and extremely interesting: they are based on the intuition
that a strong correspondence between the user behavior in an OSN and the structural properties
of the corresponding graph is likely to exist. An important aspect to take into account is that
nowadays internet users tend to spread their activities among more OSNs and, often, to show a
different behavior in each different OSN [99]. As a consequence, different Social Networks could be
seen as interconnected thus resulting in a global graph whose structural features are very different
from those of each single Social Network per se.

Only few commercial attempts to implement Social Internetworking Systems have been pro-
posed so far (i.e. Google Open Social and Friendfeed). Despite the great attention given by
scientists towards Social Networks, Social Internetworking Scenarios have been little investigated
in the scientific literature also due to their young age. Some papers focus on cross-folksonomies
[100, 101], i.e., they analyze the tagging behavior of users in multiple folksonomies and try to relate
information about these behaviors. Other ones, such as [102, 103], assume that users can join het-
erogenous social systems (e.g., a folksonomy and a blogging platform in [103], or Social Networks
like Facebook, and social media, like Flickr, in [102]). Their goal is to aggregate user information
in such a way as to build a global user profile. Reasoning about such multilevel structures the
theory formulated to model and analyze multidimensional networks (where the dimensions are the
different OSNs analyzed) represent a very useful resource.
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4.2 Topologies: Collective analysis

Extract and analyze meaningful network substructures is likely the most complex and hot topic
in network science. In this section we provide a classification of Community Discovery algorithms
(4.2.1) and relevant works which address two tasks that use network partitions as inputs for complex
knowledge extraction processes: Network Quantification (4.2.2) and Services Engagements (4.2.3).

4.2.1 Community Discovery

The problem of identifying communities in complex networks is very popular among network
scientists, as witnessed by an impressive number of valid works in this field. A huge survey by
Fortunato [15] explores all the most popular techniques to find communities in complex networks.
Traditionally, a community is defined as a dense subgraph, in which the number of edges among
the members of the community is significantly higher than the outgoing edges. However, this
definition does not cover many real world scenarios [104], and in the years many different solutions
started to explore alternative definitions of communities in complex networks [105].
In [105] are identified eight main categories of community discovery: Feature Distance, Internal
Density, Bridge Detection, Closeness, Structure Definition, Link Clustering, Meta Clustering and
Diffusion:

• Feature Distance:
The algorithms in the Feature Distance category usually apply some information theory
principles by considering the network as a matrix in which each node is represented as a
vector of attributes. Then the matrix is clustered according to these features. One example
is Cross Associations [106];

• Internal Density:
In the this category the idea is to partition the network by maximizing the edge density inside
the communities. The majority of methods in this category are based on the modularity
concept, a quality function of a partition proposed by Newman [107], [108]. Modularity
scores high values for partitions in which the internal cluster density is higher than the
external density. Hundreds of papers have been written about modularity, either using
it as a quality function to be optimized, or studying its properties and deficiencies. For
instance, two of the issues affecting modularity approaches are the resolution problem and
the degeneracy of good solutions [109]. One of the most advanced examples of modularity
maximization CD is [96], where the authors use an extension of the modularity formula to
cluster multiplex (evolving and/or multirelational) networks. A fast and efficient greedy
algorithm, Modularity Unfolding, has been successfully applied to the analysis of huge
web graphs of millions of nodes and billions of edges, representing the structure in a subset
of the WWW [110];

• Bridge Detection:
The Bridge Detection algorithms aim to find similar structure, but with the opposite point
of view w.r.t. Internal Density approaches: they want to separate the communities by
identifying the sparser areas of the network. Examples in this category are [111], [112];

• Closeness:
In the Closeness category, Infomap has been proven to be one among the best perform-
ing non overlapping algorithms [113]. In the same category of Infomap there is also the
Walktrap algorithm [114];

• Link Clustering:
A very important property for community discovery is the ability to return an overlapping
coverage, i.e., the possibility of a node to be part of more than one community. This property
reflects the common sense intuition that each of us is part of many different communities,
including family, work, and probably many hobby-related communities. The above categories
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do not consider the possibility of having overlapping communities, and the extensions pro-
posed to do so are usually not universally accepted. The Link Clustering category has been
created with this specific focus in mind: the community partition is applied on the edges and
then the nodes are part of all the communities of their edges (see [115] and [116]);

• Structure Definition:
An overlapping coverage can be achieved also in the Structure Definition category, that groups
together those algorithms that aim to find a given community structure in the network. An
example is the k-clique percolation algorithm [117];

• Meta Clustering:
Also the Meta Clustering category may provide a way to obtain an overlapping coverage, as
it is designed to add community features to community discovery algorithms that are part
of different categories. An example of such algorithms is HCDF [118]. A similar approach
that uses ego networks for community discovery can be found in [119];

• Diffusion:
The Diffusion category group together methods that detect communities by spreading labels
through the edges of the graph and labeling nodes accordingly to a chosen function of the
labels attached to their neighbors. The most famous approach of this family is Label
Propagation [120] which shows a reasonable good quality on the partition and very low
complexity being known as one of the very few quasi-linear solutions to the community
discovery problem.

Community Dynamics

Conversely from the static Community Discovery formulation, the problem of finding and tracking
communities in an evolutionary context is a relatively novel one. Communities are certainly the
structures most affected by changes in network topology: as time goes by the appearance and dis-
appearance of nodes and edges leads to the rising and fall of sub-structures that a static community
discovery algorithm is often unable to detect. In order to understand the main directions pursued
by researches on community dynamics we can organize all the algorithms proposed so far in four
main categories: life-cycle tracking, adaptive community mining, online community discovery and
stable community mining.

• Community life-cycle tracking:
Strategies that fall in this category are aimed to track the evolution of communities by
identifying key actions which regulate their life (i.e., birth, death, merge, split, expand,
contract). In [121], authors propose an extended life-cycle model able to track, in an offline
fashion, the evolution of communities. This methodology, as well as the one introduced in
[122], works on a two-step procedure: (i) the graph is divided in n temporal snapshots and, for
each of them, a set of communities is extracted; (ii) for each community an evolutionary chain
is built by observing its evolution through temporal adjacent sets (a likelihood measure, e.g.,
the Jaccard coefficient, is used to identify matches for the same community among different
sets).
In their work, Takaffoli et al. introduced Modec [123], a framework able to model and detect
the evolution of communities obtained at different snapshots in a dynamic social network.
The problem of detecting the transition of communities is solved by identifying events that
generate the changes of communities across time. Unlike previous approaches [124, 125] the
Modec framework is independent from the static community mining algorithm chosen to
partition time-stamped networks.

• Adaptive Community Mining:
A different methodology to discover community in a dynamic scenario, is to design a pro-
cedure for which each community structure identified at time t is influenced by the ones
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detected at time t− 1 (avoiding the need to match communities). Adaptive community min-
ing algorithms are proposed in [126, 127, 128, 129]. Although those approaches reduce the
complexity of the matching phase, they are still based on a static temporal partition of the
complete temporal network.

• Online Community Discovery:
This category of evolutionary approaches is defined by algorithms that do not partition the
full temporal annotated graph, but try to build (and maintain) communities in an online
fashion following the rising of new nodes and edges. Few works, at the best of our knowl-
edge, has exploited this strategy so far. In [130] a probabilistic approach is proposed to
determine dynamic community structure in a social sensing context. The main objective of
the introduced IC-DRF model is to dynamically maintain a community partition of moving
objects based on trajectory information up to the current time stamp. Given the information
used to update the community membership, the approach is suitable only for a specific kind
of networked data. Lin et al. [131] proposes an iterative algorithm that, avoiding the classical
two-step analysis, extract communities taking care of the topology of the graph at the specific
time frame t as well as the historical evolutive patterns of previously computed communities.
In [132] Cazabet introduces iLCD an overlapping online approach to community detection.

• Stable Community Mining:
A different way to make use of the temporal information associated to node and edges has
been considered in [133], where authors approach the problem of predicting stable community
members in an evolutionary and heterogeneous context. Basically, to represent the evolution
of the heterogeneous network, two groups of features were extracted: the snapshot-based
features and the delta-based features. The snapshot-based ones refer to features that are
extracted from the heterogeneous network by taking the elements in the same time window,
while the delta-based represents how the snapshot-based features change over time. As results
a single community partition of the network is returned.

4.2.2 Network Quantification

The earliest mention of the quantification problem is found in [134], where the task is called count-
ing. However, only 10 years later, in 2005, quantification was firstly addressed as a well defined new
data mining task [135, 49, 50]. In this series of papers, Foreman proposes several quantification
methods and an evaluation measure KLD (Kullback-Leibler divergence). Bella et al. [136] moving
from those seminal works, later introduced probabilistic version of Forman’s methods.

Quantification has been applied to several domains. For example, [50] uses it to determine the
prevalence of support-related issues in incoming telephone calls received at customer support desks,
while [137] uses it to estimate the prevalence of response classes in open-ended answers obtained
in the context of market research surveys. [138] applies quantification to estimate the distribution
of support for different political candidates within blog posts. Differently from all of the above,
Xue and Weiss [52] use quantification with the goal of improving the accuracy of classification.

To the best of our knowledge [51] is the only work addressing the quantification problem in the
context of networking data, where the goal is estimating class prevalence among a population of
nodes in a network. The authors propose an approach, inspired by Forman’s equation, which uses
network connectivity information to forecast the distribution of binary labels (identified in the
following as + and - ) for a subset of unlabeled nodes. For each vertex i of the test set (i.e., all
the unlabeled nodes of the network) they calculate:

p(+) =
p(i)− p(i|−)

p(i|+)− p(i|−)
(4.1)

where p(i) identifies the probability for a generic node v of establishing a link with i, while p(i|−)
and p(i|+) denote the conditional probability for v, given its label (- or +), to be part of an edge
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with i. Once that p(+) and p(−) are computed for all the nodes two steps are performed for the
quantification: (i) Cleaning : all the computed scores that do not belong to [0, 1] are discarded; (ii)
Class Frequency Estimation: for each class is returned as frequency estimation the median of the
cleaned values.

The major problem of this approach is due to the choice of the median as frequency indicator:
there is no assurance that the estimation provided for each class will return values that sum to
100%. In their experiments (concerning only datasets with a binary class label), the authors over-
come such issue computing p(+) only on a single class and defining the estimate for the second
one as its complementary. Obviously, the results obtained by this method varies w.r.t. the initial
choice of the class for which computing the median of the distribution. Moreover, due to this
choice the applicability of their method is restricted only on a binary class scenario.

A straightforward solution to the quantification problem on networks could be adopting a sam-
pling strategy; unfortunately, it does not capture the possible distribution drift. In literature,
many works have been proposed to understand the way to choose qualified samples applicable to
a hidden population. Unfortunately, these methods do not consider any information about the
network structure. Usually, the approaches based on sampling have the form of chain referral sam-
pling [139, 140]. However, the choice on how drawing initial random sample is still a key unsolved
problem [141, 142]. Some studies focus on respondent driven sampling [143] for sampling design
and population inference in social networks. The process exploits the social structure to expand
the initial sample and reduce its independence on it. Moreover, in [144] I proposed a variant of
decision trees optimized to perform quantification instead of classification.

4.2.3 Social Engagement

As discussed in 3.2, social engagement has become a major theme of research for several fields and
with different purposes. In recent years thanks to the fertile ground provided by social media like
Facebook and Twitter, many effort has been devoted to the study of how to predict users’ future
activities based on their past social behavior. As an example, to this extent in [145] experiments
on the chinese social media Renren are conducted using a Social Customer Relationship Manage-
ment (Social CRM) model able to obtain superior performance when compared with traditional
supervised learning methods. Moreover, other works focus in particular on the prediction of churn,
i.e., the loss of customers as in [146] where the authors defines the churn probability of a customer
as a function of its local influence with immediate social circle, and the churn probability of the
entire social circle as obtained from a predictive model. In [147], researchers propose a churn
prediction approach based on collective classification, evaluating it using real data provided by the
myGamma social networking site. They demonstrate that using such approach and social features
derived from the network structure they were able to produce better prediction in comparison to
using conventional classification and user profile features only.

A different category of works focus on online advertisement and market targeting on social
networks. The work in [148] addresses the problem of online advertising by analyzing user behaviors
and social connectivity on online social networks. The authors study the adoption of a paid product
by members of the Instant Messenger (IM) network: they first observe that the adoption is more
likely if the product has been widely adopted by the individual’s friends, and then build predictive
models to identify individuals most suited for marketing campaigns. They are able to show that
building predictive models for direct marketing and social neighborhood marketing outperforms
several widely accepted marketing heuristics. Moreover, in [149] is proposed an evaluation of
user’s network value in addition to their intrinsic value and its effectiveness in viral marketing,
while in [150] is discussed a strategy wherein a carefully chosen set of users is influenced with
free distribution of the product and the remaining buyers are exploited for revenue maximization.
Finally, in [151] is presented a machine learning approach which combines user behavioral features
and social features to estimate the probability of a user click on specific display ad.
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4.3 Diffusion of Information

One classic problem in network analysis is understanding how viruses, as well as knowledge, spread
within a social context. Modeling diffusion processes on complex networks enables us to tackle
problems like preventing epidemic outbreaks [152] or favoring the adoption of new technologies or
behaviors by designing an effective word-of-mouth communication strategy. In the last decade,
there has been growing interest in the studies of diffusion processes. Two phenomena are tightly
linked to the concept of diffusion: the spread of biological [152] or computer [153] viruses, and the
spread of ideas and innovation through social networks, the so-called “social contagion” [154, 155].
In both cases, the patterns through which the spreading takes place are determined not just by the
properties of the pathogen/idea, but also by the network structures of the population it is affecting.

Some models have been defined to understand the contagion dynamics: the SIR [156], SIS and
SIRS [157] models. The idea behind them is that each individual transits between some stages
during the life cycle of a disease: i.e., in SIR, from Susceptible (S) to Infected (I), and from Infected
to either Recovered (R) or again Susceptible. The availability of Big Data conveying information
about human interactions and movements encouraged the production of more accurate data-driven
epidemic models. For example, [152] takes into account the space-temporal dimension. Christakis
and Fowler studied the role of social prominence in the spread of obesity [158], smoking [159] and
happiness [44]. Their results suggest that these health conditions may exhibit some amount of
“contagion” in a social sense: although the dynamics of diffusion are different from the biological
virus case, they nonetheless can spread through the social network.

A slightly different but equally fascinating problem is the study of innovations and innovators.
In his seminal work “Diffusion of Innovation” [160], Everett M. Rogers shows how the diffusion of
ideas follows a quasi-universal pattern and how the agents which participate in it can be clustered
in several well defined categories.
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4.4 Temporal Networks

Networks are often used to model dynamic phenomena (i.e., social interactions, biological systems):
in order to better describe these realities in which relationships among agents change through time,
several works in the last few years have started to lay the foundations of temporal network anal-
ysis. Indeed, there is a large number of systems that can, potentially, be modeled as temporal
networks. In addition to cellular processes and social communications, large infrastructures (i.e.,
call graphs and web graphs) posses both network and temporal aspects that make them interesting
for temporal network modeling.
The emergence of such theoretical grounds has been clearly highlighted in the book “Temporal
Networks” [161] where the curators, Holme and Sarämaki, propose an ensemble of works covering
different dynamic network analysis methodologies. As done for the multidimensional network sce-
nario, several graph measures were revised and extended in order to deal with dynamic structures:
in time dependent networks shortest paths, for instance, will build and change through time, node
centrality scores will be different observing the same phenomenon at different stages, diffusion
processes will be facilitated or made more difficult by structural and topological perturbations.
To address these problems novel time-aware measures were proposed [162] and, starting from
the vast literature on time series analysis, the temporal scale of dynamic processes and bursti-
ness of agent interactions studied [163, 164] in order to extract useful knowledge. Moreover,
topological analysis of dynamic networks has involved the extraction of motifs and communities
[132, 165, 166, 167] as well as the study of how classical information diffusion models can be fitted
in this enriched scenario [168].
Until now, due to the (relatively) limited availability of temporal annotated data, large amount
of temporal network studies have been performed on synthetic datasets. Unfortunately there is
not yet a commonly agreed set of temporal network characteristics nor a shared temporal network
model description that can explain all the possible phenomena able to shape social tissues: for this
reason, whenever possible, recent studies has been single phenomenon oriented and data driven.
Indeed this approach has advantages as well as drawbacks: if, on one hand, design data driven
analysis allows a simplification of the research space (i.e., strong assumption on the data can be
made) on the other following this path is quite difficult, or even impossible, to produce models and
results that can be considered context independent. For all these reasons, as previously done in
static settings, an effort in designing generative models that can output temporal networks with
tunable structure is needed. In cases where topological and temporal structures are decoupled,
creating a generative model is straightforward. In such scenario, the topology can be generated
with any model from the static network literature (modifying for instance the ones seen in 2.3),
and then enriched with time series describing node interactions. However, such decoupling does
not provides a reliable proxy for the analysis of human sociality development. To overcome such
limitations, recently some studies have started to design and adopt time-aware generative models
to reproduce and understand dynamics of real world phenomena[169, 170]. Moreover, being able to
identify the main characteristics of temporal networks can lead to the design of accurate predictive
models aimed at forecasting the future development of interactions and graph sub-structures. Such
models, drawn from machine-learning and statistical techniques, would not necessarily attempt to
explain why a temporal network is like it is, or to generate contact sequences from scratch: rather,
given a contact sequence as well as a series of timestamped graphs, these models aim will be to
make predictions on their continuation in the near future.
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Chapter 5

Social Network Data

To write it, it took three months;
to conceive it three minutes;
to collect the data in it all my life.

— F. Scott Fitzgerald

In this chapter are briefly introduced the data sets used in the 2nd and 3rd part of this thesis.
Furthermore we overview the semantics attached to their node and edges, their properties and
sources and provide an overall summary. Moreover, in 5.2 are compared different ways to look at
networked data: static and dynamic modeling.
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5.1 Social Network Analysis

The advent of OSNs as well as the proliferation of user oriented online services have given rise,
during the last decade, to the availability of a heterogeneous set of social data. Almost every infor-
mation regarding human activities taking place on the internet is nowadays recorded: query logs
maintain the history of our searches on the web; email collections describe our communications
with friends, family and colleagues; OSNs data capture our interests and relate them to the ones
of our contacts; chat and video call logs make possible to describe in detail our sociality as well as
purchases from online stores capture our engagement on brands.
Moreover, not only internet-related human activity are recorded and described. Specialized web-
sites collect data regarding offline content such as movies1, peer reviewed publications2, political
debate, sport related events. Even data regarding terrorism attacks are nowadays described3, cat-
egorized and made available to everyone who is interested in their analysis.
In this data rich scenario network science has found a fertile ground to test its algorithms, develop
novel analytical tools and propose solutions to complex problems. Almost all the information we
are used to analyze can be modeled using variants of what we call graph: due to this explosion of
different contexts, carefully described by real data, graph theory is now living a second youth.

The studies introduced in the 2nd and 3rd parts of this thesis will propose analytical tools aimed
at extracting knowledge from dataset which describe human “activities”. Each algorithm (as well
as mining approach) that will be discussed exploit, other than the mere network structure, the
semantics offered by the specific category of the analyzed data.

In rest of this section we briefly describe some of the general characteristics of the networks that
will be studied in the rest of this thesis (which are summarized in Table 5.1). In particular we
will discuss the peculiarities of Social Networks (5.1.1) and Collaboration Networks (5.1.2). To
conclude our introduction, in (5.2) we will compare two different classes of networks: static and
dynamic ones.

Network Nodes Edges Attributes Used In

FB-like 1 899 113 145 temporal snapshots 8.2
MultiSocial 7 500 97 934 dimensions 6.2 7.1
FB07 19 561 304 392 timestamps 9.1
Google+ 33 381 110 141 node labels 7.2
Last.fm 75 962 389 639 weekly user’s listenings 10.1
Weibo 8 335 605 49 595 797 timestamps 9.1
Skype4 xx xxx xxx xxx xxx xxx monthly service usage 7.3

Congress 526 14 198 - 7.1
Enron 5 913 49 058 dimensions, skills 6.3
IMDbQ 1 440 51 481 node labels 7.2
IMDbLP 14 990 1 106 118 dimensions, temporal snapshots 8.1
IMDbD 56 542 185 347 - 7.1

DblpR 38 942 100 983 dimensions, skills 6.3
DblpLP 41 836 113 223 dimensions, temporal snapshots 8.1
DblpSLP 747 700 5 319 654 temporal snapshots 8.2

CoRA 4 240 77 842 node labels 7.2
Amazon 410 236 2 439 437 - 7.1
CG 1 007 567 16 276618 timestamps, geography 8.2 9.1

Table 5.1: Network datasets overview

1Internet Movie Database, www.imdb.com
2DBLP, www.dblp.org
3Global Terrorism Database, www.start.umd.edu/gtd/
4The exact number of nodes and edges was removed upon Skype request.

www.imdb.com
www.dblp.org
www.start.umd.edu/gtd/
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5.1.1 Social Networks

In this category fall all those datasets which are built over samples of Online Social Network users,
email exchange logs and telco call graphs. Due to their nature, in these networks two nodes (users,
or actors) are connected by a link if among them has occurred an explicit interaction. Social
networks can be differentiate by the reciprocity of the connections among users: in some online
services (i.e., Facebook, Skype, Last.fm, Foursquare, WEIBO) explicit links have to be considered
as fully mutual relationships while in others (i.e. Twitter, Google+) users can specify one-way
relations (a user A can follow a peer B even if it is not followed back). This differentiation leads
to the adoption of two different models to represent OSNs: undirected and directed graphs. In our
analysis, unless specified otherwise, we will consider the analyzed networks as undirected: most of
the obtained results can be, however, generalized for directed scenarios.
Indeed, almost all the networks we will analyze (enumerated in Table 5.1) carry additional seman-
tic informations attached both to nodes and/or edges. In the first set fall Google+, Last.fm and
VOIP: the analysis we perform on these networks will aim to characterize the users starting from
the topology that surround them and their own features. Conversely, in the second category we
can find FB07 (a Facebook regional network built upon users interactions occurred during 2007),
FB-Like (a high school social network observed at different period) and Multisocial (a multidimen-
sional/multiplex network built upon a fixed set of users across three different OSNs).
Moreover, among the several types of information that a node/edge can carry a very relevant one
is time. Social networks describe mutable realities: nodes and edges can appear and disappear.
These changes in both local structures and more complex topologies can be captured and exploited
during the analytical process. In the 3rd part of this thesis we will analyze some temporal enriched
networks, in particular we will work with a temporal annotated sample of Facebook and a call
graph of a european mobile carrier.

In order to correctly evaluate the results proposed in the rest of this work, it is very important to
understand that both online social networks and telco call graphs can be seen as proxies for human
sociality, even if they provide different views of it. The former builds up an overestimation of the
real social connection peoples have: OSNs eliminate the costs that are needed to maintain and
nurture a friendship (in terms of time, involvements, travel. . . ) amplifying the perception of their
users sociality. Conversely, the latter represent an underestimation because: (i) often call data are
partial w.r.t. a specific carrier (i.e., we are able to observe only those users whose telco operator
is the one we are analyzing) and (ii) call data capture only a subset of the real connections each
user have, the strongest one.

5.1.2 Collaboration Networks

A particular typology of human related network is the one described by taking into account as
link semantics a group activity. Co-authorship of scientific papers, co-working people (in an of-
fice, movie, firm. . . ), athletes playing in the same team are all examples of activities in which the
bonding relation among nodes is not restricted to single pairs at once.
These networks can be modeled using simple undirected graphs (due to the intrinsic mutuality
of their links semantics) as well as using hyper-graphs. The former model is the most frequently
adopted in SNA studies due to its simplicity: this choice however leads to the definition of network
structures that are quite dissimilar from the ones describing real social networks. The major differ-
ences lie in the higher average clustering coefficient and density: collaboration networks appear, at
the eye of the analyst, as built upon chains of cliques of different sizes (i.e., in a co-authorship graph
each paper generates a clique involving its authors likewise, in an actor collaboration network, each
film generates the full graph of its cast members) while a regular social network is sparse. In the
2nd and 3rd part of this thesis we will use some datasets which fall in this category namely IMDb,
DBLP, CoRA and Congress. Moreover, we will use a product-product network built upon the sales
of Amazon having the same characteristics of a collaboration one (where the actors are replaced
by products and films/papers by carts).
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5.2 Static vs. Dynamic Social Networks

Static Edge Weighted Snapshots Interactions

Model complexity

Temporal impact 

Figure 5.1: From static to dynamic: network representations.

In our daily routines we are used to picture social relations as mutable, dynamic and often
rarely persistent bonds. Each one of us is accustomed to live several types of interpersonal re-
lationships: as observed by Dumbar [37], different level of intimacy shape the way we interact
with our peers. This complex scenario can be transferred easily on the proxies social network
analysis is used to study. Networks inferred from social ties can be used to observe, character-
ize and forecast different aspects of human activities: varying the purposes of analysis different
typologies of information need to be included even when the same phenomenon is modeled. A
wide spectrum of SNA works propose solutions for tasks defined on static networks: frequent pat-
tern mining, community discovery, link-based object ranking are only few example of problems
that were originally defined on network “frozen in time”. The absence of the time variable in
classical formulations of analytical tools is due to the fact that they where originally intended
for a more general audience: SNA, at its beginning, has moved its steps from graph theory and
only later has developed its own approach more sensible to the peculiarity of the context it analyze.

In Figure 5.1 are reported four different stages that can be used to describe the gradual intro-
duction of temporal information in a networked context. Moving from the analysis of completely
atemporal networks (i.e., a picture at a given, often unspecified, time of a social phenomenon) we
can observe how a first solution used to include some temporal information in the model was pro-
ducing an aggregate. In this solution each edge/node carries an attribute which specify its number
of occurrences during a pre-specified observation window. This additional information enables,
with a small increment of model complexity, for a more detailed analysis and a direct estimate of
tie strengths.
As a further improvement of this solution a wide set of works propose the adoption of complete
series of network snapshots. Here we can keep track of perturbations introduced in network topol-
ogy as time goes by looking at an ordered series of network observations. The model complexity
slightly increase: indeed, to perform an analysis we need to keep track of more than a single net-
work and to define a mapping functions for nodes and edges. Edge weights and network snapshots
suffer however of a common issue: in order to be computed they need as input a desired tem-
poral granularity, a threshold to partition the observed dynamic phenomenon. In order to avoid
the definition of such threshold, which is context dependent and often deeply affect the analytical
results, in recent years some social network mining tasks where defined to operate on streams.
In this approach social networks are seen as composed of temporal ordered interactions. Each
edge (node) is univocally identified by a time series of punctual observations. Such model offers
a complete and fine grained description of the dynamism which regulates the life of a real social
network at expenses of a very complex analytical model.
Each one of these stages represent a good fit for a specific set of mining tasks: different formula-
tion for the same problem are often proposed in order to cope with the specific level of temporal
information the authors desire to take advantage of. In the following of the thesis we will see
how each one of them is able to produce interesting results. In particular we will make use of the
static model in 6.1, 6.3, 7.1 and 7.2, of the edge/node temporal aggregation in 6.2, 7.3 and 10.1,
of network snapshots in 8.1 and finally of interaction networks in 8.2 and 9.1.
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Chapter 6

Understanding Local Structures

If you know the enemy and know yourself
you need not fear the results of a hundred
battles.

— Sun Zi

In this chapter we propose an ensemble of approaches designed to address two well-known
structural network problems: Tie Strength evaluation and Node Ranking.
Moreover, here will be discussed novel methodologies able to exploit the additional semantic infor-
mation expressed by multidimensional networks. The final purpose of the proposed analysis is to
show how making leverage on additional knowledge can lead to clearer problem formulation and
to higher quality results. As a first step we introduce in 6.1 the framework we adopt to analyze
multidimensional networks; afterwards, in 6.2 we show how tie strength can be measured in such
semantic rich setting. Finally, in 6.3 the discussion of a ranking algorithm tailored for the Human
Resources scenario concludes the chapter.
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6.1 Multidimensional Networks1

In literature, many analytical measures, both at the local and at the global levels, have been de-
fined in order to describe and analyze properties of standard, monodimensional networks. However
networks are often multidimensional: therefore, multidimensional analysis is needed to distinguish
among different kinds of interactions or, equivalently, to look at interactions from different per-
spectives. Analytical measures come under a different light when seen in this setting, since the
analysis scenario gets even richer, thanks to the availability of different dimensions to take into
account. As a consequence, in this novel setting it becomes indispensable:

• to define a model able to fully represent multidimensional networks and their properties;

• to study how most of the measures defined for classical monodimensional networks can be
generalized in order to be applied to multidimensional networks;

• to define new measures, meaningful only in the multidimensional scenario, to capture hidden
relationships among different dimensions.

1 2 3 4

8765

Figure 6.1: Example of a multidimensional network

We choose to use a multigraph to model a multidimensional network. For the sake of simplicity,
in our model we only consider undirected multigraphs and since we do not consider node labels,
hereafter we use edge-labeled undirected multigraphs, denoted by a triple G = (V,E, L) where: V is
a set of nodes; L is a set of labels; E is a set of labeled edges, i.e., the set of triples (u, v, d) where
u, v ∈ V are nodes and d ∈ L is a label. Also, we use the term dimension to indicate label, and we
say that a node belongs to or appears in a given dimension d if there is at least one edge labeled
with d adjacent to it. We also say that an edge belongs to or appears in a dimension d if its label
is d. We assume that given a pair of nodes u, v ∈ V and a label d ∈ L only one edge (u, v, d) may
exist. Thus, each pair of nodes in G can be connected by at most |L| possible edges. Hereafter
P(L) denotes the power set of L. An example of multidimensional network is shown in figure 6.1.

6.1.1 Multidimensional network measures

Given a multidimensional network we can extend typical measures defined on traditional monodi-
mensional networks and we can define new measures that are meaningful only in this specific
setting. In general, in order to adapt classical measures to the multidimensional setting we need
to extend the domain of each function in order to specify the set of dimensions for which they are
calculated. Intuitively, when a measure considers a specific set of dimensions, a filter is applied
on the multigraph to produce a view of it considering only that specific set, then the measure is
calculated over this view.

1M. Magnani, A. Monreale, G. Rossetti, and F. Giannotti, “On multidimensional network measures”, in SEBD,
2013.
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Degree

In order to cope with the multidimensional setting, we can define the degree of a node w.r.t. a
single dimension or a set of them. To this end, we have to redefine the domain of the classical
degree function by including also the dimensions.

Definition 1 (Degree) Let v ∈ V be a node of a network G. The function Degree : V ×P(L)→
N defined as

Degree(v,D) = |{(u, v, d) ∈ E s.t. u ∈ V ∧ d ∈ D}| (6.1)

computes the number of edges, labeled with one of the dimensions in D, between v and any other
node u.

We can consider two particular cases: when D = L we have the degree of the node v within
the whole network, while when the set of dimensions D contains only one dimension d we have
the degree of v in the dimension d, which is the classical degree of a node in a monodimensional
network.

As an example, node 3 in Figure 6.1 has degree centrality Degree(3, {d1, d2}) = 5, indicating
its five adjacent edges, while if we focus only on the dashed dimension this reduces to 2.

Neighborhood

In classical graph theory the degree of a node refers to the connections of a node in a network:
it is defined, in fact, as the number of edges adjacent to a node. In a simple graph, each edge is
the sole connection to an adjacent node. In multidimensional networks the degree of a node and
the number of nodes adjacent to it is no longer related, since there may be more than one edge
between any two nodes. For instance, in Figure 6.1, node 3 has four neighbors and degree equal
to 5 (taking into account all the dimensions). In order to capture this difference, we define the
following:

Definition 2 (Neighbors) Let v ∈ V and D ⊆ L be a node and a set of dimensions of a network
G = (V,E, L), respectively. The function Neighbors : V × P(L)→ N is defined as

Neighbors(v,D) = |NeighborSet(v,D)| (6.2)

where NeighborSet(v,D) = {u ∈ V | ∃(u, v, d) ∈ E ∧ d ∈ D}. This function computes the number
of all the nodes directly reachable from node v by edges labeled with dimensions belonging to D.

Note that in the monodimensional case the value of this measure corresponds to the degree. It
is easy to see that Neighbors(v,D) ≤ Degree(v), but we can also easily say something about the

ratio Neighbors(v,D)
Degree(v) . When the number of neighbors is small, but each one is connected by many

edges to v, we have low values of this ratio, which means that the set of dimensions is somehow
redundant w.r.t. the connectivity of that node.

We also define a variant of the Neighbors function, which takes into account only the adjacent
nodes that are connected by edges belonging only to a given set of dimensions.

Definition 3 (NeighborsXOR) Let v ∈ V and D ⊆ L be a node and a set of dimensions of a
network G = (V,E,L), respectively. The function NeighborsXOR : V × P(L)→ N is defined as

NeighborsXOR(v,D) = |{u ∈ V | ∃d ∈ D : (u, v, d) ∈ E ∧ @d′ /∈ D : (u, v, d′) ∈ E}| (6.3)

As an example, if we consider the dashed dimension in Figure 6.1 the only XOR-neighbor of
node 3 is node 6. This indicates how this dimension is fundamental in keeping the two nodes
connected — which is not the case for, e.g., nodes 3 and 8, that would be anyway connected
through the other dimension.
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Multidimensional distance

The main assumption underlying the definition of multidimensional distance is that different edge
types are incomparable to each other: if Renzo and Lucia are married and Agnese is Lucia’s
mother, who is closer to Lucia? Our answer is to consider the two relationships as alternative
ways of being connected that should not be reduced to a monodimensional concept when distances
are computed [171].

For example, in Figure 6.1 we can go from node 3 to node 4 by traversing the continuous edge (3
—– 4), or through two steps along the dashed edge (3 - - - 8 - - - 4) or through a combination of the
two (3 —– 8 - - - 4). The number of steps taken in each network determine the multidimensional
length of these paths.

Definition 4 (Multidimensional path length) The multidimensional path length of path p is
an array r1 + · · ·+ r|L| where ri indicates the number of edges traversed in the ith dimension.

We may also include network switches in this definition – however this better applies to a model
emphasizing the separation between the different networks [172], so in this paper we stick to this
simpler definition.

The interesting aspect of multidimensional paths is that the choice of not comparing edges of
different kinds does not prevent us to identify shortest paths containing different edge types. The
situation where one multidimensional path is considered shorter than another is formalized using
the concept of multidimensional path dominance.

Definition 5 (Path dominance) Let r and s be two multidimensional path lengths. r dominates
s iff ∀l ∈ [1, |L|] rl ≤ sl ∧ ∃i rl < sl.

As an example, (3 —– 4) and (3 - - - 8 - - - 4) are both shortest paths between nodes 3 and 4,
while (3 —– 8 - - - 4) is not: (3 —– 4) is shorter (or dominates it) because it involves the same
number of steps in the continuous dimension and less steps in the other.

We can thus define the distance between two nodes n1 and n2 as follows:

Definition 6 (Multidimensional distance) Let ML(n1, n2) be set of all multidimensional path
lengths between nodes n1 and n2. The distance between n1 and n2 is a set P ⊆ ML such that
∀p ∈ P 6 ∃p′ ∈ML : p′ dominates p.

This definition has some attractive properties: it returns all paths that can be shortest under
some monotone path evaluation function (e.g., a function assigning a weight to each dimension),
does not return any path that cannot be the shortest given some evaluation function, and reduces
to traditional path length in the monodimensional case. So, this extension is tight (sound and
complete) and conservative.

Multidimensional betweenness centrality

Using the concept of multidimensional shortest path introduced in the previous section we can
easily compute the betweenness centrality of any node, which characterizes the importance of the
node with respect to blocking or favoring information propagation in the network.

In single networks, betweenness centrality is defined as the number of shortest paths passing
through a given node. The same definition can be used to characterize betweenness in a mul-
tidimensional network by replacing the concept of shortest path with the one introduced in the
previous section [173].

It is worth noticing how multidimensional betweenness can capture the role of some nodes that
would not emerge in a monodimensional setting. As an example, consider node 8 in Figure 6.1.
If we compute its betweenness centrality in the flattened network where we do not distinguish
between different kinds of edges we can see that no shortest path passes through it, leading to
a centrality of 0. On the contrary, the betweenness centrality computed using our measure is
positive. For example, a shortest multidimensional path between node 3 and node 4 might pass
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through 8 in the case where the dotted dimension is significantly stronger than the continuos one.
This comes from the fact that the multidimensional distance between nodes 3 and 4 contains the
two alternative paths (3 —– 4) and (3 - - - 8 - - - 4).

Dimension Relevance

One key focus of multidimensional network analysis is on understanding how important a particular
dimension is over the others for the connectivity of a node. In the following we introduce the concept
of Dimension Relevance.

Definition 7 (Dimension Relevance) Let v ∈ V and D ⊆ L be a node and a set of dimensions
of a network G = (V,E,L), respectively. The function DR : V × P(L)→ [0, 1] is defined as

DR(v,D) =
Neighbors(v,D)

Neighbors(v, L)
(6.4)

and computes the ratio between the neighbors of a node v connected by edges belonging to a specific
set of dimensions in D and the total number of its neighbors.

Clearly, the set D might also contain only a single dimension d, for which the analyst might
want to study the specific role within the network.

However, in a multidimensional setting, this measure may still not cover important information
about the connectivity of a node. As an example, this measure does not capture the fact that for a
node a dimension could be the only one that allows reaching a subset of its neighbors. To capture
this aspect we introduce a variant of this measure.

Definition 8 (Dimension Relevance XOR) Let v ∈ V and D ⊆ L be a node and a set of
dimensions of a network G = (V,E,L), respectively. DRXOR : V × P(L)→ [0, 1] is defined as

DRXOR(v,D) =
NeighborsXOR(v,D)

Neighbors(v, L)
(6.5)

and computes the fraction of neighbors directly reachable from node v following edges belonging
only to dimensions D.

In the following, we want to capture the intuitive intermediate value, i.e., the number of neigh-
bors reachable through a dimension, weighted by the number of alternative connections.

Definition 9 (Weighted Dimension Relevance) Let v ∈ V and d ∈ L be a node and a di-
mension of a network G = (V,E,L), respectively. The function DRW : V × P(L) → [0, 1], called
Weighted Dimension Relevance, is defined as

DRW (v,D) =

∑
u∈NeighborSet(v,D)

nuvd
nuv

Neighbors(v, L)
(6.6)

where: nuvd is the number of dimensions which label the edges between two nodes u and v and that
belong to D; nuv is the number of dimensions which label the edges between two nodes u and v.

The Weighted Dimension Relevance takes into account both the situations modeled by the
previous two definitions. Low values of DRW for a set of dimensions D are typical of nodes that
have a large number of alternative dimensions through which they can reach their neighbors. High
values, on the other hand, mean that there are fewer alternatives.

Discussion

In this work we have described a unified model and set of measures to represent and analyze multi-
dimensional networks, i.e., networks with multiple edge types. Some of these measures have already
been shown to be useful to identify structural features of a network, e.g., the role of specific di-
mensions [95], and to study network’s hubs [97]. However, they constitute only a first foundational
step towards a general extension of complex network mining methods to this multidimensional
framework.
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6.2 Ties Strength1

As we have seen (in 3.1 and 4.1.1) there not exists a common shared formal definition of “tie
strength” and only few approaches have been proposed with the aim of measuring the intensity of
pairwise human interactions. Moreover, social interactions can carry a wide spectrum of different
semantics. Moving from this observation, in the following work we propose a measure that, exploit-
ing the multidimensional network analysis tools discussed in 6.1, is able to asses the strength of a
tie exploiting the existence of multiple online social links between two individuals. We will discuss,
analyzing an Internetworking scenario (as described in 4.1.4), how weak ties often rely on a few
commonly available media [174] while strong ones tend to diversify the communication through
many different channels [175]. Moreover, we will observe how in presence of strong homophily a
high number of different types of relationships tend to form between people pairs.

6.2.1 Multidimensional Formulation

On the vast online world, two individuals can interact and share interests through several social
networking platforms. They can be coworkers on LinkedIn, friends on Facebook or Google+, fol-
lowers/followee on Twitter, they can frequent the same venues on Foursquare, or all of these things
together. To express this kind of information we choose to model social contexts as multidimen-
sional networks.
Since strong ties are the ones on which peoples tend to invest more, for example establishing com-
munications through many different channels, it makes sense to model a tie strength measure that
exploits the multidimensional nature of online interactions. In order to do so, we define an ap-
proaches based on three main features. The first one takes into account the intensity of interaction
and the similarity of the nodes in a single dimension:

Definition 10 (Node interaction and similarity)

hd(u, v) = wd(u, v)
|Γd(u) ∩ Γd(v)|

min(|Γd(u)|, |Γd(v)|)
(6.7)

where wd is a weight function2 representing the intensity of the interaction between the nodes in
the dimension d, and Γd is the set of neighbors of a node in such dimension. In order to capture
whether they belong to the same circle of friendships, and whether such circle is prominent for
one of them, the intensity of interactions is influenced by the percentage of common neighbors
with respect to the more selective node (the one with less friends). The second feature regards
the relevance of a dimension for the connectivity of a user: the removal of the links belonging to
a dimension should not affect significantly the capacity to reach his real strong connections.

Definition 11 (Connection Redundancy)

ϕd(u, v) = (1−DR(u, d))(1−DR(v, d)) (6.8)

The dimension relevance DR (defined in 7) identifies the fraction of neighbors that become directly
unreachable from a node if all the edges in a specified dimension were removed. We give a higher
score to the edges that appear in several dimensions, so we are interested in the complement of such
values. If two nodes are linked in more than one dimension, the score is raised until a maximum
of 1.

We merge these aspects taking into account the multidimensionality of a tie: a greater number
of connections on different dimensions is reflected in a greater chance of having a strong tie [176]:

1L. Pappalardo, G. Rossetti, and D. Pedreschi, “How well do we know each other? detecting tie strength in
multidimensional social networks” in IEEE/ACM ASONAM, 2012

2In the rest of the section we will define wd(u, v) as the number of interactions occurring on d among u and v.
However, this function can be furhter specified accordingly to the information available w.r.t. the network analyzed.
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(a) (b)

Figure 6.2: (a) A global visualization of the network N . (b) A portion of the network N . The edge
colors ranging from blue to red are used to highlight the computed ties strengths, from strong to
weak respectively.

Definition 12 (Multidimensional Tie Strength) Let u, v ∈ V be two nodes and L the set of
dimension of a multidimensional network G = (V,E, L). The strength function str : V × V → R
between two users u, v is defined as:

str(u, v) =
∑
d∈D

hd(u, v)(1 + ϕd(u, v)) (6.9)

The measure proposed, given its formulation, can be used to estimate the strength of ties even in
monodimensional networks: in that scenario the ϕd function assume a value equal to zero and the
overall sum became the value of hd. This scoring function is our final measure of tie strength.

Experiments

We constructed a multidimensional network G = (V,E, L) by collecting friendships existing be-
tween the same 7 500 individuals3 in three online social networks (Foursquare, Twitter and Face-
book). Moreover, we inferred a co-occurrence network linking two users if they made a Foursquare
checkin in the same venue within a time interval of 15 minutes, during a time span of one month.
The number of co-occurrences between two individuals was taken as the weight for the correspond-
ing edge. Figure 6.3(a) presents a schematic example of our 4-dimensional network, whereas Table
6.1 summarizes some characteristics of the multidimensional network and of its dimensions.

3All the users considered are geographically located in the city of Osaka (Japan).

Network Nodes Edges Weighted

Foursquare 5 783 42 691 No

GeoFoursquare 4 901 17 987 Yes

Facebook 2 081 5 618 No

Twitter 3 745 31 638 No

Complete Network 7 500 97 934 -

Table 6.1: Basic statistics of the four dimensions as well as for the whole multidimensional network.
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Figure 6.3: (a) A schematization of our 4-dimensional social network. (b) A Venn diagram shoing
how the edges of the four dimensions overlap in the multidimensional network.

In order to test the meaningfulness of our definition and analyze the structural role of strong
and weak links, we calculated the strength measure on G and, using the scores obtained, inferred
a weighted network N = (V,EN ), collapsing all the edge between two nodes into one. Figure
6.2 shows a global visualization of N , from which three main clusters clearly emerge, with the
one on the left representing people communicating in many different social networking platforms.
Furthermore, our measure seems to be consistent with the “strength of weak ties” hypothesis [46],
with strong tie connecting local communities, and weak ones acting as bridge between them (Figure
6.2). To test more rigorously this aspect, we studied the resilience of N and the individual networks
to the removal of either strong and weak links. Since weak ties act as bridges between different
communities, we expect that their removal will make the network structure fall apart quickly [40].
Indeed, the deletion of strong ties does not affect considerably the connectivity of the networks,
with the 70% of the nodes still reachable in N when almost all the strong arcs were removed
(Figure 6.4(a)). Conversely, the removal of weak ties rapidly “destroys” the networks, splitting
them into several small connected components (Figure 6.4(b)). Our definition is therefore capable
to discriminate between intimate circles and the edges acting as bridges between them.

Figure 6.3 shows a Venn diagram representing the number of ties belonging to each possible
intersection of the analyzed social dimensions. It clearly shows that there are only 48 bonds
appertaining to all the 4 dimensions. Such links represent a sort of “super strong” ties, i.e., those
having a high probability of being real and intimate friendships.

In order to investigate if the proposed measure correctly assigns the strength values, we analyzed
how such scores correlate with three well-known network measure: Jaccard, Adamic-Adar and Edge
Betweenness.

Comparing the values assigned by our measure with the corresponding Jaccard coefficient, we
want to verify the existence of a correlation between the strength of a tie and the similarity of the
individuals involved. We plot the tie strength against the Jaccard coefficient, both for the network
N and the single dimensions. As shown in Figure 6.5(a), weak ties tend to have a small Jaccard
coefficient, whereas those with higher strength seems more similar. However, there are cases in
which a high similarity does not reflect in higher strength. This is because the Jaccard coefficient is
defined as the ratio between the common neighbors of the two nodes and all their friends, whereas
our measure takes into account the prominence of the circle of friendships.

As done with the Jaccard coefficient, we compare our measure with Adamic-Adar. This mea-
sure considers how the mutual neighbors of two nodes are selective in establishing connections:
the more selective the friendships are, the more likely the two individuals belong to the same
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Figure 6.4: Network resilience: (a) The stability of the networks to strong link removal. The
curves correspond to removing first the high-strength links, moving toward the weaker ones; (b)
The stability of the networks to weak link removal. The curves correspond to removing first the
low-strength links, moving toward the stronger ones.

community. As we can see in Figure 6.5(b), it seems that the strength increases together with the
Adamic-Adar score in Facebook, Twitter and the network N . It does not happen with Foursquare,
presumably because of the peculiar typology of the service that it offers. Anyway, the trend shown
by the figure suggests the following conclusion: two nodes belonging to selective circles of friend-
ships have a greater chance to establish a strong bond.

As seen in 2.2, edge betweenness is a measure of edges centrality. An edge with a high be-
tweenness is likely a bridge between two different communities and, by definition, a weak link.
We compare our strength function with this score computed over the single dimensions only. The
computation of this measure on the network N is meaningless because, in such network, an edge
could establish paths that are not real. As expected, Figure 6.5(c) shows that when the edge
betweenness increases, the value of strength seems to decrease.
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Discussion

In this work we have introduced a measure of tie strength for multidimensional networks. Supported
by a validation on a 4-dimensional SIS, we found that the strength of a tie is strictly related to the
number of interactions among the individuals involved. Moreover, it is also related to the number
of different contexts in which those connections take place. As future work, we plan to investigate
how the information provided by tie strength can be exploited to tackle well-known problems such
as link prediction and community discovery.
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6.3 Link-Based Object Ranking1

Finding talents is one among the most difficult challenges for organizations. Hiring talents means
performing better, get more revenue and evolve the business. Where hiring talents is relatively
easy, the biggest challenge for organizations today is to find talents they have already hired: finding
and creating knowledge is important, but so it is to be able to search and mine knowledge that
is already owned. The social networking revolution allowed the creation of tools to evaluate com-
petencies, expertise and skills, like Linkedin. Before social networks, talent management activities
were restricted to a marketing oriented approach: to discover talents among their employees, orga-
nizations promote internal contests or invest into assessment activities and campaigns. However,
during the last few years, organizations started also to put efforts on social talent management,
often connected to wider social related initiatives (social CRM, enterprise social networking, etc.).
Social talent management is nowadays based on dedicated pages or applications whose aim is to
discover interesting professionals. Social networks are also used by organizations to get unofficial
information about their employees or candidates, to understand what they do and who they really
are.

To understand where and how an employee is positioned on a skill network will enable orga-
nizations to find previously hidden sources of knowledge, innovation and know-how. Resumes can
provide structured information about studies and working experiences, but they are not useful to
understand skills and experiences that do not belong directly to the employee, but to his friends
and colleagues. If a candidate does not master a topic but has a strong relationship with somebody
who does, then he is an important gateway in that topic, although different relationships allow for
different gateway values (i.e., two friends in the same company represents a stronger connection
than two friends in competing companies).

If an employee is involved on specific tasks, and she has always been involved only on those
tasks, this does not mean she could not have strong competencies and skills on completely dif-
ferent subjects: hobbies, passions, interests can be worth some, sometimes a lot of, value in the
prosumers age. People are digitally involved throughout their life and there is not a clear separa-
tion between personal and professional network. Understanding the position of somebody among
different skills and knowledge networks or rankings can let this value emerge. This data richness
and hidden knowledge demands for a multidimensional and multi-skill approach to the employee
ranking problem: the definition of a ranking algorithm on networks, able to capture the role of
different kinds of relations and the importance of different skill sets.

Given a person with a set of skills and a neighborhood of friends in a social network, the
skills of the friends to some extent are accessible through that person, and therefore they should
be considered when evaluating her. More formally, each node n in a network has some skills S
each with a given intensity, and it is connected, through different kinds of edges, to other nodes
(n2, n3, . . . ) with their own skill set (S2, S3, . . . ). The real value of node n is then defined by a
function f that takes as input not only S, but also S2, S3, . . . , by accounting for the different
dimensions connecting n to n2, n3, . . . . This idea has been proven in the economic field at the
macro level: in [177] the author proved that the social return of higher skill levels is higher than
the personal return, i.e., higher skilled people make their colleagues to be more valuable as well.

Current ranking algorithms can only provide multiple rankings on monodimensional networks,
or simple rankings in multidimensional networks. Hence, we propose an algorithm whose aim is to
provide multiple rankings (one for each skill) for nodes in a multidimensional network, a network
with multiple types of edges. Our approach is called “you (U) know Because I Know”, or Ubik.
We test Ubik on real world networks, showing that its ranking is less trivial and more flexible than
the current state-of-the-art methods.

1M. Coscia, G. Rossetti, D. Pennacchioli, D. Ceccarelli, and F. Giannotti, “You know because i know: A
multidimensional network approach to human resources problem”, in IEEE/ACM ASONAM, 2013



74 CHAPTER 6. UNDERSTANDING LOCAL STRUCTURES

6.3.1 Network-Based Human Resources

This work aims to tackle the problem of multiple rankings in multidimensional network. Our
problem definition is the following:

Definition 13 Let G = (V,E,D, S) be a multigraph where each node v ∈ V is connected to its
neighbors through multiple edges e ∈ E, each carrying a label d ∈ D; and S be a skill set, such that
each node v is labeled with one or more skills s ∈ S, each with a given weight w ∈ R+. Given a
query q containing a set of skills Sq ⊆ S and the importance r(d)∀d ∈ D, we want to rank nodes
accordingly to the weight of each s ∈ Sq they posses directly or indirectly through their connections.

The intuition behind our idea is the following. Suppose we have a set of people, each with her
own skills and acquaintances, and a task to be performed. In a world without social knowledge
interaction, the best way to perform the task is to assign it to the person, or to a set of people (i.e.,
a team), possessing the highest value of the related skill. However, each person can access to the
external knowledge of their acquaintances, thus possibly modifying her skill set value, and therefore
the decision of the composition of the team. Each person can also access to the acquaintances’
acquaintances skills, but with an increasing cost at each degree of separation, causing at some
point the external skill to be useless.

Now, we need to define the social connections, and their different types. We need to formally
define the skills carried by each individual as the initial state of the system and how the expertise
propagates through social connections.

We model our problem with the multidimensional network model as described in 6.1.
However, we need to add several specification to the standard multidimensional network model

in order to fit it to our problem definition. First, we need to introduce weighted node labels. In
other words, each node v ∈ V is a collection of couples in the form (s, w) where s is the label and
w ∈ R+ is the value of label s for node v. Therefore, v = {(s1, w1), (s2, w2), . . . , (sn, wn)}. The set
of node labels describes what in our data are the skills of the node, along with their value. The
set of all possible skills is fixed for the network, and we refer to it as S.

Moreover, in 8.1, dimensions are considered distinct but equal. In our case, each dimension can
have a different importance: in the real world a friendship tie may be more or less strong than a
working collaboration, given the social environment where this tie may play its role. Therefore, each
dimension d ∈ D is represented not only by its label, but also by a value r(d) ∈ R+, quantifying
how much relevant is a relation expressed in dimension d, according to the query requested.

At this point we have all the building bricks of the static part of our model. Next, we define
how the knowledge exchange dynamics takes place in the model itself, generating the flow that
allows us to rank the nodes in the network. The idea is that each node passes the entire set
of its skills to each one of its neighbors. This procedure is similar to the one employed by the
classical PageRank formulation, but with a few distinctions. First, our method is not based on
random walks, but on the percolation of the various skills without random jumps. Second, the
amount of skill value passed to the neighborhood of a node is not equally divided and assigned to
each neighbors. The amount of value that node u passes to the neighbor v is proportional to the
importance of the dimensions connecting u and v. It is also inversely proportional not only to the
degree of the node passing the skill, but also to the degree of the node receiving the skill. Third,
the knowledge exchange may be or may be not mutual, i.e., we are not narrowing our model only
to directed graphs, but to general graphs.

We use also the range parameter α, commonly used for centrality scores, handling the following
situation. If u and v are connected through a node v2, then the amount of knowledge they exchange
is lower than a direct connection, just like the resistance loss in an electric circuit. If x is the amount
of value passed by a direct connection, the amount of skills received from nodes ` degrees away is
corrected as x

1
`α . Traditionally, directly connected nodes should be at zero degrees of separation,

because no other nodes should be crossed to reach them. For practical purposes, in this paper we
assume ` = 1 for neighboring nodes, as we need to cross one edge to reach them. The introduction
of α is due both to logical and practical reasons. Logically, it makes our model more realistic, as a
person is a gateway of her friends’ skills, thus she is to some extent also a gateway for her friends’



6.3. LINK-BASED OBJECT RANKING 75

8 7

6

9
5

1

1 1

1 2

1 0

3

4

2

Node Skill-Value
1 (a, 115), (b, 0), (c, 0), (d, 0)
2 (a, 100), (b, 0), (c, 0), (d, 0)
3 (a, 100), (b, 0), (c, 0), (d, 0)
4 (a, 100), (b, 0), (c, 0), (d, 0)
5 (a, 100), (b, 0), (c, 0), (d, 0)
6 (a, 0), (b, 0), (c, 0), (d, 80)
7 (a, 0), (b, 90), (c, 20), (d, 0)
8 (a, 0), (b, 20), (c, 90), (d, 0)
9 (a, 100), (b, 0), (c, 0), (d, 0)
10 (a, 100), (b, 0), (c, 0), (d, 0)
11 (a, 100), (b, 0), (c, 0), (d, 0)
12 (a, 100), (b, 0), (c, 0), (d, 0)

(a) (b)

Figure 6.6: Toy example. (a) The multidimensional network structure (each line style represents
a different network dimension; (b) The skill table, recording the values of each skill (a, b, c and d)
for each node.

friends’ skills, but of a much lower importance. Without the α parameter the skill percolation
could potentially continue indefinitely, and the computation may not be able to stop.

In Figure 6.6 we represented a simple toy example. The network structure of social connections
is depicted in Figure 6.6(a), while Figure 6.6(b) is the skill table associated with the structure. From
the skill table we know that all nodes start with some global skill value (not equal for everybody,
as it happens in reality), distributed along four skills (a, b, c and d). The social connections do not
have all the same value: solid line has a 50% efficiency in the knowledge transfer, dashed line has
a 33% efficiency, while the dotted line has only a 17% efficiency. By looking only at the network
structure, node 1 is the most central node. It also has the highest global skill value. According to
the closeness centrality, also nodes 5 and 9 are more central than 6. However, our algorithm will
propagate skills a, b and c to 6 with the maximum efficiency, while 6 will retain also its unique
d skill. At the end of the process, node 6 ends up as the most valuable node in general in the
network, while node 1 can only specialize in skill a. With relaxed values for the α parameter (like

α = 1) node 1 can still get some parts of skill d (
√

1
6

1
280 from node 5 and

√
1
6

1
380 from node 9,

that is ∼ 4.69017) and even less of b and c. If α = 3 then the contributions to node 1 of skills
different from a is negligible.

The Data

Our model is describing, according to our hypothesis, how knowledge flows in a face-to-face social
environment, following the proven macro level mechanism of the social effect of schooling [177].
However, the data about the face-to-face interactions are usually part of the tacit realm of knowl-
edge. If we cannot find direct or proxy data sources about these interactions, any algorithm solving
the problem of evaluating people on the basis of our hypothesis is practically useless. In this sec-
tion, we present how we use two real-world datasets, adapting them to our model and problem
definition, and providing an interpretation of the knowledge that our model can unveil. Of course
in both cases we are in front of an approximation. Table 6.2 provides the general statistics about
the extracted networks for each dataset.

DBLP2 is an online bibliography containing information about scientific publications in the field
of computer science. Using the data from this dataset, our problem definition may be adapted as
follows: we want to evaluate the actual knowledge possessed by scientific authors in different topics

2http://www.dblp.org/db/

http://www.dblp.org/db/
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Network |V | |E| |D| |S| |Dr|
DBLPR 38 942 100 983 16 50 1 187
EnronN 5 913 49 058 7 8 0

Table 6.2: The statistics of the extracted networks.

and sub-topics, focusing on different branches of their disciplines. Being our aim to rank authors,
they should be the nodes of our network. The link is the co-authorship relation: two authors are
connected if they have written together a paper. The dimension of the connection should represent
the “quality” of their relation, in this case the venue where the publication appeared (we chose 16
top-tier conferences in computer science, including VLDB, SIGKDD, CIKM, ACL, SIGGRAPH
and others). The set of skills should describe the expertise of the author, therefore we chose to
represent them as the keywords used in their publications. We eliminated stop-words, we applied
a stemming algorithm [178] on the remaining words and then we selected the 50 most commonly
used keywords in a paper title. The number of times author u used the keyword s is used to
evaluate how much the author considers himself an expert over s, i.e., it is used as its w value for
s.

The Enron dataset3 is a collection of publicly available emails exchanged by the employees
of the eponymous energy company, distributed after the well known bankruptcy case. We are
interested in ranking the employees, that are the nodes of our network. With this network we are
able to unveil who are the real knowledge gateways in an organization, by looking at the internal
communication even in the absence of more structured social information. Therefore, to apply our
algorithm is not necessary for an organization to actually create a social media platform for their
employees (or to download information from other social media). We took only the email addresses
ending with “@enron.com”. We connected two employees if they wrote to each other at least once.
Then we used as dimensions the day of the week when the communication took place (ending up
with seven dimensions from Monday to Sunday). For the set of skills, we considered the 8 most
used keywords in the subject field of the emails (again eliminating stop-words and stemming the
remaining words and directly evaluating the relation between an employee and the keyword by the
number of times she used the word in an email subject).

6.3.2 The Ubik Algorithm

Given all the necessary premises, we can now discuss the implementation details of our algorithm.
We called it Ubik (“you (U) know Because I Know”). Ubik requires the following input: a network
G = (V,E,D, S) with the characteristics previously discussed; a range parameter α regulating how
much information is lost after each degree of separation; and a set specifying, for each d ∈ D, what
is the relevance r(d) of d (defined by the analyst accordingly to the ranking aims).

Aim of Ubik is to update ∀s ∈ S and ∀u ∈ V the value w, i.e., how much node u possesses of
skill s. The pseudocode of Ubik is Algorithm 1. Ubik cycles for each node, using the following
master equation:

f(u, s) =
∑
d∈D

∑
v∈N(u,d)

(f(v, s)× r(d))
1
`α

|N(u)|+ |N(v)|
(6.10)

whereN(u, d) is a function returning all the neighbors of u that are reachable through dimension
d (if a dimension is not specified, it returns the entire neighborhood). Notice that the contribution
of each d is different, corrected with the value r(d), i.e., the relevance of dimension d. Also note
that, at the first iteration, f(v, s) (i.e., how much node v possesses of skills s) is equal to just the
weight wv,s, but at the second iteration it will be updated with the master equation.

One important caveat must be discussed about the ` parameter. In the model discussion we
said that ` represent the degrees of separation of the nodes u and v, exchanging their skill values.

3http://www.cs.cmu.edu/~enron/

http://www.cs.cmu.edu/~enron/
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Algorithm 1 The pseudo-code of Ubik.

Require: G = (V,E,D, S);α ∈ [0 . . .∞]; r(D)
Ensure: Node set V with updated skill values.

1: `← 1
2: while ` < δ do
3: for all u ∈ V do
4: for all v ∈ N(u) do
5: for all s ∈ S do

6: w′u,s ← wu,s +
∑
d∈D

(f(v,s)×r(d))
1
`α

|N(u)|+|N(v)|
7: end for
8: end for
9: end for

10: UPDATE(V, u′(s))
11: `← `+ 1
12: end while
13: NORMALIZE(V )
14: return V

Therefore, the exact implementation of our model would require to scan for each u each node of the
network, calculate the shortest path between the two, and then update the contribution accordingly
to the ` value. However, this implementation is inefficient, as it is an equivalent of finding all the
shortest paths in the network (that is a cubic problem in terms of the number of nodes, or O(|V |3)
[179]) and then apply our calculation. Instead, Algorithm 1 provides an approximation of the
result. The approximation reduces the main loop time complexity as linear in terms of number of
edges, usually approximated as |V | log |V |.

We set ` = 1 and we apply the master function to every node and every skill. Then, we increase
` by 1 and we apply the master function again, using not the original skill values of nodes, but
the ones updated at the first iteration. In this way, all the neighbors of u are passing to u also the
skills that they have inherited from their neighbors. We avoid to pass back to u the skills that u
itself passed to its neighbors at the previous iteration. At the n-th iteration, the neighbors of u
pass to u the skill values obtained by the nodes n− 1 degrees away.

The stop criterion is dependent on the ` value. On average, nodes that are beyond three or four
degrees of separation cannot influence significantly the skills accessible from one node. Therefore,
in Algorithm 1, at step 2 we stop if ` ≥ δ, with 3 ≤ δ ≤ 6, dependent on the application.

When we calculate the new skill values at step 6, we store the result in a temporal variable for
each node. Then, we apply the UPDATE function at step 10 to update the value of skill s for
node u in the node set V . Each element of the master equation is either fixed (α, D, r(d), N(u)
and N(v) are always the same) or it only depends on the previous iteration (`, u(s) and v(s)).
By forcing this condition, Ubik becomes order-independent: the computed value of each u(s) at
a particular iteration is always the same, regardless if u was considered as the first node of the
iteration or as the last.

The NORMALIZE function at step 13 scales for each skill the values obtained for each node
in the [0, 1] interval. Moreover, it combines all the skill values in a general network ranking. The
general value of node u is evaluated by simply extending the u(s) function in the following way:
u(∗) =

∑
s∈S u(s), where ∗ symbolizes the sum of all s1, s2, . . . , sn ∈ S. This function is run at the

end of the main Ubik loop and does not add any complexity to it.

Time Complexity

Algorithm 1 has five nested loops. From the inner to the outer, they cycle over: the set of
dimensions (the sum at step 6), the set of skills (step 5), the neighbors of a node (step 4), the
nodes of the network (step 3) and until the ` < δ. Since cycling over the nodes and their neighbors
(steps 3-4) is equivalent to cycle twice over the edges, the complexity of those two loops is O(|E|).
Steps 5-6 have complexity of O(|S|), while the outer loop generally terminates after very few
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Figure 6.7: Running times in milliseconds for different random networks with given number of
edges, dimensions or skills.

iterations: in real world networks, usually δ = log |V |. The final estimate for the time complexity
is then O(log |V | × |E| × |S|). We also report that usually for real world networks, the number
of skills and dimensions (both in the order of 101 or 102) is usually much lower than the number
of edges (usually ranging from 105 to 108 and more), making the average case complexity in the
order of Θ(log |V | × |E|).

Experiments

We tested our Java implementation of Ubik4, on a Dual Core Intel i7 64 bits @ 2.8 GHz, 8 GB
of RAM and a kernel Linux 3.2.0-23-generic, using as virtual machine the Java OpenJDK version
1.6.0 24. Our implementation took on average 22 seconds on DBLP and less than 2 seconds on
Enron. Our networks are small in scale, thus we created some benchmark networks to show how
Ubik scales in terms of number of nodes, average degree, dimensions and skills. The results are
depicted in Figures 8.4(a) and 8.4(b).

First, we fixed the number of dimensions and of skills at 5. Then for the “Increasing Nodes”
series we fixed the average degree at 3 and we increased the number of nodes; while for the
“Increased AVG Degree” series we fixed the number of nodes at 50k and we increased the average
degree of the nodes. Both techniques increase the number of edges: Ubik is able to scale linearly
in this dimension. Ubik is able to analyze a network with 455k nodes and 1.3M total edges over
all dimensions in less than a minute and a half, or with 50k nodes and the same number of edges in
less than 40 seconds. The difference in the linear slope between the two is given by the increasing
of both nodes and edges. We can conclude that Ubik is scalable and applicable to large scale
networks, as it is linear on the number of edges. In Figure 8.4(b) we fixed the number of nodes
at 25,000 and the average degree at 3. Then for the “Increasing Dimensions” series we increased
the number of dimensions from 1 to 40, while for the series “Increasing Skills” we increased the
number of skills from 1 to 40. Our implementation, paying a preprocessing phase, is independent
from the number of dimensions, the runtime increases linearly with the number of skills5.

We now proceed to evaluate the results of Ubik, comparing its results with some of the state-
of-the-art node rank approaches and presenting some knowledge extraction examples from real
world networks.

4Freely available with our test datasets at http://www.michelecoscia.com/?page_id=480
5To assure repeatability, also the random network generator is provided at the same page of the algorithm and

the networks

http://www.michelecoscia.com/?page_id=480


6.3. LINK-BASED OBJECT RANKING 79

 0

 200

 400

 600

 800

 1000
 0 200 400 600 800 1000

D
e

g
re

e
 R

a
n

k

Algorithm Rank

(a) Ubik.

 0

 200

 400

 600

 800

 1000
 0 200 400 600 800 1000

D
e

g
re

e
 R

a
n

k

Algorithm Rank

(b) PageRank.

 0

 200

 400

 600

 800

 1000
 0 200 400 600 800 1000

D
e

g
re

e
 R

a
n

k

Algorithm Rank

(c) TOPHISTS.

Figure 6.8: The q-q plots of various ranking algorithms against the ranking obtained ordering the
nodes by degree.

Comparison with other methods

We compare the rankings provided by Ubik with some state-of-the-art algorithms. The algorithms
used for comparison are the Personalized PageRank [90] and TOPHISTS, a tensor eigenvector-
based approach to ranking. Personalized PageRank is implemented in the R statistical software,
TOPHISTS is part of the Tensor Toolbox for MatLab [94], freely available for download6. For
our comparison, we used the DBLP network.

We used Ubik without giving to any dimension any particular value of r(d) and we took the
global ranking of the nodes without selecting any particular skill. In this way, the comparison
with PageRank and TOPHISTS is fair, because we are evaluating the general rank of our nodes
without using anything else than the network structure, that both the Personalized PageRank
and TOPHISTS can handle. Also, we set α = 2 and δ = 6.

The task of confronting different ranking methods is not easy, as it is not explicit why a ranked
list is better than a different one on absolute terms. However, there are several properties that we
would like to have in the results of a ranking algorithm. We evaluate the results of the algorithm
based on quantitative tests on the following properties:

1. Ranking results should not be trivial: if the results are highly correlated with a trivial ranking
method, then the algorithm is not telling us something interesting.

2. Ranking results should not be trivially boosted: if there is a simple mechanism to increase
one’s rank, the flaw of the algorithm makes its results less important.

3. Given a gold standard calculated in an independent way, a ranking algorithm is good if it is
quantitatively similar, to some extend, to the gold standard.

Let us start from the first element of the list. One of the most trivial criterion for ranking
nodes in a network is to check their degree: the more edges are connected to a node, the more
important it is. Of course, this ranking method is not optimal, as it takes only an artificial creation
of many edges centered on a node to obtain the maximum rank (as it happens in the World Wide
Web). Therefore, the most similar to the degree ranking are the results of the algorithm, the less
interesting they are. This is only the first test to be satisfied, but it is necessary to satisfy also the
other two. For example, a ranking method that uses the inverse of the degree to rank node will
pass this test, as it anti-correlates with the trivial degree ranking method, but it will not satisfy
the other two conditions.

Figure 6.8 depicts the q-q plots of Ubik, PageRank and TOPHISTS against the degree
ranking for the 1,000 nodes with highest degree. Each point x(i, j) of a q-q plot corresponds

6http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.5.html

http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.5.html
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R Degree PageRank Ubik
1 Jiawei Han Jiawei Han Philip S. Yu
2 Philip S. Yu Philip S. Yu Jiawei Han
3 Christos Faloutsos Christos Faloutsos Qiang Yang
4 Qiang Yang Qiang Yang Hans-Peter Kriegel
5 Divesh Srivastava Divesh Srivastava Gerhard Weikum
6 Zheng Chen Jian Pei Divesh Srivastava
7 Jian Pei Zheng Chen Zheng Chen
8 Raghu Ramakrishnan Hector Garcia-Molina Elke A. Rundensteiner
9 Beng Chin Ooi Beng Chin Ooi C. Lee Giles

10 Hector Garcia-Molina Gerhard Weikum Christos Faloutsos
11 Haixun Wang Raghu Ramakrishnan Wei-Ying Ma
12 Wei-Ying Ma Haixun Wang Yong Yu
13 Gerhard Weikum Wei-Ying Ma Tao Li
14 Michael J. Carey Michael Stonebraker Ming-Syan Chen
15 Jeffrey Xu Yu Rakesh Agrawal Jian Pei

Table 6.3: The top 15 researchers according to different ranking criteria.

Algorithm (1) (2) (3) (4) (5)
Ubik 0.0204 1% 1.2% 4% 5.5%
PageRank 0.0166 0% 0.8% 2% 5.3%
TOPHISTS 0.0857 39% 33.6% 34.8% 37.5%

Table 6.4: The share of high clustering nodes in the top rankings per algorithm.

to some node x. The coordinates of the point (i, j) mean that the node is ranked at the i-th
position by the first algorithm (x-axis) and at the j-th position by the second algorithm (y-axis).
In Figure 6.8, the y axis is the degree rank, while on the x axis we have Ubik (Figure 6.8a),
PageRank (Figure 6.8b) and TOPHISTS (Figure 6.8c). The interpretation of the picture is
clear: especially for the 300 highest ranked nodes, having a high degree implies having a high
PageRank, while this consideration does not hold for Ubik and TOPHISTS results. We also
report the top 15 researchers in Table 6.3 for Ubik and PageRank (TOPHISTS was omitted
since the interesting confront of the table is with the PageRank algorithm, as TOPHISTS does
not show the rank-degree correlation). Again, we can easily see the correlation between the Degree
and the PageRank column. The rank-degree correlation for PageRank is not our finding, as
it has already been studied in literature [180]. In practice, the logic of the degree centrality is
“The more collaborators a researcher has, the more important he is”. Both PageRank and Ubik
modify this philosophy in “The more important collaborators a researcher has, the more important
he is”. However the “important” in PageRank is still a quantitative measure on the number of
collaborations, while Ubik uses more qualitative information. For the first criterion, we conclude
that Ubik rankings are less trivial than the ones returned by PageRank.

So far we have shown the main defect of PageRank, i.e., it provides a trivial ranking. What
is the main defect of TOPHISTS? In literature, it is studied as the Tightly-Knit Community
(TKC) effect: being the TOPHISTS rank self-enforced through eigenvector calculation, if we
highly clustered nodes in the network, it may happen that all members of this group are ranked
high by TOPHISTS, even though the nodes are not particularly central. This is the second point
we want to prove: Ubik rankings are not prone to these easily applicable ranking boost strategies.

Table 6.4 reports the share of high clustering nodes for the top k ranked nodes, accordingly to
Ubik, PageRank and TOPHISTS. The column (2) reports the percentage of nodes in the top
100 ranked by the algorithm that have a local clustering k > .1, the column (3) reports the same
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App. Search Stream Obj. Analysis Sys. User Model Network Context
P. S. Yu 1 3 4 7 4 7 5 6 2 6
J. Han 5 1 3 5 3 6 4 3 3 4
Q. Yang 11 15 1 13 5 14 8 18 7 10
H-P. Kriegel 3 2 5 1 7 12 6 10 16 2
G. Weikum 7 9 15 2 1 17 2 11 5 5
D. Srivastava 18 5 24 21 11 1 12 2 11 7
Z. Chen 17 17 2 20 6 22 1 14 20 17
Rundensteiner 2 7 11 14 9 15 14 1 8 11
C. Lee Giles 14 16 16 16 10 19 7 23 1 14
C. Faloutsos 21 6 34 30 15 28 15 20 30 1

Table 6.5: The top 10 researchers according to the general Ubik ranking and their rank for 10
different skills.

statistic for the top 250 nodes, and so on. The local clustering k(i) of a node i is defined as:

k(i) =
2|{(u, v) | u, v ∈ N(i) ∧ (u, v) ∈ E}|

|N(i)| × (|N(i)| − 1)
(6.11)

(note that we calculate the monodimensional clustering, without specifying a d for N(i)). We
can see that both Ubik and PageRank tend not to return high ranks for nodes with a high local
clustering value. On the other hand, in the TOPHISTS ranks 39 nodes out of the most important
100 have high clustering values. Table 6.4 also reports the average local clustering value for the top
ranked 100 nodes in column (1) and again this value is > 4× higher for TOPHISTS. We conclude
that both Ubik and PageRank are not affected by the TKC, and that Ubik is the only example
that is not dependent both on degree and local clustering.

Let us now address the third important feature that a ranking algorithm should have: the
comparison with a quantitative gold standard. In scientific publishing, a useful indicator about
the quality and the impact of a researcher is quantified using several different indexes. One of
them, the h-index, measures both the amount of publications and citations of an author, and it is
logically not related to the co-authorship network. A researcher has an h-index of h if he has at
least h publications cited at least h times. We use the h-index as our ground truth.

For this comparison we could use a q-q plot, but we need a more quantitative and objective
measure than simply looking at the plot. Therefore, we follow [89] and we use a function computing
the distance of the points in a q-q plot from the line y = x that represent identical rankings. The

distance of point (i, j) from the line y = x is equal to |i−j|√
2

. Thus, the distance measure D of two

rankings r1 and r2 is:

D(r1, r2) =
1

|V |
∑
∀v∈V

|r1(v)− r2(v)|
|V |

(6.12)

where rx(v) is the rank of v according to the ranking rx.
We calculate this function for Ubik, PageRank and TOPHISTS against h-index ranking.

We obtained the h-index values from an updated webpage who is collecting data from Google
Scholar7. From that list, we removed the authors that have not published a single paper in the set
of conferences with which we have built our multidimensional network, because they are not part of
the network structure at all. Ubik’s ranking is closer to the ground truth, computed independently
from the network structure, provided by the h-index ranking, with a score of 22.43. Therefore, not
only Ubik is not affected by the biases of PageRank and TOPHISTS, but it also yields results
closer to an independent ground truth, as they scored 23.50 and 37.54 respectively. We can now
take a look to the actual multi-skill and multidimensional rankings provided by the algorithm,

7http://www.cs.ucla.edu/~palsberg/h-number.html

http://www.cs.ucla.edu/~palsberg/h-number.html
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Employee Weekday Rank Weekend Rank
Victor Lamadrid 1 34
Jeff Dasovich 2 4
Lisa Jacobson 3 39
Michael Kass 4 2
Joannie Williamson 5 37
Bob Ambrocik 6 68
Chris Germany 7 8
Kay Chapman 8 27
Tana Jones 9 23
Drew Fossum 10 18
Forrest Lane 238 1
Jennifer Blevins 1760 3
Shubh Shrivastava 857 5
Kay Mann 14 6
Scott Neal 50 7
Vince Kaminski 18 9
Rosalee Fleming 21 10

Table 6.6: The top 10 employees according to the Ubik for the weekday and the weekend variants
of the ranking.

as the comparison section is over and we can use the features, not handled by PageRank nor
TOPHISTS.

Multiskill Rankings

We now report some rankings extracted with Ubik. We already saw in Table 6.3 the top 15
researcher setting no particular dimension weight (i.e., r(d) is equal for all d ∈ D). However, now
we want to take advantage of the fact that Ubik is able to return different rankings for each skill.
In Table 6.5 we report the list of researchers who can master some skills, and their ranking for the
other skills. As we can see, no researcher dominates over all the skills, and the different rankings
can enlighten us about different leaders in different sectors. We remind that we took only authors
of a very specific set of conferences, thus a possible specialist in one or more reported skills may
not be part of the rankings because she never published in one of the selected conferences. Also,
the skill name is the substantive of the stemmed form, thus it includes all the possible declination
of the term (e.g., “Stream”, “Streaming”, “Streamed”, and so on).

Ubik is able to customize the ranking even further, in an additional degree of freedom. Instead
of looking at some skills taken separately, we can populate our set of dimension relevance functions
with different importance r(d) values for different dimensions. A proper definition of the dimension
importance set results in a very specific ranking analysis. To show this feature, we decide to create
two different definition classes for the Enron network. We recall that in the Enron network each
dimension is the day in the week when the email was sent. In the first variant, we populate our set
of rules with a 10× multiplier for the dimensions of Saturday and Sunday; in the second variant we
apply the same 10× multiplier, but this time to each of the weekday, and nothing to the weekend
days. The choice of the 10× multiplier is ad hoc, to represent a query that focuses on the relations
established mainly during weekdays (first case) or during weekends (second case).

Table 6.6 reports the top 10 employees according to both criteria (please note that some em-
ployees are part of both top 10 and they are not repeated). As we can see, the two rankings are
quite distinct. There are three employees very important in both criteria (Jeff Dasovich, Michael
Kass and Chris Germany). We also observe one expected phenomenon: the important employees
during the weekdays are also somewhat important during the weekends, while the vice versa is
not true. It is expected that important employees receive emails during the entire week, while the
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Author ACL CIKM ICDE KDD GRAPH VLDB WWW
D. Marcu 1 3893 3511 2606 2309 1608 3327
Boughanem 2768 1 3892 2966 2643 1946 3658
T. Ichikawa 3070 4549 1 3266 2982 2260 3994
Nakhaeizadeh 2606 4036 3709 1 2484 1783 3507
D. Salesin 2101 3538 3149 2304 1 1300 2980
P. Dubey 3093 4570 4198 3274 2988 1 3999
J. Nieh 2976 4453 4134 3185 2865 2158 1
P. S. Yu 574 32 27 10 860 10 684
J. Han 689 106 60 12 999 29 708
Q. Yang 933 634 967 384 1258 232 930
H-P. Kriegel 1024 517 66 330 1304 146 1476
G. Weikum 1100 472 91 888 1348 51 1355

Table 6.7: The top authors for some conferences (taken singularly) comparative rankings.

communications during the weekend may follow a different logic and promote unexpectedly low
ranked employees (maybe because they perform a weekend shift or due to particular emergencies
outside office hours).

The most notorious elements of the top management of Enron are not present in either rankings.
Kenneth Lay is ranked 617th in weekdays and 224th in weekends, while Jeffrey Skilling is ranked
725th in weekdays and 458th in weekends. Joannie Williamson, who worked as a secretary for
both of them8, is instead present in Table 6.6, and highly ranked. This is an expected result of
Ubik, able to unveil who is a knowledge gateway in an organization.

The same multidimensional ranking can be done for the DBLP network. In this case, we are
able to spot the collaboration hubs in several different conferences. We applied the 10× multiplier
to a collection of conferences. The results for some of our conferences are provided in Table 6.7,
where for each conference we record the top ranked author and then we report also his ranking for
the other conferences. We can see that Ubik is able to identify specialists who are highly ranked
only in one conference. On the other hand, as expected, the top authors in the general ranking
score average high rank in all conference, but they are rarely in the top 10 of a specific conference,
as their impact is more broad and it spreads over many different venues (the bottom rows of Table
6.7 records the ranking for each single conference for the top 5 general authors in the network
taken without any dimension multiplier).

Discussion

In this work we addressed the human resources problem: the ranking of employees according to
their skills. We did so following an intuition about the intellectual value of a person: her evaluation
should not be based only on her set of skills, but also on her friends’ set of skills. We created an
algorithm, Ubik, to tackle this problem: Ubik is able to rank nodes in a multidimensional network,
with weighted labels referring to their set of skills. We applied Ubik to two real world networks,
confronting its output with popular ranking algorithms, showing that our results are less trivial
and more significant.

The proposed methodology opens the way to a number of future works. First we can extend
Ubik to rank also the relations. Ubik can be applied to several different datasets with different
semantics and properties, from Linkedin9 to evaluate people’s expertise; to networks of interna-
tional organizations, to detect the most important organizations given a set of topics. Moreover,
our approach can be easily extended to make use of temporal information attached to nodes and
edges in order to design time-aware ranking queries whose results better capture the real values of
individual connections.

8http://money.cnn.com/2006/04/03/news/newsmakers/enron_defense/index.htm
9http://www.linkedin.com

http://money.cnn.com/2006/04/03/news/newsmakers/enron_defense/index.htm
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Chapter 7

Understanding Topologies

Every successful individual knows that his
or her achievement depends on a
community of persons working together.

— Paul Ryan

Moving from the individual/structural studies proposed in the previous chapters here we discuss
one of the most interesting problems related to the analysis of network topologies: Community
Discovery. In order to being able to extract and describe communities of social nature, in 7.1 we
propose a novel algorithm, Demon, able to unveil the modular organization of complex networks
following a bottom-up approach. We will discuss two variants of the proposed algorithm tailored
to produce both overlapping and hierarchical communities.
Moreover, in 7.2 we highlight how, on real world social networks, exploiting the knowledge extracted
from communities and ego-networks we are able to gain high performances when approaching
the Network Quantification problem. Particularly, we will show that ego-networks and Demon
communities are able to bound homophily of social circles providing valuable insights on the users
belonging to them. Later on in 7.3 we will show how this property can be used to classify the level
of product engagement of the users of a famous VOIP (Voice Over IP) platform: Skype.
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7.1 The Modular Organization of a Network1

Complex network analysis has emerged as one of the most exciting domains of data analysis and
mining over the last decade. One of its most prolific sub fields is community discovery, or CD in
short. The concept of a “community” in a (web, social, or informational) network is intuitively
understood as a set of entities that have some latent factors in common with each other, and thus
play a specific role in the overall function of the complex system [105]. The traditional approach
assumes that latent factors drive network connectivity, thus finding sets of nodes with a high edge
density among each other and low edge density with the rest of the network effectively detects
the functional modules of the network. Community discovery is then a network variant of data
clustering, where proximity is replaced with edge connectivity.

(a) A global view of the Facebook
graph from 15k users.

(b) The “ego minus ego” network of one
Facebook user among the 15k.

Figure 7.1: The real world example of the “local vs global” structure intuition.

The classical problem definition of community discovery assumes that each node plays a single
role in the network. This is easily understood by looking at examples of limited size, where it is
likely that this assumption is true, as the phenomenon represented is likely to be properly isolated.
In this case, the denser areas are easily identifiable by visual inspection. The problem becomes
much harder for medium and large scale networks, where many different phenomena are at play
at the same time, tangled the one with another. At the global level, very little can be said about
the modular structure of most networks: on larger scales the organization of the system becomes
simply too complex. As an example, the friendship graph of Facebook includes more than 1.32
billion monthly active users as of August 20142. But even on a tiny fragment of the Facebook
friendship graph to assume that there is only a handful of disjoint latent factors at play is naive.
In Figure 7.1(a), we depicted the connections among 15 000 nodes, i.e., less than 0.00002% of
the total network. Even in this small subset of the network, the friendship dynamics are too
interconnected and there is simply no global level organization. In cases like this, the traditional
community discovery assumption of a global level disjoint partition tends to return not meaningful
communities. The typical aim is to cluster the whole structure and return some huge communities
and a long list of small branches (see [105]).

However, as we noted, the structure of cohesive groups of nodes emerge easily considering a
local fragment of an otherwise big network. The key lies in the fact that in a local view there
are few latent factors included and they are usually disjoint one from the other. To use a social

1M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi, “Uncovering hierarchical and overlapping communities
with a local-first approach”, ACM TKDD, 2014

2http://investor.fb.com/releasedetail.cfm?ReleaseID=861599



7.1. THE MODULAR ORGANIZATION OF A NETWORK 87

metaphor, common sense goes that people are good at identifying the reasons why they know the
people they know. In network terms, each node has presumably an incomplete, yet clear, vision of
the communities it is part of. Being a bearer of a collection of latent factors, that we represent as
labels, he connects to its neighborhood to the nodes bearing the same labels. Then, we can exploit
this idea for the CD problem, as illustrated by Figure 7.1(b). Here, we chose one of the 15k nodes
from the previous example and extracted what we call its “ego minus ego” network, i.e. its ego
network in which the ego node has been removed, together with all its attached edges. Here, it is
clear which nodes share which factor, or label, around the ego. Some of these factors are the high
school and university friends of the ego, mates from different workplaces and the members of an
online community (We know all these details because the chosen ego is one of the authors of this
work). The ego carries all these labels and knows which subsets of its neighborhood carry one, or
more, of these labels too.

Different egos will detect different labels over the same neighbors. The union of all these
perspectives, or a hierarchical view in which communities with common labels can be merged
together at different aggregation levels, creates an optimal detection of the latent factors of the
network. In other words: if node A and node B are considered in the same communities by all the
nodes connected to both A and B, then they should be grouped in the same community, because
all nodes agree that A and B share the same factors, or labels. If they are considered in the same
communities by most or many nodes connected to them, then they are probably part of a higher
level super community. This is achieved using a democratic bottom-up mining approach: in turn,
each node detects the labels attached to the neighbors surrounding it and then all the different
perspectives are merged together in an overlapping structure. This overlapping structure can be
view as just a flat community coverage, or it can be merged together in a hierarchical fashion.

In the vast CD literature, the general approach does not consider nodes as bearers of different
label. The modular structure of a network is usually detected with a (greedy) algorithm, optimizing
different quality functions and then returning a set of communities extracted from the global
structure. This approach generally ignores the networks latent factors and just operates on the
edges of the network without any assumption on why they are distributed as they are. Instead,
we propose a change of mentality, in which we make assumptions about the edge distribution and
we use these assumptions as drivers of the community discovery process. We propose a simple
local-first approach to community discovery in complex networks by letting the latent factors of
the organization of a network emerge from local patterns.

Essentially, we adopt a democratic approach to the discovery of communities in complex net-
works. We ask each node to identify the labels it shares with different groups of nodes present
in its local view of the network. For this reason, we chose to name our algorithm Democratic
Estimate of the Modular Organization of a Network, or Demon in short.
In practice, we extract the ego network of each node and apply a Label Propagation CD algorithm
[120] on this structure, ignoring the presence of the ego itself, whose labels will be evaluated by its
peers neighbors. We then combine, with equity, the vote of everyone in the network. The result of
this combination is a set of (overlapping) modules, our latent factors, detected not by a top-down
approach, but by the actors of the network itself. We then either stop the process here, or we
consider again a community as a collection of labels, the ones carried by the nodes composing
it, connected to other communities by the nodes shared with them, that are the common labels
between them. In this way, there is no logical distinction between a community and a node, and
therefore we can then reapply the same process and obtain an additional level of the community
hierarchy. We repeat the process for each hierarchy level until we collapse the entire network in a
set of disconnected communities.

As an alternative example (w.r.t. a social context) to better visualize how our algorithm works,
we can imagine to analyze a product network: nodes representing products from a supermarket
and edges connecting nodes who share product categories. In the first step, Demon identifies the
micro communities to which a specific product belongs: those are sets of other products sharing,
for instance, one or more specific types/categories (fruits, meats, vegetables, gloves, shirts. . . ),
while, in the second step, such sets are merged to identify higher-level category definitions (i.e.,
food, clothing. . . ).
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Our democratic algorithm is incremental, allowing to recompute the communities only for
the newly incoming nodes and edges in an evolving network. Nevertheless, Demon has also a low
theoretical linear time complexity. The main core of our method has also the interesting property of
being easily parallelizable, since only the ego network information is needed to perform independent
computations, and it can be easily combined in a MapReduce framework [181]; although the post-
process FlatOverlap procedure is not trivially solvable in a MapReduce framework. The properties
of Demon support its use in massive real world scenarios.

Moreover, in the following we will provide an extensive empirical validation of Demon. In
our experimental setting, we are interested in establishing a link between the communities found
by Demon and the real world knowledge about the labels attached to the nodes. Intuitively,
the two should correspond. This is the primary focused objective of Demon, and we leave other
problem definitions to other CD algorithms. First, we test the performance of the algorithms
in an established benchmark setting [182], able to generate directed and weighted networks with
overlapping communities. Second, we confront the performance with real world networks. In this
setting, we make use of a multi label predictor fed with the extracted communities as input, with
the aim of correctly classifying the metadata attached to the nodes in real life. Our datasets include
the international store Amazon, the database of collaborations in movie industry IMDb, and the
register of the activities of the US Congress GovTrack.us. Finally, we provide our latent factor
based explanation about why social networks include overlapping communities and why Demon
is good in finding them.

7.1.1 The Demon Algorithm

In this work, our final goal is to find communities in complex networks. Usually, there is some
ambiguity connected to the concept of “community” in a complex network [105]. To solve it, we
use the latent labels of the nodes as drivers of the community discovery process. In complex and
semantically rich settings (such as the modern Web, social networks or other kinds of complex
networks), nodes are complex entities carrying multiple attributes that can make them part of
different communities for different reasons. In our problem representation, these attributes are
represented by the latent labels. We then need to extend the community discovery problem defi-
nition to be able to detect them.

Firstly, we define two basic graph operations. The first one is the Ego Network extraction EN .
Given a graph G and a node v ∈ V , EN(v,G) is the subgraph G′(V ′, E′), where V ′ is the set
containing v and all its neighbors in E, and E′ is the subset of E containing all the edges (u, v)
where u, v ∈ V ′. The second operation is the Graph-Vertex Difference −g: −g(v,G) will result
in a copy of G without the vertex v and all edges attached to v. The combination of these two
functions yields the EgoMinusEgo function:

EgoMinusEgo(v,G) = −g(v,EN(v,G)) (7.1)

Given a graph G and a node v ∈ V , the set of local communities C(v) of node v is a set of
(possibly overlapping) subsets of nodes in EgoMinusEgo(v,G). Each set C ∈ C(v) is grouped
according to common latent labels. Each node in C shares more common latent labels with other
nodes in C, more than with any other node in C ′ ∈ C(v), with C 6= C ′.

There are two different ways to go from local communities to global communities, bringing to-
gether an overlapping community coverage with a hierarchical community structure. These two
properties have for long been thought as mutually exclusive, but recent approaches proved this
assumption wrong [115].

The first is merging the overlapping communities according to the amount of common latent
labels they contain, represented by the fact that they share many nodes. In this scenario, we define
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Algorithm 2 The pseudo-code of Demon algorithm.

Require: G : (V,E); C = ∅; µ=0
Ensure: set of overlapping communities C
1: for all v ∈ V do
2: e← EgoMinusEgo(v,G)
3: if |e| > µ then
4: C(v)← LabelPropagation(e)
5: for all C ∈ C(v) do
6: C ← C ∪ v
7: end for
8: end if
9: end for

10: return C

the set of communities of a graph G as:

C = Max(
⋃
v∈V
C(v)) (7.2)

where, given a set of sets S, Max(S) denotes the subset of S formed by its maximal sets only;
namely, every set S ∈ S such that there is no other set S′ ∈ S with S ⊂ S′. In other words,
by equation (7.2) we generalize from local to global communities by selecting the maximal local
communities that cover the entire collection of local communities, each found in the EgoMinusEgo
network of each individual node.

In the second approach we recursively apply our logic by seeing the communities as “super
nodes” in the network. Just like the nodes, also the communities are collections of latent labels.
Therefore, they can be clustered together according to the labels they share. In this approach, the
first level of the hierarchy is the set of all C(v). Then, all communities in C(v) are collapsed in
a single node. Edges are set between the collapsed communities if the two original communities
shared at least one node, weighted proportionally to the number of shared nodes. On this new
graph structure, the community discovery is applied again. The procedure is repeated recursively
until we find a set of disconnected communities.

The Core of the Algorithm

The set of discovered communities C is initially empty. The external (explicit) loop of Demon
cycles over each individual node, and it is necessary to generate all the possible points of view of
the structure and get a complete coverage of the network itself. For each node v, we apply the
EgoMinusEgo(v,G) operation, obtaining a graph e. We cannot apply simply the ego network
extraction EN(v,G) because the ego node v is directly linked to all nodes ∈ EN(v,G). This would
lead to noise in the subsequent steps of Demon , since by our definition of local community the
nodes would be put in the same community if they are close to each other. Obviously a single
node connecting the entire sub-graph will make all nodes very close, even if they are not in the
same community. For this reason, we remove the ego from its own ego network. Moreover, we test
if the number of nodes within the EgoMinusEgo is greater than a threshold whose value is fixed
as input by the user. The µ plays the role of a filter: it can be used to speedup the community
extraction process when dealing with massive graphs. For the sake of our analysis in this work we
will consider it fixed to 0.

Once we have the e graph, the next step is to compute the communities contained in e. We
chose to perform this step by using a community discovery algorithm borrowed from the literature.
Our choice fell on the Label Propagation (LP) algorithm [120]. This choice has been made for the
following reasons:

1. LP shares with this work the definition of what is a community;
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Figure 7.2: A simple simulation of the Label Propagation process for community discovery.

2. LP is known as the least complex algorithm in the literature, reaching a quasi-linear time
complexity in terms of nodes;

3. LP will return results of a quality comparable to more complex algorithms [105].

Reason #2 is particularly important, since Step #3 of our pseudo code needs to be performed
once for every node of the network. It is unacceptable to spend a super-linear time for each node
at this stage, if we want to scale up to millions of nodes and hundreds of millions edges. Given the
linear complexity of Step #3, we refer to this as the internal (implicit) loop for finding the local
communities.

We briefly describe in more detail the LP algorithm, given its importance in the Demon algo-
rithm, following the original article [120]. Suppose that a node v has neighbors v1, v2, . . . , vk and
that each neighbor carries a label denoting the community that it belongs to. Then v determines
its community based on the labels of its neighbors. A three-step example of this principle is shown
in Figure 7.2. The authors assume that each node in the network chooses to join the community to
which the maximum number of its neighbors belong. As the labels propagate, densely connected
groups of nodes quickly reach a consensus on a unique label. At the end of the propagation pro-
cess, nodes with the same labels are grouped together as one community. Clearly, a node with an
equal maximum number of neighbors in two or more communities can belong to both communities,
thus identifying possible overlapping communities. The original algorithm does not handle this
situation. For clarity, we report here the procedure of the LP algorithm, that is the expansion of
Step #3 of Algorithm 2 and represents our inner loop:

1. Initialize the labels at all nodes in the network. For any given node v, Cv(0) = v;

2. Set t = 1;

3. Arrange the nodes in the network in a random order and set it to V ;

4. For each vi ∈ V , in the specific order, let Cvi(t) = f(Cvi1(t − 1), . . . , Cvik(t − 1)). f here
returns the label occurring with the highest frequency among neighbors and ties are broken
uniformly randomly;

5. If every node has a label that the maximum number of their neighbors have, or t hits a
maximum number of iterations tmax then stop the algorithm. Else, set t = t + 1 and go to
(3).

At the end of the LP algorithm we reintroduce, in each local community, the ego node v.
The result of Steps #1-7 of Algorithm 2 is a set of local communities C, according to the

perspective of all nodes of the network. Please note that there are not repeated communities or
communities contained in other communities, as each community has a hash of nodes representing
its content. However, these communities are likely to be an incomplete view of the real community
coverage of G. Thus, the result of Demon needs further processing: to merge each local community
of C in order to obtain a proper community coverage. There are two different versions of the function
that carries out this task, called Merge function.
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Algorithm 3 The pseudo-code of FlatOverlap function.

Require: C = Local community set; ε ∈ [0..1]
Ensure: set of global overlapping communities C
1: for all C ∈ C do
2: for all I ∈ C do
3: if C ⊆ε I then
4: u = C ∪ I;
5: C − C; C − I;
6: C = C ∪ u;
7: end if
8: end for
9: end for

10: return C

Algorithm 4 The pseudo-code of HDemon function.

Require: G = (V,E), C = Local community set; ψ ∈ [0..1]
Ensure: set of global overlapping communities C
1: l← 0
2: C0 ← C
3: while |Cl| > |CC(G)| do
4: for all C1 ∈ Cl do
5: for all C2 ∈ Cl do
6: JC1,C2 = |C1∩C2|

|C1∪C2|
7: if JC1,C2 ≥ ψ then
8: E ← E ∪ (C1, C2, JC1,C2)
9: end if

10: end for
11: end for
12: l← l + 1
13: Gl ← (V ← Cl−1, E)
14: Cl ← DEMON(Gl, Cl)
15: end while
16: return {C0, C1, . . . , Cl}

The Flat Overlap Merge

In FlatOverlap, two communities C and I are merged if and only if a fraction at most equal to
ε of the smaller one is not included in the bigger one; in this case, C and I are removed from
C and their union is added to the result set. The ε factor is introduced to vary the fraction of
common elements provided from each couple of communities: ε = 0 ensures that two communities
are merged only if one of them is a proper subset of the other, on the other hand with a value of
ε = 1 even communities that do not share a single node are merged together. Indeed the choice of ε
impact the overall performances of the merging stage and the number of the communities identified
by Demon. The execution time, as well as the number of identified communities, increase as such
threshold approach to 0, decrease as it allow a more “shallow” merging policy. This variations
are due to the fact that more stringent merging policies are not able to generalize community
composition: moreover, allow community merge only in case of proper subset matching determines
very low average community size. This procedure is repeated for each community discovered.
Returning to the product network example previously introduced, FlatOverlap tries to identify
higher level communities by merging two sets of nodes if the majority of the products in smallest
one also belongs to the bigger one. This iterative procedure aims at identifying groups of products
which can describe broader semantic product categories.
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The Hierarchical Extension

The HDemon function starts by obtaining the initial set of local communities C. It puts all these
communities in a subset of C and we refer to it as C0.

For each pair of community discovered HDemon calculates the Jaccard of nodes between the
two: if its value is greater than, or equal to, the threshold µ passed as input the merging function
connects the two communities, collapsed in a single node, with an edge whose weight is proportional
to this amount. At the end of this procedure, we obtain a higher hierarchical view of the original
graph G that we call G1. The µ parameter acts as the ε in the FlatOverlap scenario (and as ε has
its impact on the communities identified as well as on the actual running time of the algorithm).

At this point, HDemon calls again the main core of Demon, this time providing as input not
G, but G1. The resulting local communities of G1 are put in a separate subset of C that we call C1.
The procedure is repeated until we find a number of communities in the network equal or lower
than the number of connected components of the network (|CC(G)|). At this point, we return C,
containing all the C0, C1, ...Ci, representing the hierarchical view of the overlapping communities of
G.

Demon Properties

To prove the correctness of the Demon algorithm w.r.t. the problem definition given, we prove
by induction some of its properties. It is worthwhile to note that these properties assume that
the results of step #3 are constant. The LP algorithm does not satisfy this requirement, i.e., with
different random seeds it will return different results. However, here we just want to prove that
Demon holds these properties assuming a constant random seed, because this is the crucial feature
that enables the incrementality and ability to be parallelized of Demon.

Property 1 (Maximality.) At the k-th iteration of the outer loop of Demon, for all k ≥ 0:

C = Max(
⋃

v=v1,...,vk

C(v)) (7.3)

where v1, . . . , vk are the nodes visited after k iterations.

Property (1) trivially holds for k = 0, i.e., at initialization stage. For k > 0, assume that the
property holds up to k− 1. Then C contains the maximal local communities of the subgraph with
nodes v1, . . . , vk−1. By always merging a local community C of node vk into C if we find a superset
of it in C, we guarantee that C is added to the result only if it is not covered by any pre-existing
community, and, if added, any pre-existing community covered by C is removed from C. As a
result, after merging all communities in C(vk) into C in Steps #4-6, the latter is the set of maximal
communities covering all local communities discovered in v1, . . . , vk. Therefore, we can conclude
that Demon is a correct and complete implementation of the CD problem stated by equation (7.2).
More generally, denoting by DEMON(G, C) the set of communities C′ obtained by running the
Demon algorithm on graph G starting with the (possibly non-empty) set of communities C, the
following properties hold.

Property 2 (Correctness and Completeness.) If DEMON(G, C) = C′, where G = (V,E),
then

C′ = Max(C ∪
⋃
v∈V
C(v)) (7.4)

In other words, given a pre-existing set of communities C and a graph G, Demon returns all and
only the communities obtained extending C with the communities found in G, coherently with the
definition of communities given in equation (7.2).

Property 3 (Compositionality.) Consider any partition of a graph G into two subgraphs G1,
G2 such that, for any node v of G, the entire ego network of v in G is fully contained either in G1

or G2. Then, given an initial set of communities C:

DEMON(G1 ∪ G2, C) = Max(DEMON(G1, C) ∪DEMON(G2, C)) (7.5)
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This is a consequence of two facts: i) each local community C(v) is correctly computed under the
assumption that the subgraphs do not split any ego network, and ii) for any two sets of sets S1,S2,
Max(S1 ∪ S2) = Max(Max(S1) ∪Max(S2)).

Property 4 (Incrementality.) Given a graph G, an initial set of communities C and an incre-
mental update ∆G consisting of new nodes and new edges added to G, where ∆G contains the entire
ego networks of all new nodes and of all the pre-existing nodes reached by new links, then

DEMON(G ∪∆G, C) = DEMON(∆G, DEMON(G, C)) (7.6)

This is a consequence of the fact that only the local communities of nodes in G affected by new
links need to be reexamined, so we can run Demon on ∆G only, avoiding to run it from scratch
on G ∪∆G.

Properties (7.5) and (7.6) have important computational repercussions. The compositionality
property entails that the core of Demon algorithm is highly parallelizable, because it can run
independently on different fragments of the overall network with a relatively small combination
work. Each node of the computer cluster needs to obtain a small fragment of the network, as small
as the ego network of one or a few nodes. The Map function is simply the LP algorithm. The
incrementality property entails that Demon can efficiently run in a streamed fashion, considering
incremental updates of the graph as they arrive in subsequent batches; essentially, incrementality
means that it is not necessary to run Demon from scratch as batches of new nodes and new links
arrive: the new communities can be found by considering only the ego networks of the nodes
affected by the updates (both new nodes and old nodes reached by new links). This does not
trivially hold for the Merge function, therefore the actual parallel implementation of Demon is
left as future work. However, different and simpler Merge functions can be define to combine the
results provided by the core of the algorithm, thus preserving its possibility to scale up in a parallel
framework.

Complexity

We now evaluate the time complexity of our approach. Demon core is based on the Label Propa-
gation algorithm, whose complexity is O(n+m) [120], where n is the number of nodes and m is the
number of edges. LP is performed once for each node. Let us assume that we are working with a
scale free network, whose degree distribution is pk = k−α. This means that there are n

kα nodes with

degree k. If K is the maximum degree, the complexity would be
∑K
k=1( n

kα × (k+ k(k−1)
2 )) because

for each node of degree k we have an ego network of k nodes and at worst k(k−1)
2 edges. This

number is very small for the vast majority of nodes, being the degree distribution right skewed,
thus many nodes have k = 1, thus contributing O(0) to the complexity; or k = 2, thus contributing
O(1). We omit the solution of the sum with the integral and we report that the complexity is
then dominated by a single term, ending up to be O(nK3−α). This means that the higher the α
exponent, the faster is Demon : with α = 3 we have few super-hubs for which we basically check
the entire network few times and the rest of nodes add nothing to the complexity; with α = 2 we
have many high degree nodes and we end up with higher complexity, but still sub-quadratic in
term of nodes (as, with α = 2, K << n).

It has to be noted that this complexity evaluation holds only for the core of the Demon
algorithm. The FlatOverlap function is more complex, as it has to merge usually thousands of
communities. Currently, we have not developed an efficient solution to this problem, that is then
quadratic in the number of nodes and dependent on the ε parameter.

Experiments

In this section we investigate the performance improvement that Demon provides over the state
of the art of community discovery. First, we generate synthetic networks with an established
network benchmark generator [182] to evaluate the quality of the community coverage with a
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Parameter Description Value
N Number of nodes 1,000
k Average degree 25
Max k MaxiMaximum degree 50
µ Mixing 0.01
Min c Minimum community size 20
Max c Maximum community size 50
On Number of overlapping nodes 500
Om Number of communities of overlapping nodes 3

Table 7.1: Parameter choice for the benchmark analysis.

known artificial community structure, as a standard robustness check. Then, we switch to three
real world networks, namely networks extracted from bill co-sponsorship in the US Congress, the
Internet Movie Database and Amazon. We also provide some examples of the insights that it is
possible to extract from the flat overlap communities extracted with Demon as well as from the
hierarchical version of the algorithm.

The selected competitors for our assessment are: Hierarchical Link Clustering (HLC) [115],
that has been proven able to outperform all the overlapping algorithms, including the k-clique
Propagation algorithm by Palla et al [117]; and two overlapping algorithms, the first based on Label
Propagation (SLPA [183], [184]) and the second on non-negative matrix factorization (BigClam
[185]).

The experiments were performed on a Dual Core Intel i7 64 bits @ 2.8 GHz, equipped with 8
GB of RAM and with a kernel Linux 3.0.0-12-generic (Ubuntu 11.10). The code was developed in
Java and it is available for download with the network datasets used3. For performances purposes,
we mainly refer to the biggest dataset, i.e., Amazon: the core of the algorithm took less than a
minute, while the Merge function with decreasing ε values can take from one minute to one hour.

Performances on Benchmark Networks

In this section we assess the quality of the community coverage extracted with Demon using
synthetic benchmark networks. The usage of the benchmark networks is useful as we can plug a
known community structure and evaluate how well the algorithm is able to uncover it. Of course
there are several limitations: as we saw in 4.2.1 there are many different community definitions
and benchmark networks can only cover a few. This problem is solved by checking the community
discovery quality also in real world networks.

Another problem is that usually benchmark networks are generated in very simple scenarios,
i.e., assuming that the network is unweighed, undirected and with non-overlapping community. For
this reason, we adopt a benchmark network generator that is able to provide directed, weighted
and overlapping networks, that has been introduced in [182].

For each community discovery algorithm we want to test, we generate 200 benchmark networks
with a known community structure. The generator developed in [182] requires to specify how
many overlapping nodes are in the networks and to how many communities they belong. The
parameter choice for the benchmark has been reported in Table 7.1 for experiment repeatability
purposes. The generator outputs the network and the communities each node belongs to. Given
this information, we can calculate the f-measure between the coverage returned by the community
discovery and the real communities of the benchmark network.

Since this is a many-to-many matching problem we adopt a simple strategy of matching the
discovered and the original communities. For each discovered community we calculate the f-measure
with all the real communities. The community that maximizes the f-measure is the corresponding
community and we use that to calculate the average f-measure of the community coverage.

3http://kdd.isti.cnr.it/ giulio/demon/
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Figure 7.3: The f-measure distribution for the 200 tested benchmark networks.

Figure 7.3 reports for how many benchmark networks (y axis) we obtained a given value of
f-measure (x-axis). Particularly, Figure 7.3(a) reports the distribution for Demon , while Figure
7.3(b) reports for all the other methods. We can see from the x axis of the two figures that Demon
clearly performs on average significantly better than the other tested algorithms, although it is less
stable as its performance is 0.6±0.1 while the other methods’ deviation spans from 0.01 to 0.03. In
any case, we can conclude that Demon is able to create a much clearer one to one correspondence
with the communities in the benchmark networks.

Performances on Real-World Networks

We make use of three networked datasets, representing very different phenomena. We first con-
centrate on evaluating the quality of a set of communities discovered in these datasets, comparing
the results with those of other competing methods in terms of the predictive power of the discov-
ered communities. Since real world data are enriched with annotated information, we measure the
ability of each community to predict the semantic information attached with the metadata of the
nodes within the community itself. This annotated information is an external explicit information
about the latent labels attached to the nodes which drive their connectivity.

Next, we assess the community quality using a global measure of community cohesion, based
on the intuition that nodes into the same community should possess similar semantic properties
in terms of attached metadata.

Note that we are not able to provide the analytic evaluation for Amazon dataset: for that
network HLC algorithm was not able to provide results due to memory consumption problems,
while SLPA was not able to conclude in reasonable times.

We tested our algorithms on three real world complex networks extracted from available web
services of different domains. A general overview about the statistics of these networks can be
found in Table 7.2, where: |V | is the number of nodes, |E| is the number of edges and k̄ is the
average degree of the network. Congress and IMDb networks are similar to the ones used in [115],
generally updating the source dataset with a more recent set of data, and we refer to that paper
for a deeper description of them. The networks were generated as follows:

• Congress. The network of legislative collaborations between US representatives of the House
and the Senate during the 111st US Congress (2009-2011). We downloaded the data about all
the bills discussed during the last Congress from GovTrack4, a web-based service recording
the activities of each member of the US Congress. The bills are usually co-sponsored by
many politicians. We connect politicians if they have at least 75 co-sponsorships and delete
all the connections that are created only by bills with more than 10 co-sponsors. Attached to

4http://www.govtrack.us/developers/data.xpd
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Network |V | |E| k̄
Congress 526 14,198 53.98
IMDb 56,542 185,347 6.55
Amazon 410,236 2,439,437 11.89

Table 7.2: Basic statistics of the studied networks.

each bills in the Govtrack data we have also a collection of subjects related to the bill. The
set of subjects a politicians frequently worked on is the qualitative attribute of this network.

• IMDb. We downloaded the entire database of IMDb from their official APIs5 on August
25th 2011. We focus on actors who star in at least two movies during the years from 2001 to
2010, filtering out television shows, video games, and other performances. We connect actors
with at least two movies in which they both appear. This network is weighted according
to the number of co-appearances. Our qualitative attributes are the user assigned keywords,
summarizing the movies each actor has been part of.

• Amazon. We downloaded Amazon data from the Stanford Large Network Dataset Collec-
tion6. In this dataset, frequent co-purchases of products are recorded for the day of May 5th
2003. We transformed the directed network in an undirected version. We also downloaded
the metadata information about the products, available in the same repository. Using this
metadata, we can define the qualitative attributes for each product as its categories.

We first assess Demon performances using a classical prediction task. We attach the community
memberships of a node as known attributes, then its qualitative attributes (real world labels) as
target to be predicted; we then feed these attributes to a state-of-the-art label predictor and record
its performance. Of course, a node may have one or more known attributes, as we are dealing with
overlapping community discoverers; and it may have also one or more unknown attributes, as it
can carry many different labels.

For this reason, we need a multi-label classifier, i.e., a learner able to predict multiple target
attributes [186]. We chose to use the Binary Relevance Learner. The BRL learns |L| binary
classifiers Hl : X → {l,¬l}, one for each different label l ∈ L. It transforms the original data
set into |L| data sets Dl that contain all examples of the original data set, labeled as l if the
labels of the original example contained l and as ¬l otherwise. It is the same solution used in
order to deal with a single-label multi-class problem using a binary classifier. We used the Python
implementation provided in the Orange software7. For time and memory constraints due to the
BRL complexity, for IMDb we used as input only the biggest communities (with more than 15
nodes) and eliminating all nodes that are not part of any of the selected communities.

Multi-label classification requires different metrics than those used in traditional single-label
classification. Among the measures that have been proposed in the literature, we use the multi-
label version of the standard Precision and Recall measures. Let Dl be our multi-label evaluation
data set, consisting of |Dl| multi-label examples (xi, Yi), i = 1..|Dl|, Yi ⊆ L. Let H be our BRL
multi-label classifier and Zi = H(xi) be the set of labels predicted by H for xi. Then, we can
evaluate Precision and Recall of H as:

Precision(H,Dl) =
1

|Dl|

|Dl|∑
i=1

|Yi ∩ Zi|
|Zi|

(7.7)

Recall(H,Dl) =
1

|Dl|

|Dl|∑
i=1

|Yi ∩ Zi|
|Yi|

(7.8)

5http://www.imdb.com/interfaces
6http://snap.stanford.edu/data/index.html
7http://orange.biolab.si/
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Measure Network Demon HLC BigClam SLPA

F-Measure
Congress 0.21275 0.14740 0.08987 0.03461
IMDb 0.44252 0.43078 0.38520 0.35431

Accuracy
Congress 0.10351 0.08038 0.04420 0.01670
IMDb 0.34106 0.38113 0.33373 0.32011

Table 7.3: The F-Measure scores for Congress and IMDb dataset and each community coverage.

Network
DEMON HLC BigClam SLPA
|C| ¯|c| |C| ¯|c| |C| ¯|c| |C| ¯|c|

Congress 425 63.3671 1,476 4.5867 99 19.4545 2 263
IMDb 14,004 12.6824 88,119 8.3426 16,411 7.66462 6,717 8.7688

Table 7.4: Statistics of the community set returned by the different algorithms.

We then derive the F-measure from Precision and Recall. We also calculate the multi-label
equivalent of Accuracy, that is:

Accuracy(H,Dl) =
1

|Dl|

|Dl|∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(7.9)

These multi-label evaluations are described in [187]. The results are reported in Table 7.3
and show that Demon comes first for most tests, and second just in one case. We did not test
Amazon network as HLC was not able to provide results due to its complexity and further the
BRL classifier was not able to scale for the overall number of nodes and labels.

For IMDb dataset, HLC was able to outscore Demon in Accuracy. However, there is an
important distinction to be made about the quantity of the results: if the community discovery
returns too many communities, then it is difficult to actually extract useful knowledge from them.
We reported in Table 7.4 the basic statistics about the community coverages returned by the
algorithms: number of communities (|C|) and average community size ( ¯|c|). For Demon , we
report the statistics of the communities extracted with ε = 0. As we can see, Demon scores are
achieved returning 70-80% less communities than HLC.

We report in Table 7.4 the results for ε = 0. However, we vary the ε threshold and see what
happens to the number of communities and to the quality of the results. We report the results
in Figure 7.4. We can see that for both Congress and IMDb the Precision, Recall and F-Measure
scores remain constant (and actually F-Measure peaks at ε = 0.076 and ε = 0.301 for Congress and
IMDb respectively) before falling for increasing ε values, while the relative number of communities
dramatically drops. For Congress, we have the maximum F-Measure with only 175 communities;
while for IMDb the F-Measure peaks with 6,508 communities (in both cases, less than 50% of the
communities at ε = 0 and than an order of magnitude of HLC).

A final consideration is needed about the size distribution of the communities detected by
Demon and the other community discovery algorithms. In Figure 7.5 we depicted the community
size distribution for Demon and BigClam for the IMDb network. While BigClam returned
more or less the same number of communities of Demon, we can see that these communities are
concentrated in the head of the distribution, i.e., they are on average very small. This is especially
true if we consider that these small communities mostly disappear for increasing ε thresholds.
Communities smaller than a handful nodes are usually less significant and they are often the
results of an artifact of the algorithm.

We can conclude that Demon with a manageable number of medium-sized communities is able
to outperform more complex methods and the choice of ε can make the difference in obtaining a
narrower set of communities with the same (or greater) overall quality.

As presented at the beginning of this section, the networks studied here possess qualitative at-
tributes, i.e., a set of annotations attached to each node. Assuming that these qualitative attributes



98 CHAPTER 7. UNDERSTANDING TOPOLOGIES

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

V
a

lu
e

 /
 R

a
ti
o

ε

Precision

Recall

F-Measure

Number of Communities

(a) Congress

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

V
a

lu
e

 /
 R

a
ti
o

ε

Precision

Recall

F-Measure

Number of Communities

(b) IMDb

Figure 7.4: Precision, Recall, F-Measure and number of communities for different ε values.

correspond to the node’s latent factors, we assume that “similar” nodes share more qualitative at-
tributes than dissimilar nodes. This procedure is not standard in community discovery results
evaluation. Usually authors prefer to use the established measure of Modularity. However, Mod-
ularity is strictly (and exclusively) dependent on the graph structure. What we want evaluate is
not how a graph measure is maximized, but how good is our community coverage in describing
real world knowledge about the clustered entities.

We quantify the matching between a community coverage and the metadata by evaluating how
much higher are on average the Jaccard coefficients of the set of qualitative attributes for pair of
nodes inside the communities over the average of the entire network, or:

CQ(P ) =

∑
(n1,n2)∈P

|QA(n1)∩QA(n2)|
|QA(n1)∪QA(n2)|∑

(n1,n2)∈E
|QA(n1)∩QA(n2)|
|QA(n1)∪QA(n2)|

, (7.10)

where P is the set of node pairs that share at least one community, QA(n) is the set of qualitative
attributes of node n and E is the set of all edges. If CQ(P ) = 1, then there is no difference between
P and the average similarity of nodes, i.e., P is practically random. Lower values implies that we
are grouping together dissimilar nodes, higher values are expected for an algorithm able to group
together similar nodes.

To calculate the Jaccard coefficient for each pair of the network is computationally prohibitive.
Therefore, for IMDb we chose a random set of 400k pairs. Moreover, CQ is biased towards
algorithms returning more communities. For this reason, we just collected random communities

 1

 10

 100

 1000

 10000

 1  10  100  1000

c
o

u
n

t(
|C

|)

|C|

BigClam
Demon ε = 0.0
Demon ε = 0.3

Figure 7.5: The distribution of the community sizes for Demon and BigClam in the Amazon
network.
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Measure Network Demon HLC BigClam SLPA

CQ
Congress 1.1792 1.1539 1.2737 0.9508
IMDb 5.6158 5.1589 0.5954 0.2020

ONMI
Congress 0.0172 0.0083 0.0051 0.0127
IMDb 0.0536 0.0429 0.0280 0.0234

Table 7.5: The Community Quality scores for Congress and IMDb dataset and each community
coverage.

from the community pool, trying to avoid too much overlap as we want also to maximize the
number of nodes considered by CQ (i.e., we try not to consider more than one community per
node). We apply this procedure for each algorithm and calculated the CQ value. We repeated this
process for 100 iterations and we report in Table 7.5 the average value of the CQ obtained. Also
in this case, Demon was able to outperform all the other algorithms in three out of four cases,
ending up second in one case, this time to BigClam instead of HLC.

We also calculated the Overlapping Mutual Information between the set of communities se-
lected as described above and the collection of labels attached to the nodes. Traditional Mutual
Information is not defined for a multi-label setting. Some researchers defined a Normalized Mutual
Information for this purpose [188]. However, further research [189] pointed out that this version
of the Normalized Mutual Information has some drawbacks, namely its unintuitive behavior. For
this reason, we used the measure defined in [189] and we refer to it as “ONMI”. The results of our
experiments are again reported in Table 7.5. This time, we can observe that Demon is able to
outperform all the considered alternatives.

Overlapping Communities

In this section we present a brief case study using the communities extracted for the previously
exposed evaluation of Demon , that uses the FlatOverlap function to merge the communities. We
focus on the Amazon network. Aim of the section is to Demonstrate that the overlap between
the extracted communities carries meaningful information. By analyzing the overlap, we can have
practical applications in the extraction of knowledge from real world scenarios. In the next section
we focus instead on the hierarchy of the communities, rather than their overlap.

In the Amazon network to have different communities for each item is very useful. A recom-
mendation system is able to better discern if a user may be interested in a product or not given
that he bought something else; however, being part of one community of products does not mean
that that particular community describes all aspects of a particular product.

Let us consider, as an example, the case of Jared Diamond’s best selling book “Guns, Germs,
and Steel: The Fates of Human Societies”. Clearly, it is difficult to say that the people interested in

Figure 7.6: A representation of parts of the two communities surrounding our case study in the
amazon network.



100 CHAPTER 7. UNDERSTANDING TOPOLOGIES

Rank Level 0 Level 1

1 Sen. Com. on Comm., Science, and Transport Sen. Com. on Foreign Rel.
2 Sen. Com. on Foreign Rel. Sen. Com. on Comm., Science, and Transport
3 Int. scientific coop. Sen. Spec. Com. on Aging
4 Office of Science and Tech. Policy Sen. Com. on Env.t and Public Works
Rank Level 2

1 Sen. Com. on Comm., Science, and Transport
2 Sen. Com. on Indian Affairs
3 Sen. Spec. Com. on Aging
4 Sen. Com. on Health, Edu., Labor, and Pens.

Table 7.6: The top four topics of one community in the Congress network across the hierarchy.

this book are always interested in the same things. Checking the communities to which it belongs,
we find two very different big communities (a depiction of the two communities is provided by
Figure 7.6). These communities have some sort of overlap, however they can be characterized by
looking at the products that appear exclusively in one or in the other. In the first one we find
books such as: “Beyond the State: An Introductory Critique”, “The Econometrics of Corporate
Governance Studies” and “The Transformation of Governance: Public Administration for Twenty-
First Century America”. This is clearly a community composed mainly by purchases made by the
people more interested in the socio-economic aspects of Diamond’s book. The second community
hosts products such as: “An Introduction to Metaphysics”, “Aristophanes’ Clouds Translated
With Notes and Introduction” and “Being and Dialectic: Metaphysics and Culture”. This second
community is apparently composed by the purchases of customers more attracted by the underlying
philosophical implications of Diamond’s study. Products in one community may have something
in common, but they are part of two distinct and very well characterized groups, and the ones in
one group are not expected to be found in the other.

This is of course one of the many cases. We report as an additional example the two com-
munities around the historical novel “The Name of the Rose” by Umberto Eco: one community
is characterized by history related products (such as “Ancestral Passions : The Leakey Family
and the Quest for Humankind’s Beginnings”), the other by costume fiction (for example the 1932
Dreyer’s movie “Vampyr”).

Hierarchical Communities

The aim of this section is to Demonstrate that, besides the overlap, also the hierarchy of the
extracted communities carries meaningful information. In this case we focus on the Congress
network, as the US Congress has a particular structure that is easy to confront with. In the US,
the Congress is divided in two parts: the House and the Senate. Members of the House are not
members of the Senate and vice versa. Then, inside both the House and the Senate, there are several
subcommittees, each with a different focus. We expect to find members of similar subcommittees
in the communities at the lower level of the hierarchy, and just two large communities at the top
of the hierarchy: the community of the House and the community of the Senate.

We report in Table 7.6 the first four topics of a particular community across the entire hierarchy.
As we can see, at the bottom level this community is clearly a senate community composed by a
small group of senators very focused on science and technology. In the intermediate and top level,
the community merges with more and more general communities from the senate. At level 1 is
still focused on broader social issues, while at level 2 it is basically composed by almost any senate
committee. At level 2, we expected to find only two communities. We found, instead, 28 of them.
However, these 28 communities are easily split into the two expected groups with little overlap.
Since Demon does not return any community with less than three nodes, it does not create the
additional hierarchy level with the two nodes representing the House and the Senate communities.
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7.1.2 The Overlap in Social Networks

As we saw in the previous sections and in countless other examples in literature, overlapping
communities are ubiquitous in many social and complex networks. We chose as our explanation
of the overlap the fact that many different latent factors drive the nodes’ connectivity. Nodes are
collections of latent labels and they tend to connect with nodes with similar labels. This is the
assumption we share with the creators of the BigClam algorithm [185].

This corresponds to the most successful explanation used for overlapping communities: in a
network there are different types of relations whose interplay brings together people from different
communities (the starting assumption of the HLC algorithm [115]). For example, one person is
part of the community of her college mates and also of the sport team she practices. Several of
her team-mates may be also college mates, generating an overlap between the two communities.
In this section we do not focus on a systematic proof of this theory, that goes beyond the scope
of this thesis. We provide, instead, empirical evidences of this theory, along with the proof that
Demon is able to correctly detect actual overlap.

Network Nodes Edges Facebook Twitter Foursquare
Facebook 2,081 5,618 1 0.57 0.94
Twitter 3,745 31,638 0.32 1 0.85
FourSquare 5,783 42,691 0.34 0.55 1
Total 7,461 79,947 - - -

Table 7.7: The statistics of our multidimensional network per dimension.

To do so, we need to add context information to the relationships connecting two people. One
of the most important approach to this problem in literature involves the use of multidimensional
networks. Community discovery in multidimensional networks is a problem studied in [190] and it
requires specialized multidimensional community discovery algorithms. Demon is not a multidi-
mensional community discovery algorithm, so we need to create a special analytic setting.

We create a multidimensional network by joining three different social networks: Facebook,
Twitter and Foursquare. We were able to crawl the relationships of the same set of users in these
three social media websites. Table 7.7 records some statistics about the topology of the three social
networks and their aggregate multidimensional network. For each dimension of the network we
report the number of nodes and edges appearing in it and the node overlap with the other network
dimensions.

We then applied Demon to each dimension of the network separately. The algorithm found
overlapping communities for each dimension of the network without information about the edges
from the other dimensions. The aim of our analysis is to examine communities with a large overlap
in one dimension and verify the community affiliations in the other dimensions of the network of
the nodes belonging to these two communities.

An example of this analysis is depicted in Figure 7.7. In Figures 7.7(a-e) we depicted the same
set of 32 nodes with the edges connecting them in the Facebook dimension. Figures 7.7(a-b) depicts
two communities extracted by Demon in the Facebook dimension by coloring in blue the nodes
belonging to them, leaving in white the remaining nodes. We can see that the two communities
share an overlap of six nodes.

In Figures 7.7(c-d) we depict two overlapping communities in the FourSquare dimension (high-
lighted with a brown color). Please note that the actual edges depicted are from the Facebook
network, making the comparison of the nodes’ community affiliations more clear. We can see that
the two FourSquare communities are still overlapping, but with different common elements: by
interacting with their Facebook friends that are part of the overlap in the Facebook direction,
some users visit the same places of other users that are not directly their friend, creating a new
community.

Finally, in Figure 7.7(e) we have the community extracted from Twitter network (light blue
color). We can see that, in Twitter, the two overlapping communities are actually one single
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(a) Facebook #1 (b) Facebook #2

(c) FourSquare #1 (d) FourSquare #2

(e) Twitter

Figure 7.7: The overlapping communities in the three dimensions of the network.
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Figure 7.8: The relationship between JF (i, j) and J∗(i∪ j, z) for the communities in the Facebook
dimension.

community, with the exception of some nodes that do not use the Twitter service. The overlap in
the Facebook dimension is likely to be playing a role here: even if user a is not friend of user b, he
still may be interested in user b’s tweets, as many of user a’s friends are friend with user b.

This is only one example out of many that can be found. To prove this, we took each community
couple (i, j) out of the 367 communities we found in the Facebook dimension. We calculated the
Jaccard index JF (i, j) of the two communities, i.e., their degree of overlap. Then, we joined the
two communities and we calculated the Jaccard index between the community union i ∪ j and
each community in the Twitter and Foursquare dimension, i.e., how much the two overlapping
communities are part of a single community in another dimension. We refer to this quantity as
J∗(i ∪ j, z). We plot the relationship between JF (i, j) and J∗(i ∪ j, z) in Figure 7.8. Since many
couples of communities may have the same JF (i, j) value, we took the average of all J∗(i ∪ j, z)
for each JF (i, j) value. As we can see, the larger the overlap in the Facebook dimension, the more
the two communities are included in a single community in another dimension.

The Demon-based Explanation of Communities

In the previous sections, we saw that the approach implemented by Demon is able to better
uncover the community structure implied in real world networks. We can conclude that there is
a correlation between how the overlap in communities forms in the real world and how Demon is
able to detect the overlap. As a consequence, by explaining how Demon detects the overlap we
may have an insight about how the overlap works in the real world.

We decided to translate this idea into a generative model. In other words, we can use the
principle of Demon to generate synthetic networks. As a by-product, we will have benchmarks
for other overlapping community discovery algorithms that reflect better the overlap mechanics of
social networks, when these mechanics matches with our theory of connectivity driven by latent
factors. This is a useful track of research as most of the benchmark networks for community
discovery do not generate overlapping communities. The benchmark network presented in [182]
does, and we used it in the previous section. However, there are some shortcomings included in
that method. First, it is mandatory to specify in how many communities the overlapping nodes
lie, and each node will belong to exactly the same number of communities, which is unrealistic.
Second, it is mandatory to specify how many nodes are part of more than one community and
how many are not, an information that is difficult to understand if we want to model real world
networks.

Demon starts from the assumption that communities are generated locally around each node.
Therefore, it expects to find in the ego network of each node a set of well-separated semi-cliques.
We describe the Network Generator based on Demon in Algorithm 5. First, for each v ∈ V we
extract its number of neighbors, by generating a power law degree distribution with exponent α
(step #1). So, for each node v we keep in deg′(v) the number of connections that v is accepting.



104 CHAPTER 7. UNDERSTANDING TOPOLOGIES

Algorithm 5 The pseudo-code of the NeGen Demon.

Require: α, β, γ, |V |
Ensure: set of nodes and edges G = (V,E)
1: V ← POWERLAW (α)
2: SORTDEGDESC(V )
3: for all v ∈ V do
4: if deg′(v) > 1 then
5: n← deg′(v)
6: deg′(v)← 0
7: N ← RANDOMSAMPLE(V, n)
8: E ← CONNECTNEIGHBORS(v,N)
9: E ← E ∪ COMMUNITIES(v,N, β, γ)

10: UPDATE(deg′(N))
11: end if
12: end for
13: return G

Algorithm 6 The COMMUNITIES routine of NeGen Demon.

Require: v, N , β, γ
Ensure: set of edges E′

1: C ← NORMAL(v, β)
2: for all c ∈ C do
3: m← RANDOMSAMPLE(N, size(c))
4: E′ ← RANDOMCONNECT (m, γ)
5: end for
6: return E′

Then we cycle over the nodes, starting from the ones with higher degree (steps #2-3). We
first check that the node v is still accepting connections (step #4). In steps #5-7 we randomly
select from V n = deg′(v) nodes that will be neighbors of v, and we set deg′(v) = 0. We connect
these n nodes with v (step #8) and then we generate the communities around v using the function
COMMUNITIES (step #9). Of course this will modify the number of connections that can be
still attached to the extracted nodes, thus we update their deg′ values in step #10.

How we create the local communities in the ego network is the task of the COMMUNITIES
function, and it pseudocode is reported in Algorithm 6. First we define the distribution of the
community size around a node. We assume this distribution to be normal with an average equal
to β. Then, for each community we extract randomly a number of nodes equal to its size and we
connect them with probability γ (that should be larger than 0.5). Using this algorithm, it is possible
to generate well-separated local communities in the ego networks of each node. These communities
will eventually overlap when each neighbor of a previously considered node will generate its own
local communities.

Discussion

In this work we proposed to see the emergence of overlapping communities in complex networks as
the effect of latent factors driving nodes’ connectivity. Based on this assumption, we created a new
method for solving the problem of detecting this latent knowledge from significant communities
in complex networks. We propose a democratic approach, where the peer nodes judge if their
neighbors should be clustered together. We extended previous work by creating a consistent
theoretical ground for our method. Moreover, we extended the algorithm to find hierarchical
communities and we have provided evidences that the underlying assumption of the work could be
correct.

We have shown in the experimental section that this method allows a discovery of communities
in different real world networks collected from information rich datasets. The quality of the over-
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lapping coverage, a community organization that allows nodes to be in different communities at
the same time, is improved w.r.t. state-of-the-art algorithms, evaluated using both a standard syn-
thetic network generator and real world networks, in which we use the communities to predict the
metadata attached to the nodes. We also show that the performances of the algorithm are useful
to shed some light about how and why social communities are overlapping, by analyzing a multi-
dimensional network and providing the intuition that Demon can give us about how overlapping
communities form.
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7.2 Homophily and Quantification1

In this work we tackle the problem of estimating the frequency of different classes in a node labeled
network. To achieve such goal, we propose quantification techniques that exploit the homophily
effect observed in many social networks [176, 191, 192, 144]: people tend mostly to relate with oth-
ers whom they share some interests, ideas or beliefs. Starting from this observation, as a first step
our approaches divide the original network in sub-networks in order to better bound homophily. In
particular two different partitioning strategies will be analyzed: one exploiting community discov-
ery while the other adopting the notion of ego-network. The former approach tries to estimate the
class prevalence in a networked population taking into account the characteristics of communities
composing the entire network and the class frequencies in each community. The latter conversely,
partitions the network in ego-networks and tries to infer the class of each unlabeled node in the
network by observing the class of its neighborhood.

Problem Formulation

Quantification is an important issue to tackle in order to understand and monitor user’s behaviors
and activities by using social media and web data (i.e., Big Data) as the source of information.
Recently high-performing approaches based on decision tree variants[144] have been proposed in
order to solve it in general contexts: in the following we formalize how it can be instantiated in
the specific case of networked data.

We model the network as an indirect graph that we denote by G = (V,E,L), where V is the
set of labelled nodes, L is a set of classes, and E is a set of edges, i.e., a set of pairs (u, v) where
u, v ∈ V are nodes. The classes in L represent the potential node labels and a classifier f is a
function f : V → L that assigns a class label li ∈ L to each node vj ∈ V .
The actual frequency of a class li with respect to a network G = (V,E, L) is freqV (li) =
|{vj∈V |vj .class=li}|

|V | . The estimated frequency using the classifier f is f̂ reqV (li) =
|{vj∈V |f(vj)=li}|

|V | .

Given the set of nodes V , we denote by Vl the subset of labeled nodes while we use Vu to denote
the set of unlabeled nodes. In the following we will sometimes use “test set” to indicate Vu. Note
that in our setting the classifier is not trained in an offline phase, like in typical eager learners. Our
function f defined above is an instance-based classifier, because it operates on the premises that
classification of unknown instances can be done by relating the unknown to the known according to
some specific relation between the two kind of instances. We use the standard notation to indicate
the set of true positives (TP ), false positives (FP ), true negatives (TN) and false negatives (FN)
of a binary classifier. We use tpr = TP

TP+FN to denote the true positive rate and fpr = FP
TN+FP to

denote the false positive rate. Given these preliminaries, the problem of quantification on network
data is defined as follows:

Definition 14 (Network Quantification Problem) Let L = {l1, l2, . . . , ln} be a set of classes.
Given a network G = (V,E, L) and a partition of the nodes V into labeled Vl and unlabeled Vu
the network quantification problem consists in finding a classifier f for the best estimation of the
class label distribution in Vu, i.e., ∀li ∈ L we want to minimize the difference between the actual

frequency freqVu(li) and the estimated one f̂ reqVu(li).

The following example highlights the final goal of quantification by comparing it with the
classification.

Example 1 Consider the network in Figure 7.9(a) where colored nodes are those whose class
values are known. Here, the real frequencies of the two classes are: freq(A) = 5

11 and freq(B) =
6
11 . Suppose we now apply two different classifiers to predict the labels of the unlabeled nodes.
Figure 7.9(b) and Figure 7.9(c) shows the results of the two classifiers, where the red dashed nodes

1G. Rossetti, L. Milli, A. Monreale, D. Pedreschi, F. Giannotti and F. Sebastiani, “Quantification for Complex
Networks via Homophily”, 2014
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Figure 7.9: Network quantification vs Classification

represent the misclassified nodes. In Figure 7.9(b) the percentage of correctly classified node is 2
3

and f̂ req(A) = 4
11 , so the total percentage of misclassified nodes is 1

11 . In Figure 7.9(c) we have
two misclassified nodes with an accuracy of 1

3 , thus this result is worse than the previous one.

However, if we focus on quantification, we have f̂ req(A) = 5
11 , that is exactly the real frequency of

class A, i.e., we do not have any quantification error.

This example shows that in order to accurately quantifying the prevalence of classes we need
to define ad-hoc techniques: even if there are some similarities with the classification task there
is not equivalence between the quality of the respective results. A straightforward solution to the
network quantification problem could be sampling, i.e., we could count the number of instances
for each class value in the set of labeled nodes and assume that the same proportion of labels
in the test set. However, this approach is not suitable when the class label distribution in the
test set is different from the one observed in the training set, that is the case of real interest
for quantification. This is the exact scenario depicted in our example. Indeed, we can see how
sampling would return the result depicted in Figure 7.9(b). In detail, if we do not consider the
unlabeled nodes, by sampling we obtain freq(A) = 3

8 and freq(B) = 5
8 while the real frequencies

are freq(A) = 5
11 and freq(B) = 6

11 .

Quantification methods via classification

The typical approach adopted in the literature, to address the quantification problem in non
relational data, is based on standard classification. The idea in [135, 49, 50, 144] is to use a standard
classifier and then post-process the results via specific methods to improve the quantification
accuracy. Moreover, all the methods proposed so far solve that quantification via classification
address only the binary class scenario: anyway, they can be easily extended to deal with single-
label multi-class scenarios. More specifically, in [50] the following methods are introduced in order
to post-process the results of classifiers and optimize them for quantification:

• Classify & Count (CC). This method once generated a classifier from the training set Tr,
and classified the unlabeled records in the test set, Te, estimates for each class li its frequency
freqTe(li) by counting the fraction of records in Te that have been labeled with ci. We denote

the computed estimation by f̂ req
CC

Te (li).

• Adjusted Classify & Count (AC). This methods attempt to improve the results obtained
by the previous method by adjusting the quantification obtained by Classify and Count

f̂ req
CC

Te (li) with the information about the true positive rate and false positive rate w.r.t.

the training set: f̂ req
AC

Te (li) =
freqCCTe (li)−fprTr
tprTr−fprTr

.

Both the methods can also be used in a network setting after the application of approaches
tailored for network classification. In such scenario the training set Tr becomes Vl while the test
set Te becomes Vu. When a classifier provides a prediction score for each node in the network,
classification-based quantification methods can be applied. However, standard classifiers, opti-
mized for predicting the class of a single element, are not optimal for quantification.
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Figure 7.10: Community based quantification without overlaps (a) and with overlaps (b)

Now we can introduce our quantification methods for networking data. These methods can be
classified in two categories: approaches based on community discovery, and approaches based on
ego-networks.

7.2.1 Community Discovery for Quantification

The methods in this category require the execution of two steps:

1. finding the set of communities;

2. assigning to each unlabeled node a class label by using the information extracted form the
communities.

The first step of the algorithm is very simple. Given the whole network G containing the nodes of
the training and test sets, we apply a community detection algorithm that finds clusters of nodes
by taking into account the nodes’ connections.

To perform the second step, for each community ci the class label with the highest frequency
is identified and assigned to each unlabeled node in the community. In detail, for each community
ci the algorithm computes the frequency of each class freqci(li), identifies the most frequent label
(denoted by Lmaxci) and assigns it to each unlabeled node belonging to the community ci.

To clarify how this approach works, in Figure 7.10 (a) we present a simple example where the
algorithm of community discovery finds three communities (that we identify with the colors red,
blue and orange). The second step our method, after having computed the frequency of each label
within each community, will assign to the unlabeled nodes belonging to the red community the
class label A, to the orange community the class label B and to the blue community the class A.
Even if straightforward, this approach is not suitable when the community discovery algorithm
returns overlapping communities as in the network depicted in Figure 7.10 (b). In these cases,
a node can belong to several communities and each community may have a different majority
class label. For example, in Figure 7.10 (b) we have a node belonging to the intersection between
the red and orange communities. Moreover, the majority class in the red community is A while
in the orange one is B. Now, the question is: how can we decide the class label for the shared nodes?

We propose two different strategies to decide which class label must be assigned to a node
belonging to multiple communities:

• Frequency.
The first strategy is to assign the class label with the greatest overall relative frequency in
the labeled nodes. Therefore, if a node vj belongs to m communities and the set of most
frequent classes is {Lmaxc1 , Lmaxc2 , . . . , Lmaxch} (h ≤ m) then, the node vj will have the
label Lmaxci if freqci(Lmaxci) = maxci∈C{freqci(Lmaxci)}.
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Figure 7.11: Ego-network at 1-hop and 2-hops

• Density.
The second strategy is to assign the highest frequency class label of the denser community
to which the node belongs.

In the above example, related to Figure 7.10(b), adopting the frequency strategy we get:
in the red community Lmaxred = A with frequency 4

5 = 0.8, while in the orange community
Lmaxorange = B with frequency 3

4 = 0.75. This implies that we will assign the label A to the
shared node because it has a higher frequency. However, following the density policy we get:
density(red) = 7

10 = 0.7, density(orange) = 5
6 ' 0.83, implying that the shared node will be

assigned label B.
After the labeling we have two possibilities:

1. apply the Classify and Count strategy, i.e., we compute in the whole network the distribution
of the class values by simple counting the nodes labelled with the same label;

2. apply the Adjusted Classify & Count, i.e., we adjust the quantification obtained by Classify &
Count with the information about the true positive rate and false positive rate with respect
to the nodes in the training set.

The weakness of the methodology described so far is that, if the network has some isolated
and unlabeled nodes, we are not able to assign labels to them because they do not belong to any
community. In these particular cases we decided to assign to those nodes a class label by following
the same class distribution of the training set, i.e., if we have a known distribution of 0.4 for A and
0.6 for B in the training set the isolated nodes of the test set will be assigned respectively 40% to
the former class and 60% to the latter.

7.2.2 Ego-networks for Quantification

An alternative set of methods that we propose in order to solve the problem of quantification
on networks are based on the idea of assigning to each specific node the label that is the most
frequent in its neighborhood. In this case we are directly exploiting the homophily property. This
approach differs from the previous one, where the communities are found without considering the
information about the node labels and using only the topological structure of the network. In
the previous approach, only then, as a post-processing step a label assignment is performed using
the homophily assumption within each community. The quantification process also in this case is
composed of two main steps:

1. extraction of ego-networks for the unlabeled nodes, and

2. label assignment to the, unlabeled, central node.

The first step is to generate a partition of the network G into different subgraphs, called ego-
networks. As seen in 7.1, an ego-network is a sub-network centered on a particular node who is
the subject of the network. The focal point of the network is called the ego. In an ego-network,
only nodes that are directly connected to the ego form the extracted substructure. An ego-network
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Figure 7.12: Ego-network based quantification. (a) the full graph with labeled and unlabeled
nodes; (b-c-d) 1-hop ego-networks of the unlabeled nodes.

enables a focused view on the specific properties of a node, highlighting all its interactions with
the neighbors. Figure 7.11 depicts an ego-network example, showing the relations of a node (the
ego) and its neighbors. Obviously, the definition of ego-network can be extended by taking into
account the k-hop neighborhood; in other words, the size of the ego’s neighborhood is expanded by
including all nodes to whom the ego has a connection at a path length of k, and all the connections
between all of these nodes. Intuitively, the more k grows the more the homophily tends to decrease.
In our approach, for each node of the test set we extract its ego-network at k-hops.

After this step, for each ego-network EG = (V ′, E′, L) the algorithm computes the frequency
of each class freqV ′(li) and then identifies the most frequent one denoted by LmaxEG. Finally,
LmaxEG is assigned to the ego node. Also in this case we can have some isolated and unlabeled
node that make hard the assignment of the class label because it has no neighbors. As in the
previous method, in these particular cases our strategy is to assign to those nodes the class la-
bel by following the same class distribution of the training set. After the assignment of the label
to the node, we can apply the Classify & Count strategy or the Adjusted Classify & Count strategy.

To clarify how this approach works, we discuss a simple example depicted in Figure 7.12. This fig-
ure illustrates the whole process of the algorithm considering ego-networks at 1-hop. In particular,
Figure 7.12(a) depicts the original network where the white nodes have unknown class label. This
network is the same used in Figure 7.9. The first step is to extract the ego-networks at 1-hop for
each unlabeled (white) node. Figures 7.12 (b),(c) & (d) show the result of this step. Note that the
ego node is indicated by a red border. Then, to each ego node the algorithm assigns the computed
label. As a consequence, to the ego node in Figure 7.12(b) we assign the label B, while to the ego
nodes in Figure 7.12(c) and Figure 7.12(d) we assign the class label A. In this case, this allows us
to obtain a perfect quantifier even if the classification of each node is not perfect, as highlighted
in Example 1.

Experiments

Here we present the evaluation of our methods and the results obtained from our experimentation.
Firstly, we provide a description of the data and community discovery algorithms used in our
experiments, then we show and discuss the obtained results.

Datasets

In the evaluation of our methods we used the following datasets:
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(a) CoRA (b) Google+

Figure 7.13: Label Frequencies. (a) CoRA, (b) Google+

• CoRA: This dataset comprises computer science research papers: the network is built over
papers using as relations for the edges both citation and shared-authors. The number of
possible different class labels are 7 (their distribution is reported in Figure7.13)(a). The
network contains 4,240 nodes and 77,824 edges.

• IMDb: This dataset is extracted form the Internet Movie Database, and contains description
of movies released in the United States between 1996 and 2001. The class identifies whether
the opening weekend box-office sales, have exceeded $2 million (class distribution: 57% and
43% respectively). In our network movies are linked if they share a production company,
producer, director, or actor. The network contains 1,440 nodes and 51,481 edges.

• Google+: Social network built on the Google+ service extended with semantic information.
The class labels identify the schools attended by the analyzed users (label distribution is
reported in Figure7.13(b). Different schools are identified with letters from A to L.). Our
network contains 33,381 nodes and 110,142 edges [193].

Community Discovery Methods

To evaluate our quantification methods based on community discovery in our experiments we use
two different algorithms for the detection of communities: Demon (introduced in 7.1) and Info-
hiermap [194]. They provide the opportunity of testing both the case of overlapping communities
(Demon) and the case of non-overlapping ones (Infohiermap). We use Demon to extract both
the communities and the micro-communities (the outcome of the local extraction without the ap-
plication of any merging procedure). In following only the results of the micro-communities ones
is discussed: this choice was made to reduce the average community size while amplifying the
homophily effect.

Empirical Evaluation

Our evaluation is organized as follows. First, the compared quantifiers are introduced, and high-
lights on their implementation are given. Then, the measure used to evaluate their accuracy is
explained; three different strategies for building the test set are proposed and the experimental
results are presented. Moreover, we discuss how network assortativity influences the results of the
proposed quantification methods. Lastly, we analyze the effects of the overlaps on the performances
obtained by community-based approaches.

Network Quantifiers

We compare, on the previously introduced networks, seven algorithms:

• Community Discovery based quantification by Infohiermap and Demon;
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Figure 7.14: Label frequency distribution on CoRA for (a) k = 10% and (b) k = 30%.

• EG : Ego-network based labeling (Ego-networks were extracted at one and two hops);

• LBQ : Link-based quantification, as defined in [51];

• wvRN : network classifier, as defined in [195]; and,

• Baseline: sampling.

The methodologies we propose were tested in their two variants: Classify & Count and Adjusted
Classify & Count. In order to compute the latter for each node n ∈ Vl the proposed algorithms
were applied to newly identify its label: in this way, following a leave-one-out strategy, is possible
to compute the True Positive Rate and the False Positive Rate on Vl: estimates of tpr and fpr are
needed to adjust the label frequency obtained by the standard Classify & Count. Once computed
the new frequencies, a rescaling step is applied to assure that, for each network, the sum of labels’
frequencies is equal to one.
It is worth to noting that the Link-based quantification approaches (LBQ), discussed in the related
work section 4.2.2, was slightly modified: the frequencies of labels were assigned using not the
median but the mean value of the distribution and, as done for the Adjusted Classify & Count, at
the end a normalization step was applied to overcome the highlighted issue (i.e. the sum of the
estimated frequencies for labels needs to be equal to one).

Kullback-Leibler Divergence

In order to evaluate the accuracy of a quantifier we need to compare f̂ reqV (li), the frequency
computed for the new labeled nodes li, with freqV (li), its actual frequency. Different measures
have been used in the literature for measuring quantification accuracy: the most convincing among
the ones proposed so far is the one used by Forman in [50], which uses normalized cross-entropy,
better known as Kullback-Leibler Divergence (KLD), defined as:

KLD
(
freqV(li)||f̂ reqL(li)

)
=

n∑
i=1

freqV(li) log
freqV(li)

f̂ reqV(li)
(7.11)

KLD aims at evaluating the information loss when f̂ reqV (li) is used as approximation of
freqV (li). It ranges in the interval [0,+∞): 0 means that the two frequency values are equal

for each li and +∞ means that their values diverge. If f̂ reqV (li) = 0 for at least one class, KLD
is not defined: therefore, as in [50], we add a small amount ε (set to 0.5

|Vu| ) to both numerator and

denominator in the log function.
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CoRA CoRA Bottom CoRA Top

Method 10 20 30

Infohiermap
Demon
Demon Density
EG1h
EG2h

Infohiermap AC
Demon AC
Demon Density AC
EG1h AC
EG2h AC

LBQ1h
LBQ2h
Baseline
wvRN

1.369e-2
1.777e-2
5.425e-3
6.719e-3
1.459e-2

6.2387e-3
1.031e-2
2.276e+0
1.197e-3
3.354e-3

1.990e-1
1.927e-1
7.450e-3
2.773e-2

3.276e-2
2.578e-2
1.7375e-2
1.533e-2
1.149e-2

1.324e-2
1.118e-2
1.290e-1
4.395e-3
5.484e-3

2.523e-1
2.478e-1
1.512e-2
1.684e-2

4.026e-2
3.830e-2
3.273e-2
3.003e-2
4.081e-2

1.902e-2
1.648e-2
1.307e-1
3.207e-3
6.124e-3

2.333e-1
2.313e-1
3.126e-2
2.349e-2

10 20 30

4.213e-2
4.779e-2
5.238e-2
5.194e-2
1.909e-2

3.724e-2
4.290e-2
1.170e-1
2.884e-2
2.926e-2

3.132e-1
3.132e-1
5.285e-2
1.353e-1

2.895e-2
3.671e-2
3.695e-2
3.951e-2
2.111e-2

2.401e-2
3.277e-2
2.574e+0
2.386e-2
2.045e-2

2.750e-1
2.772e-1
4.789e-2
6.965e-2

3.737e-2
4.173e-2
4.627e-2
4.762e-2
2.486e-2

3.454e-2
3.890e-2
1.199e+0
3.926e-2
2.587e-2

2.763e-1
2.531e-1
5.890e-2
4.214e-2

10 20 30

1.211e-2
1.008e-1
5.528e-2
5.124e-2
1.408e-1

7.219e-3
9.589e-2
2.305e+0
3.152e-2
1.195e-2

3.634e-1
2.969e-1
6.427e-2
1.159e+0

1.890e-2
5.255e-2
6.258e-2
6.298e-2
1.184e-1

1.593e-2
4.968e-2
2.173e+0
1.451e-2
1.522e-2

3.251e-1
3.273e-1
7.447e-2
7.229e-2

1.671e-2
6.055e-2
7.012e-2
5.958e-2
1.310e-1

1.453e-2
5.841e-2
1.191e+0
1.730e-2
2.246e-2

2.733e-1
2.972e-1
7.789e-2
7.475e-2

Table 7.8: CoRA: mean of KLD of predicted and actual quantification for all quantifiers.

IMDb IMDb Bottom IMDb Top

Method 10 20 30

Infohiermap
Demon
Demon Density
EG1h
EG2h

Infohiermap AC
Demon AC
Demon Density AC
EG1h AC
EG2h AC

LBQ1h
LBQ2h
Baseline
wvRN

7.948e-3
1.321e-1
5.451e-2
1.716e-1
7.248e-1

7.830e-4
1.248e-1
1.267e-2
4.525e-4
1.359e+0

6.883e-4
1.052e-2
8.461e-3
3.196e-3

1.918e-2
1.599e-1
6.009e-2
1.916e-1
7.684e-1

4.996e-3
1.457e-1
1.202e-2
1.490e-4
5.452e-1

7.872e-5
3.967e-3
1.427e-2
6.541e-3

2.124e-2
1.759e-1
2.171e-2
1.065e-1
5.248e-1

2.188e-4
1.549e-1
1.108e-2
5.560e-5
3.711e+0

5.674e-3
8.692e-3
2.154e-3
7.053e-4

10 20 30

1.075e-1
2.570e-1
2.777e-1
2.856e-1
1.681e+0

1.024e-1
2.519e-1
2.908e-3
7.915e-1
7.915e-1

2.314e-1
1.323e-1
2.750e-1
4.486e-1

1.384e-1
4.254e-1
4.067e-1
4.215e-1
2.482e+0

1.353e-1
4.224e-1
3.852e-4
6.056e-1
6.056e-1

1.955e-1
7.828e-2
4.360e-1
5.672e-1

2.013e-1
5.762e-1
4.882e-1
5.029e-1
2.694e+0

1.991e-1
5.740e-1
7.043e-3
3.593e+0
3.593e+0

1.793e-1
3.484e-2
4.872e-1
5.368e-1

10 20 30

8.496e-3
5.177e-3
4.615e-1
5.155e-1
1.638e+0

3.328e-3
8.824e-6
2.040e-2
2.060e-2
2.465e+0

1.076e-1
2.069e+0
8.468e-2
1.432e-1

6.752e-3
1.617e-2
5.638e-1
5.761e-1
1.463e+0

3.661e-3
1.308e-2
4.241e-2
1.211e-2
1.915e+0

1.176e-1
6.573e-2
2.104e-1
2.257e-1

3.047e-3
6.159e-2
4.365e-1
5.162e-1
1.407e+0

8.415e-4
5.938e-2
6.925e-2
4.608e+0
1.795e+0

1.010e-1
6.638e-2
2.568e-1
3.309e-1

Table 7.9: IMDb: mean of KLD of predicted and actual quantification for all quantifiers.

Test Set Scenarios.

To better characterize the performances of the compared methodologies we have identified three
different scenarios:

• Random: the k% unlabeled nodes are chosen uniformly at random from the whole network;

• Top: the chosen nodes are the top-k% w.r.t. the degree distribution;

• Bottom: the chosen nodes are the bottom-k% w.r.t. the degree distribution.

Our aim is to capture the average scenario (Random) and two more complex ones which identify
those cases in which the neighborhood of unlabeled nodes offers too little (Bottom-k) or too much
(Top-k) information to be exploited for assigning labels. Furthermore, we test all the algorithms
by fixing, for each network, the ratio of unlabeled nodes to 10%, 20% and 30% of |V |. As shown
in Figure 7.14, for the CoRA network (as well as for all the other datasets analyzed) the label
frequency distributions computed on the Top-k and Bottom-k node samples show variation w.r.t.
the one computed on the whole dataset. Conversely, for the Random sampling the frequency
distribution does not differ significantly from the complete network’s one. We report for each
network a table with the KLDs score of the tested approaches: the best results are highlighted in
bold for each value k and node sampling scenario.

• Random sampling :
Extracting k% of the nodes uniformly at random from the original network ensures that the
label distribution of Vu shows a very low drift from the one of Vl. This scenario is very
unlikely on real data and in this case also simple approaches, as sampling, can produce good
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Google+ School Google+ School Bottom Google+ School Top

Method 10 20 30

Infohiermap
Demon
Demon Density
EG1h
EG2h

Infohiermap AC
Demon AC
Demon Density AC
EG1h AC
EG2h AC

LBQ1h
LBQ2h
LBQ3H
Baseline
wvRN

5.723e-3
8.370e-3
8.710e-3
1.366e-3
2.255e-3

8.770e-3
3.047e-1
3.038e-1
4.333e-4
7.465e-4

2.867e-1
2.887e-1
2.830e-1
1.772e-3
2.206e-3

6.247e-3
1.309e-2
1.393e-2
1.685e-3
5.116e-3

2.744e-3
3.092e-1
3.081e-1
1.160e-3
3.504e-3

2.590e-1
2.581e-1
2.538e-1
3.396e-3
7.085e-3

6.126e-3
1.517e-2
1.661e-2
1.823e-3
5.017e-3

2.641e-3
3.150e-1
3.138e-1
1.354e-3
4.177e-3

2.623e-1
2.612e-1
2.555e-1
5.385e-3
4.391e-3

10 20 30

7.281e-3
2.375e-2
2.375e-2
6.584e-3
9.139e-3

6.004e-1
2.912e-1
2.900e-1
4.573e-3
2.913e-3

2.622e-1
2.543e-1
2.518e-1
2.375e-2
1.294e-2

5.620e-3
3.563e-2
3.563e-2
5.154e-3
7.984e-3

5.385e-1
2.840e-1
2.830e-1
3.424e-3
2.531e-3

2.512e-1
2.416e-1
2.390e-1
3.563e-2
1.657e-2

3.475e-3
4.276e-2
4.251e-2
6.316e-3
6.816e-3

4.822e-1
2.816e-1
2.810e-1
2.508e-3
1.795e-3

2.472e-1
2.376e-1
2.360e-1
4.261e-2
1.338e-2

10 20 30

4.862e-4
1.936e-3
2.159e-3
8.580e-4
3.752e-4

9.563e-1
2.910e-1
2.927e-1
1.411e-2
3.110e-2

4.284e-1
4.273e-1
4.221e-1
1.753e-1
1.881e-1

5.511e-4
1.638e-3
1.350e-3
5.801e-3
1.042e-3

1.061e+0
2.152e-1
2.202e-1
1.860e-3
1.407e-2

3.555e-1
3.555e-1
3.522e-1
1.180e-1
1.069e+0

2.011e-3
3.452e-4
3.875e-3
1.719e-2
1.159e-3

9.135e-2
1.887e-1
1.989e-1
2.531e-3
1.167e-2

3.163e-1
3.146e-1
3.138e-1
8.617e-2
4.037e-1

Table 7.10: Google+: mean of KLD of predicted and actual quantification for all quantifiers.

results. In CoRA, as well as in IMDb and Google+ (Table 7.8, 7.9 and 7.10), we observe
how EG approaches outperform both the baseline and the community-based methods.

• Bottom-k sampling :
Populating Vu with the Bottom-k nodes w.r.t. the degree distribution of the network may
introduce a drift on the label frequency: this is reflected by the results provided by the
baseline and LBQ which, increasing the size of the sample worsen their KLD. Conversely,
our approaches tend to increase their performances as the size of Vu increases: this is due
to the greater connectivity that can be exploited to assign labels. In CoRA and Google+ is
again EG that registers the best KLD values, while on IMDb a community-based method
(Demon) is able to obtain the best performances.

• Top-k sampling :
Similarly to the Bottom-k, the Top-k node sampling introduces a distribution drift due to
the unequal probability for each node to be part of the Vu set. Contrary to the previous
sampling strategy, the real challenge here is to correctly discriminate the information given
by the high connectivity of the unlabeled nodes. The selected nodes are hubs: their high
degree increases the probability of being connected with nodes that do not share common
labels. We can observe how Baseline as well as LBQ and wvRN are not able to record the
best performances: community-based approaches on CoRA, IMDb and Google+ show the
overall better accuracy.

Homophily estimation: Label Assortativity

In order to justify the results given we analyzed the degree of homophily of our three datasets
using a network measure called assortativity. Assortativity, or assortative mixing, measures the
preference of a node to attach to others that are similar in some way, for this reason it can used as
a proxy to estimate the overall homophily level within a network w.r.t. a specific feature (i.e., node
degree). Due to the problem addressed and to the three proposed test set construction strategies we
will focus on a specific instantiation of this measure: Label Assortativity which measures how much
nodes tend to being connected with similar labeled ones. To compute assortativity is commonly
used the Pearson correlation coefficient, that lies in [−1, 1]: a positive value indicates a correlation
between nodes with similar labels, while a negative one denotes relationships between nodes with
different labels. When the correlation is equal to 1, the network has a perfect assortative mixing
patterns, when it is equal to 0 the network is non-assortative, while when it is equal to −1 the
network is completely disassortative. CoRA and Google+ have high Label Assortativity (0.6233
and 0.8912, respectively): this reflects positively on the results of the EG quantifiers, which (almost
always) outperform the other approaches, exploiting directly the homophily property. Instead, on
IMDb which has a lower Label Assortativity (0.2787), i.e., lower homophily, community-based
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approaches, which make use of broader information for assigning class labels, outperform the other
quantifiers.

Overlapping Community Discovery.

Comparing the proposed community-based algorithms on the datasets with lower values of Label
assortativity, we can notice a significant predominance of Infohiermap KLD scores over the
Demon’s ones. Given the high KLD values of the latter we may conjecture that overlaps can be a
cause of misclassification: this result is supported by the fact that avoiding the merging phase to
reduce the community’s size (as well as their overlaps) we are able to improve Demon performances
on all the datasets.

Discussion

In this work we have proposed two approaches for performing quantification in complex networks.
Our quantification methods exploit the homophily effect observed in many social networks. The
first method, based on community discovery, estimates class prevalence in a population by con-
sidering the characteristics of the communities composing the entire network, while the second
approach infers the class of each node in the network by observing the class distribution in its
neighborhood. The thorough experimental evaluation that we have carried out shows that our
methods outperform state-of the-art quantifiers.

Given the ever-growing availability of social networks and social media, solving the quantifi-
cation problem on networks opens up new ways for the estimation of social indicators based on
Big Data, provided that we can rely on relatively small surveys of labelled data. Moreover, in
this work we have observed how the proposed approaches are stable to variations on the criteria
used to build the test set: this is very important because quantification plays its major role when
observing dynamic networks. In such scenarios, make assumption on the class distribution of novel
nodes is not an easy task: being able to continuously providing such a valid estimate can be crucial
to support decision processes.
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7.3 Social Engagement: Skype1

As the social media space grows more and more people interact and share experiences through a
plethora of different online services, producing every day a huge amount of personal data. Compa-
nies providing social media services are interested in exploiting these Big Data to understand the
“user engagement”, i.e., the way individuals use the products they provide. Predictive analytics,
for example, allow for looking at historical patterns to make predictions about the future product
usage of individuals, or for targeting the most influential customers for online advertisement and
marketing purposes.

Traditional approaches of predictive analytics focus on individuals: they try to describe and
predict the level of engagement of a single individual, with the purpose of suggesting proper
products/services and favoring the diffusion of the system over a larger population. Focusing
on individuals, however, introduces many challenging issues. First, the amount of individuals
to process is enormous, and hence hardly manageable. Think about online giants like Skype or
Facebook whose products where used regularly by millions of users every day. In these contexts,
being able to provide an up-to-date description and prediction of user engagement for all the users
is not practically feasible. Addressing each single individual is also in many cases redundant, since
neighbors in networks tend to behave in a similar way showing a certain degree of homophily (as
previously discussed in 7.2). A second issue about the user-centric approach is that it reaches poor
performances in the classification and prediction of the individuals engagement. Restricting the
analysis to single users inevitably causes the underestimation of the surrounding social context,
whereas online social services are usually designed to foster social interactions between groups
of individuals. It is hence fundamental to widen the analysis spectrum in order to incorporate
social surrounding of users and, doing so, to capture the homophily which characterize real social
networks.

We propose to shift the focus from individuals to groups, i.e., to analyze and describe the
engagement of social communities. If user-centric approaches fail because they do not take into
account the individuals’ social surroundings, on the other hand, it goes without saying that analyz-
ing the user engagement problem on the overall network does not make sense. The group-centric
approach focuses on social communities as a trade-off between the micro and the macro level of
network granularity (Figure 7.15). Moving the interest from individuals to communities brings
many advantages. First, we reduce by several orders of magnitude the space of analysis, shrinking
the number of objects to process and speeding up the analytical tasks. Second, targeting commu-
nities allows for capturing the homophily inherent to the social network: we can “compress” into
one object all the densely connected components of a social group. Finally, groups are complex
objects from which we can extract a wide set of features for the analysis.

In this work, we want to show that the structural and semantic informations attached to
communities extracted from the Skype social network are able to characterize group engagement.
Here, we do not address the problem of forecasting user engagement, as done in literature, but
the issue of describing it: given the features of a social community we aim to classify the level of
activity of that community. In order to compute social groups we choose four different approaches:

• two community discovery algorithms: one which maximize the partition density (HDemon
(the hierarchical version of Demon discussed in 7.1) and the other its modularity (Louvain
[110]);

• two baseline methods which, in turn, define communities as (i) the ego-network of individuals;
(ii) composed by a fixed number of nodes discovered through a BFS visit.

Starting from the obtained community sets we computed an ensemble of features describing struc-
tural and geographical characteristics for each community. We then learned on them a classifier

1G. Rossetti, L. Pappalardo, R. Kikas, D. Pedreschi, F. Giannotti and M. Dumas, “Community-centric analysis
of user engagement in Skype social networks, 2015
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that reaches good performances when used to describe the engagement of social groups for the
Skype Video and Chat services.

We find that group-centric approaches outperforms user-centric ones when we use algorithms
producing overlapping micro-communities, like the Demon algorithm. In contrast, adopting par-
titioning algorithms which maximize modularity and produce macro-communities, like Louvain,
the reached performances are worse than the ones of classical user-centric strategies. Hence, we
show how the choice of a proper community detection algorithm is crucial to reach high perfor-
mances in the engagement prediction. Moreover, we highlight the role played by the communities
structural and geographical features in the predictive task by analyzing two different scenarios:
when the target classes representing the level of user engagement are balanced and when they are
not.

7.3.1 Understanding Group Engagement

Characterizing user engagement from social network information is a complex task. In many ap-
plicative scenarios, individual-based approaches for user engagement are not able to produce good
accuracy: the main reason for their performances has to be identified in the lack of consideration
given to the social tissue that surrounds each user. On the other hand, approaching the service
engagement problem globally studying the network as a whole often leads to the impossibility to
scale down the obtained results on well-defined substructures.

Figure 7.15: Interpolation between the local and the global level through different sizes network
partitions.

Starting from such observations, we guess that a better descriptive power can be achieved when
a compromise between the micro and the macro level of network granularity is reached. As shown
in Figure 7.15, there are several ways to interpolate between the individual and the global level of a
network: starting from the analysis of ego-networks, which capture the immediate surroundings of
a single node, passing through social communities of different sizes and topological characteristics,
till reaching the analysis of the connected components which constitute network natural partitions.
Identifying the most adequate granularity means capturing social groups where nodes show the
best similarity. Homophily in social contexts, indeed, acts as a strong glue: as we have already
shown in 7.2, a partition which maximizes the homophily among members of the same group is
able capture meaningful information about both individuals and their social surroundings.

Skype Dataset

We analyze a dataset of users and connections in the Skype network as of October 2011. The
dataset includes anonymized data of the Skype users. Each user (identified by hashed ID) is
associated with his account creation date, country and city.

The dataset also includes connections between users. Connections are undirected: a link exists
between two users if and only if they belong to each other’s contact list. Connections are established
as follows: If a user u wants to add another user v to his contact list, u sends v a contact request.
The connection is established at the moment v approves the request (or not established if the
contact request is not approved). In the dataset, each connection is labeled with a timestamp
corresponding to the contact request approval.

In addition to non-identifiable user profile data and network data, the dataset includes data
about usage of two VOIP products: video calling and chatting. Product usage is aggregated
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Figure 7.16: Characterization of the analyzed approach.

monthly. Specifically, for each product, for each user and for each month, we are given the number
of days in the month when said user used the product in question. The product usage data does
not provide information about individual interactions between users, such as participants in an
interaction, content, length, or time of the interaction. The frequency of product usage is not
recorded at a finer granularity than monthly.

In this work, we focus on analyzing the most recent available snapshot of the network. Ac-
cordingly, we focus on the subset of the dataset containing only users who used one of the two
products, during at least two of the last three months covered in the dataset. Our analyses will be
then executed on a filtered dataset composed by several tens of millions of users and connections.

Community Discovery

In our analysis we have considered different ways to group users of a social network, and thus
we have made use of several algorithms each one defining a different kind of communities. As
stated before, community discovery aims to identify tightly connected sets of users. The extensive
literature on this subject have shown how, slightly varying the community definition, it is possible
to produce different models that exhibit peculiar traits. In particular, the degree of overlap is a
property that discriminates between CD algorithms. Classical approaches produce a partition of
the network, i.e., an individual can be involved in at most one community. Overlapping approaches
considers instead the multidimensional nature of social networks allowing the individuals to belong
to many different communities.

We use four different algorithms to extract social communities from the Skype network: Lou-
vain, HDemon, Ego-network and BFS. Such algorithms cover several declinations of overlap.
Figure 7.16 orders the algorithms according to these property. HDemon, Ego-network and
BFS cover several degree of overlap, while Louvain is the prototype of a partitioning modularity-
driven algorithm. In Particular:

The Louvain algorithm [110], which is based on a greedy modularity approach, is fast and scalable
on large networks and reach high accuracy on ad hoc modular networks. The modularity opti-
mization is performed in two steps. First, the method looks for “small” communities by optimizing
modularity locally. Second, it aggregates nodes belonging to the same community and builds a
new network whose nodes are communities. These steps are repeated iteratively until a maximum
of modularity is obtained, producing a hierarchy of communities. Louvain produces a complete
non-overlapping partitioning of the graph. It has been shown that modularity-based approaches
suffer a resolution limit and, therefore, Louvain is unable to detect medium size communities
[109]. This will reflect in an average high density of its community due to the identification of a
predominant set of very small ones (usually composed by 2-3 nodes) and a few very big ones. The
algorithm is parameter-free: on the analyzed data it has produced a community hierarchy of seven
levels.

HDemon, described in 7.1, is the hierarchical extension of the Demon algorithm: it is based
on recursive aggregation of denser areas extracted from ego-networks. Its definition allows to com-
pute communities with high internal density and tunable overlap. In its basic first hierarchical
level, HDemon operates extracting ego-networks and partitioning them into denser areas using
Label Propagation. The communities computed at a given hierarchical level are subsequently used
as meta-nodes to build a new network in the next hierarchical level, in which the edges between
meta-nodes are weighted using the Jaccard of meta-nodes’ contents. This procedure stops when
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disconnected meta-nodes, identifying the components of the original network, are obtained. The
algorithm has two parameters, which are the minimum community size µ; and the minimum Jac-
card ψ among meta-nodes to create an edge that connects them. We applied HDemon on the
data fixing µ = 3 (we consider a triangle the minimum community) and using two different values
of the ψ parameter: ψ = 0.25 which produced the HDemon25 community set, and ψ = 0.5 which
produced the HDemon50 community set. For each community set we consider only the first 5
levels of the produced community hierarchy.

Ego-network is a naive CD algorithm which models the communities as the set of induced
subgraphs obtained considering each node with its neighbors. This approach represents the first
step of the HDemon algorithm and provides the highest overlap among the four considered ap-
proaches: each node u belongs exactly to |Γ(u)|+ 1 communities, where Γ(u) identify its neighbor
set. To avoid this extreme scenario, in the following we apply a node sampling strategy and
consider only a ratio ε of the ego-networks for the analysis. We set the parameter ε = 0.2, and
randomly extracted a number of users equals to the 20% of the population. For each random user
we extracted the corresponding ego network, filtering only unique ones (two users can have equal
ego networks if they share all their contacts).

The BFS approach extracts random connected components from the graph. It randomly sam-
ples a ratio ε of the nodes of the network and, for each one of them, a number csize is extracted
from a distribution, representing the distribution of community size. A breadth first search which
explores csize nodes starts from a root: all the nodes obtained during each single search from a
community. If the search produces a community smaller than csize, the community is discarded.
This approach produces overlapping communities whose density tend to be low for high values
of czise. BFS takes in input three parameters: the sample size ε, the exponent β and the cutoff
τ of a power law distribution, representing the community size distribution (which is known to
be a power law for many known community detection algorithms). We set ε = 0.2 (20% of the
population) and set the power law parameters to β = 1.8 and τ = 10, 000.

algorithm parameters #sets

Louvain no parameters 7

HDemon µ = 3, ψ = 0.25, 0.5 10

Ego-Networks x = 0.2 1

BFS ε = 0.2, β = 1.8, τ = 10, 000 1

Table 7.11: Community sets produced by the four CD algorithms.

Each algorithm produces different community sets when applied on the Skype dataset with
the specified parameters (see Table 7.11 and Table 7.12). More specifically, in Table 7.12 are
reported for each community set and hierarchy level (Lv.): (i) the number of communities (#C);
(ii) the induced node coverage w.r.t. the whole graph; (iii) the average number of communities
per node (σ, i.e., the mean degree of overlap); the average community size (Avg.size). Louvain
is a partitioning algorithm and guarantees the complete coverage of the nodes. HDemon covers
around 76% of the nodes because imposing the parameter µ = 3 we exclude communities with
two nodes only. BFS and Ego-Network are executed on a 20% sample of the nodes, on which
they cover the 90% and 69% respectively. For the Louvain community sets, we consider the
hierarchical levels 0 and 6 only, which correspond to the first greedy iteration and the iteration
having the maximum modularity. Figure 7.17 shows the community size distributions produced by
the CD algorithms described above. They follow a power-law trend indicating that, regardless the
community detection algorithm, a big heterogeneity characterize the size of social groups: most of
the communities contain a few nodes, while a small but significant fraction of communities contain

2For Ego-Nets and BFS the coverage is computed starting from a 20% sample of the total users.
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Community Statistics
Algorithm Lv. #C coverage (%) σ Avg. size

HDemon25

0 1.1e+08 76 13.1 8.2
1 6.2e+07 76 23.2 26.0
2 3.3e+07 76 13.2 27.9
3 2.7e+07 76 6.3 16.1
4 2.7e+07 76 4.7 12.4

HDemon50

0 1.1e+08 76 13.1 8.2
1 8.4e+07 76 11.7 9.8
2 8.2e+07 76 10.3 8.9
3 8.2e+07 76 10.1 8.7
4 8.2e+07 76 10.1 8.7

Louvain

0 8.7e+06 100 1.0 10.7
1 1.4e+06 100 1.0 68.6
2 1.0e+06 100 1.0 92.6
3 9.8e+05 100 1.0 94.4
4 9.8e+05 100 1.0 94.6
5 9.8e+05 100 1.0 94.6
6 9.8e+05 100 1.0 94.6

Ego-Nets - 1.5e+07 692 3.7 15.6

BFS - 1.8e+07 901 13.3 60.8

Table 7.12: Characteristics of the community sets produced by the algorithms on the analyzed
dataset. For each community set we report the number of communities #N , node coverage,
average number of communities per node σ and average community size.

hundreds or thousands nodes, or even millions nodes as for Louvain. As the hierarchical level
increases, the size distributions for the HDemon25 community sets shifts to the right, while it
substantially does not in the case of HDemon50. This is due to the overlapping parameter ψ: the
smaller the parameter the higher the probability of having an edge between two meta-nodes at a
given hierarchical level. Such links will increase the probability of community formation and also
produce bigger communities. For Louvain, as the hierarchical level increases, the curves shifts to
the left: this means that the gap between huge communities and small ones increases, leading to
communities that are bigger in average. The Ego-Network algorithm and the BFS algorithm
also produce skewed distribution, with the BFS algorithm showing the highest heterogeneity.

Community features

From the community sets produced by the four algorithms we extract a wide set of features,
belonging to four main categories: structural, geographical, formation and activity features (see
Table 7.13).

Structural features convey information about the topology of a social community C = (VC , EC),
where VC and EC are the set of nodes and edges in the community, respectively. The number of
nodes N and edges M provide information about the community size. The community density
D = 2M

N(N−1) , i.e., the ratio between the actual links and all the possible links, indicates the level

of interaction within the social group. The clustering coefficient [11] indicates how strong is the
presence of triangles within the community, measuring a “all-my-friends-know-each-other” prop-
erty. There are two possible definitions of the clustering coefficient: (i) the average of the local

clustering coefficient of nodes CCavg = 1
N

∑N
i=1 Ci, where Ci is the local node clustering coeffi-

cient as defined in [11]; (ii) the transitivity ratio CC = number of closed triplets
number of connected triples of nodes

. The degree
assortativity Adeg indicates the preference for the nodes to attach to others that have the same
degree [196]. Other structural features regard the level of hubbiness of a community, such as the
average/maximum degree computed considering both the network links or the community links
only. The diameter d = maxv∈V ε(v) and the radius r = minv∈V ε(v) are respectively the maximum
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(a) HDemon50 (b) Louvain (c) Ego-Network

Figure 7.17: Distribution of community size for HDemon, Louvain, Ego-Networks and BFS.

Structural features

N number of nodes

M number of edges

D density

CC global clustering

CCavg average clustering

Adeg degree assortativity

degCmax max degree (community
links)

degCavg avg degree (community
links)

degallmax max degree (all links)

degallavg avg degree (all links)

T closed triads

Topen open triads

Ov neighborhood nodes

Oe outgoing edges

Edist num. edges with distance

d approx. diameter

r approx. radius

g conductance

Community Formation features

Tf first user arrival time

ITavg avg user inter-arrival time

ITstd std of user inter-arrival time

ITl,f last-first inter-arrival time

Geographic features

Ns number of countries

Es country entropy

Smax percentage of most repre-
sented country

Nt number of cities

Et city entropy

distavg avg geographic distance

distmax max geographic distance

Activity features

Video mean number of days of
video

Chat mean number of days of chat

Table 7.13: Description of the features extracted from the communities.

and the minimum eccentricity ε of any node, where the eccentricity ε(v) is the greatest geodesic
distance between a node v and any other node in the community. They represent the linear size of
a community. Finally other structural features are considered, such as the number of community
neighborhoods (nodes in the global network connected to nodes in the community), the number of
edges leaving the community, the number of triangles and the number of connected triples.

The community formation features convey information regarding the temporal appearance
of nodes within the community, such as: the time of subscription to the Skype service of the first
user to subscribe; the average and the standard deviation of the inter-arrival times of users, i.e.,
the time lapse between the subscription of a user and the next one; the inter-arrival time between
the first node to subscribe and the last node who adopted the service.

Geographic features provide information about the geographic diversity of a community or, in
other words, its cosmopolitan nature. The number of different countries represented gives a first es-
timation of the international nature of the community. The country entropy is a more refined mea-
sure, which estimates the national diversity through the Shannon entropy: E =

∑
c∈C p(c) log p(c),

where C is the set of the countries represented in the community and p(c) is the probability of the
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country c to be represented in the community. We also compute the city entropy and the number
of different cities represented by the community. Moreover, for the users for which we know the city
name (those associated to cities with more than 5,000 users), we compute their geographic distance
using the coordinates of the centers of the cities. Once computed all the available distances, we
consider the average and the maximum geographic distances of each community.

Finally, the activity features indicate the mean level of activity performed by the community
members. We extract two activity features: (i) Chat, the mean number of days they used the
instant messaging (Chat) service; and (ii) Video, the mean number of days they used the Video
conference service. The distributions of the chat feature for HDemon, BFS and Ego-Networks
follow a normal distribution, while those of the chat feature (for Louvain) and of the video feature
(for all algorithms) follow an exponential distribution. In all cases, the separation between high-
engagement and low-engagement communities is less clear for higher thresholds. For the video
feature, the median ranges from 3 to 3.75 (across algorithms) while the 75th-percentile ranges from
6 to 7. For the chat feature, the median ranges from 5 to 5.9, while the 75th-percentile ranges from
13.9 to 15.4.

Experiments

Our purpose is to use the features described above to classify the level of engagement of social
communities, represented by the Chat and Video activity. To this purpose, we need to build a
supervised classifier which assigns communities to one of several predefined categories.

The four community detection algorithms applied on the data with the specified parameter val-
ues produced a total of 19 community sets (see Table 7.12): a hierarchy of 7 levels for Louvain, two
of 5 for both HDemon25 and HDemon50 and a single set for Ego-Network and BFS. Table 7.12
shows some descriptive statistics about the obtained community sets. Only Louvain guarantees
the complete coverage of the nodes, since it is a partitioning algorithm: BFS and Ego-Network
cover only a sample (due to the 20% node sampling strategy adopted in our experiments), while
in HDemon the µ = 3 parameter excludes nodes which are not involved in at least a triangle. For
the Louvain community sets, we consider the hierarchical levels 0 and 6 only, which correspond
to the first greedy iteration and the iteration having the maximum modularity.

Video: AUC and Accuracy

Algorithm Lv. Scores

HDemon25 1 .74 (.67)
HDemon50 0 .71 (.68)

Louvain 0 .65 (.60)
Louvain 6 .63 (.59)

Ego-Nets - .70 (.64)

BFS - .67 (.62)

Chat: AUC and Accuracy

Algorithm Lv. Scores

HDemon25 2 .84 (.77)
HDemon50 1 .81 (.73)

Louvain 0 .69 (.64)
Louvain 6 .65 (.60)

Ego-Nets - .75 (.75)

BFS - .81 (.72)

Table 7.14: AUC and Accuracy (within brackets) produced by the SGD method in the balanced
scenario, for Video and Chat features. In bold the overall best model.

In the following, we describe the performed experiments and the results achieved: later on, we
will discuss the results obtained imposing a balanced class distribution scenario and, subsequently
we will test our approach on the harder, uneven class distribution one.

Balanced classes scenario

We consider two classes of user engagement for each of the two activity features (chat and video):
low engagement and high engagement. To transform the two continuous activity features into
discrete variables we partition the range of values through the median of their distribution. This
produced, for each variable to predict, two equal-populated classes: (i) low engagement, ranging
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Figure 7.18: Weights of the features produced by the SGD method for the community sets of
HDemon (a), Ego-Network (b), BFS (c), and Louvain (d).

in the interval [0,median]; and (ii) high engagement, ranging in the interval [median, 31].3

To perform classification we use Stochastic Gradient Descent (SGD) and AUC (area under the
ROC curve) to evaluate their performance. The ROC curve illustrates the performance of a binary
classifier, and is created by plotting the true positive rate (tpr, also called sensitivity) versus the
false positive rate (fpr, also called fall-out or 1-specificity), at various threshold settings. The
overall accuracy is instead the proportion of true results (both true positives and true negatives)
in the population. Moreover, in a preliminary testing phase the classification step was repeated
also using a Random Forest model built upon C4.5: due to the similar performance observed, the
more intuitively interpretation of the obtained results and the lower execution time we decided to
show only the results obtained by SGD.

Thus, we learn the SGD classifier with logistic error function [197, 198] exploiting its imple-
mentation provided by the sklearn Python library.4 We execute 5 iterations, performing data
shuffling before each one of them, imposing the elastic-net penalty α = 0.0001 and l1-ratio = 0.05.
The adoption of elastic-net penalty results in some feature weights set to zero, thus eliminating
less important features. The value for the hyper-parameters is obtained by running grid-search
on a smaller, random subset data from HDemon communities at level 0. We apply a five fold
cross-validation for learning and testing.

Table 7.14 shows the AUC produced by the SGD method on the features extracted from
the community sets produced by the four algorithms (for HDemon and Louvain only the two
best performing community sets are reported). HDemon produces the best performance, both
in terms of AUC and overall accuracy, for all the three activity features. Louvain, conversely,
reaches a poor performance and it is outperformed by the more trivial BFS and Ego-Networks
algorithms. These results suggest that the adoption of pure modularity optimization approaches,
like the Louvain one, is not effective when categorizing group-based user engagement due to
their resolution limit which causes the creation of huge communities [?]. As the level of the
Louvain hierarchy increases, and hence the modularity increases, both the AUC and overall
accuracy decrease. In the experiments, indeed, the first Louvain hierarchical level outperforms
the last level, even though the latter has the highest modularity.

Figure 7.18 shows the features which obtain a weight value by the SGD method higher than 0.2
or lower than −0.2 (i.e., the most discriminative features for the classification process). HDemon
distributes the weights in a less skewed way, while the other algorithms tend to give high importance
to a limited subset of the extracted features. Moreover only a few Louvain features have a weight
higher than 0.2 or lower than −0.2 (see Figure 7.18, d), confirming that a modularity approach
produces communities with weak predictive power with respect to user engagement. Moreover, an
interesting phenomena emerges: independently from the chosen community discovery approach,
the most relevant class of features for the classification process seem to be to the topological one

3the maximum is 31 because it refers to the mean number of days per month in which that activity was performed.
4http://scikit-learn.org/stable/index.html

http://scikit-learn.org/stable/index.html
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Figure 7.19: Balanced Scenario: AUC vs. Avg. Density and AUC vs. Avg. Size.

(i.e., the sum of the absolute values of the SGD weights for the features belonging to such class is
always greater than the same sum for community formation and geographical features combined).
In particular degree, density, community size and clustering related measures often appear among
the most weighted features.

Figures 7.19 shows the relationships between the average community size, the average commu-
nity density and the AUC value produced by the SGD method on the community sets which reach
the best performances in the balanced scenario. The best performance is obtained for the HDemon
community sets, which constitute a compromise between the micro and the macro level of network
granularity. When the average size of the communities is too low, as for the ego-network level, we
lose information about the surroundings of nodes and do not capture the inner homophily hidden
in the social context. On the other hand, when communities become too large, as in the case
of communities produced by Louvain we mix together different social contexts losing definition.
Communities expressing a good trade-off between size and density, as in the case of the HDemon
algorithm, effectively reach the best performance in the problem of estimating user engagement.
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Figure 7.20: Unbalanced scenario: Lift plot for each service.

Unbalanced classes scenario

We address also an unbalanced scenario where we use the 75th percentile for the low engage-
ment class, which thus contains the 75% of the observations, and put the remaining 25% of the
observations in the high engagement class.

Table 7.15 describes the results produced by the SGD methods in the unbalanced scenario, using
the same features and community discovery approaches discussed before. The baseline method for
the unbalanced scenario is the majority classifier: it reaches an AUC of 0.75 by assigning each item
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Video: AUC and Accuracy

Algorithm Lv. Scores

HDemon25 1 .76 (.68)
HDemon50 0 .73 (.65)

Louvain 0 .64 (.59)
Louvain 6 .61 (.58)

Ego-Nets - .71 (.63)

BFS - .68 (.61)

baseline - .75

Chat: AUC and Accuracy

Algorithm Lv. Scores

HDemon25 2 .82 (.78)
HDemon50 3 .80 (.76)

Louvain 0 .68 (.70)
Louvain 6 .67 (.66)

Ego-Nets - .83 (.79)

BFS - .82 (.77)

baseline - .75

Table 7.15: AUC and Accuracy (within brackets) produced by the SGD method in the unbalanced
scenario, for the Video and Chat features. In bold the overall best model. The baseline method is
the majority classifier, which reaches an AUC of 0.75 by assigning each item to the majority class
(the low engagement class).

Video: Precision - Recall

Algorithm Lv. Scores

HDemon25 2 .42 (.72)
HDemon50 1 .39 (.70)

Louvain 0 .33 (.69)
Louvain 6 .33 (.67)

Ego-Nets - .37 (.68)

BFS - .35 (.71)

baseline - .25

Chat: Precision - Recall

Algorithm Lv. Scores

HDemon25 2 .54 (.69)
HDemon50 3 .50 (.67)

Louvain 0 .40 (.41)
Louvain 6 .44 (.33)

Ego-Nets - .57 (.68)

BFS - .52 (.71)

baseline - .25

Table 7.16: Precision and Recall (within brackets) produced by the SGD model for the Video and
Chat features in the unbalanced scenario. In bold the overal best model. Having used the 75th

percentile to discriminate the class labels the Precision baseline w.r.t. the positive class is .25.

to the majority class (the low engagement class). We observe that, regardless the community set
used, the SGD method (as well as Random Forest) is not able to improve significantly the baseline
classifier for Video. Conversely, the results obtained for the Chat feature by SGD outperform the
baseline when we adopt HDemon, Ego-Networks and Louvain community sets, reaching an
AUC of 0.83.

In order to provide additional insights on the models built with the adoption of the different CD
algorithms, we also compute the precision and recall measures with respect to the minority class
(see Table 7.16). Looking at these measures enable us to understand which are the advantage in
using SGD to identify correctly instances of the less predictable class. Moreover, due to the skewed
right side of the Video and Chat distributions we can observe how choosing the 75th percentile lead
to a very difficult classification setup: the instances belonging to the minority class often represent
outliers having very few examples from which the classifier can learn the model.

Here, the baseline is the minority classifier which reaches a precision of 25% by assigning each
community item to the minority class (the high engagement one). We observe that the SGD
method outperforms the baseline classifier on all the community sets (reaching values in the range
[.33, .57]). HDemon and Ego-Networks are the community sets which lead to the best precision,
on the Video features and the Chat feature respectively.

In order to measure the effectiveness of SGD we report the Lift chart which shows the ratio
between the results obtained with the built model and the ones obtained by a random classifier.
The charts in Figure 7.20 are visual aids for measuring SGD’s performance on the community sets:
the greater the area between the lift curve and the baseline, the better the model. We observe that
HDemon perform better than the competitors for the video features. For the chat features, the
community sets produced by the three naive algorithm win against the other two CD algorithms.
For all the three activity features Louvain reaches the worst performance, as in the balanced
scenario.
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Figure 7.21: Unbalanced scenario: Stochastic Gradient Descent features weights for all the com-
munity sets. HDemon (a), Ego-Network (b), BFS (c), and Louvain (d).

As done for the balanced scenario, in Figure 7.21 we report for each CD the features having
weight greater than 0.2 or lower than −0.2. Conversely from the results presented in the previous
section, where topological features alway show the higher relative importance for the classification
process, in this scenario we observe how community formation and geographical features are the
ones which ensure greater descriptive power. As previously observed the minority class identified
by a 75th percentile split is mostly composed by particular, rare, community instances. This
obviously affect the relative importance of temporal and geographical informations: the results
seems to suggest that the more a community is active the more significative are its geographical
and temporal bounds.

Finally in Figure 7.22 we show the relationships between the average community size, the
average community density and the AUC value produced by the SGD method on the community
sets which reach the best performances in the unbalanced scenario. We can observe how, in this
settings, the algorithms granting communities having on average small sizes and high density are
the ones that assure the construction of SGD models reaching higher AUC. In particular HDemon
in both its instantiation seems to outperform the other approaches.

Community Characterization

From our analysis emerged a well defined trend: among the compared methodologies, HDemon is
able, both in balanced and unbalanced scenarios, to better bound homophily and thus to extract
communities whose analysis guarantee useful insights on the product engagement level. For this
reason, starting from the communities extracted by such bottom-up overlapping approach we
computed the Pearson correlation for all the defined features against the final class label (high/low
engagement).
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Figure 7.22: Unbalanced Scenario: AUC vs. Avg. Density and AUC vs. Avg. Size.
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Figure 7.23: Most relevant Pearson correlations between community feature values and target class
(high/low activity) for HDemon. In (a-b) are shown the indexes for the balanced class scenario
while in (c-d) for the 75th percentile split.

As shown in Figure 7.23(a), when splitting the Video engagement using the 50th percentile we are
able to identify as highly active communities the ones having high country entropy Es as well as
high geographic distance among its users distavg and whose formation is recent (i.e., whose first
user has joined the network recently, Tf , as well as the last one, ITl,f .). Moreover, Video active
communities tend to be composed by users having on average low degree as shown by degallavg and

degCmax. Conversely, looking at Figure 7.23(b) we can notice that communities which exhibit high
Chat engagement can be described by persistent structures (i.e., social groups for which the inter-
arrival time ITl,f from the first to the last user is high), composed by users showing almost the
same connectivity (in particular having high degree) and sparse social connections (low clustering
coefficient CC, low density D and high radius).
Moreover, we calculate the same correlations for the 75th percentile split: conversely from the new
results for the Chat engagement (Figure 7.23(d)) which do not differ significantly from the ones
discussed for the balanced scenario, in this settings the highly active Video communities show new
peculiarities. In Figure 7.23(c) we can observe how the level of engagement inversely correlates
with the community radius (and diameter) and directly with the density. These variations describe
highly active Video communities as a specific and homogeneous sub class composed by small and
dense network structures composed by users who live in different countries (high geographical
entropy Es).

Discussion

As previously done for the Quantification problem in 7.2, in this work we have studied the relation
between homophily and community discovery. Coherently with our previous results a clear pattern
emerges from the conducted analysis: CD algorithms are able to bound homophilic behaviors only
if the their community definition is able to produce dense, small size communities. In particular,
using information extracted by communities (both semantic and structural) we were able to learn
very accurate classifiers for the Skype products. We first produced several community sets from the
global Skype network by applying on the data different community detection algorithms. We then
extracted from each community topological and geographical features and learned classification
models to predict the level of usage for the video and chat services provided by the VOIP provider.
Our results showed that, both in balanced and unbalanced classification scenarios, algorithms
producing overlapping micro-communities like HDemon reach the best performances. Conversely,
modularity-based approach like Louvain are not able to guarantee good performance and are
often outperformed by simpler clustering strategies such as Ego-Networks and BFS. Moreover,
in order to give some insights on the obtained classification, we provided a description for low/high
engaged communities identified by HDemon through the analysis of the correlations between their
activity level and the values of their features. Our results could be further improved by two key
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properties which are not present in the Skype dataset: the strength of the ties between the users,
and information about the dynamics of user profiles and network links. On one side, the strength
of a tie quantifies the degree of interaction between two individuals, allowing to understand at
what extent the level of interactions inside a community is linked to its service engagement. On
the other side, temporal information about the appearance of links or the geographical location of
users will allow us to investigate how the network and community structure, and hence the service
engagement, change in time and after the migration of users from a country to another.



Part III

Social Dynamics: Networks
through Time





Chapter 8

Modeling Individual Dynamics

Change will not come if we wait for some
other person or some other time. We are
the ones we’ve been waiting for. We are
the change that we seek.

— Barack Obama

Moving from the results introduced in Part II in this chapter we tackle the problem of predicting
new links. As discussed in 4.1.2, several families of methodologies were proposed to address this
very complex task. Our first work on this subject, introduced in 8.1, provides and evaluates a
handful of unsupervised methods that exploit multidimensionality and temporal annotation in
order to solve the LP problem in the specific context of multidimensional networks.
In 8.2 we reformulate the classic definition of the Link Prediction task in order to describe a more
challenging problem: Interaction Prediction (henceforth, IP). In this scenario we address the more
general task of forecasting new interactions in a highly dynamic social scenario. In order to achieve
high predictive performances, we propose a mining procedure which takes advantage of our results
in Community Discovery (already discussed in 7.1) as well as time series forecasting and supervised
learning approaches.
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8.1 Unsupervised Link Prediction1

Moving from the analysis of multidimensional networks proposed in the previous part of this
thesis, here we introduce an extension of the Link Prediction problem. Following the approach
of a large family of studies based on structural properties of the network such as, for example,
Common Neighbors [62], Preferential Attachment [60] or Adamic-Adar [61], we will introduce
several measures able to exploit the knowledge that can be extracted from the multiplex networks
in order to predict those links that will appear in each specific dimensions. In our vision, the
evolution of a multidimensional network depends on three factors:

i) the underlying theoretical model of node interactions (e.g., nodes with high degree tend to
attract more connections);

ii) the interplay among dimensions (e.g., links may form in a specific dimension with a higher
likelihood);

iii) the complete temporal history of a link (e.g., links always present during the network history
may be more likely to appear in the future).

In oder to reflect this, we build unsupervised predictors which combine the contribution of three
basic measurements used in conjunction: (i) multidimensional versions of Common Neighbors and
Adamic-Adar, (ii) global measures capturing the interplay of multiple dimensions at different levels,
and (iii) measures based on the complete history of the presence of a link within a network.

Multidimensional Networks: Temporal extension

As shown in 6.1, we adopt a multigraph to model multidimensional networks and their properties.
Moreover, we extend the previously introduced model in order to express temporal annotation
on the edges. Since we do not consider node labels, hereafter we use edge-labeled undirected
multigraphs, denoted by a tuple G = (V,E, L, T, τ) where: V is a set of nodes; L is a set of labels;
E is a set of labeled edges, i.e., the set of triples (u, v, d) where u, v ∈ V are nodes and d ∈ L is
a label; T is a set of timestamps; τ : E → P(T ) is a function returning the set of timestamps of
presence of a given edge (and P(T ) denotes the power set of T ). Where we are not interested in the
temporal history of an edge, we refer to it by simply using a triple (u, v, d). Whenever, in turns,
we need to specify the temporal information, we use the pair ((u, v, d), τ(u, v, d)). Moreover, if we
write (u, v, d) ∈ E we assume: τ(u, v, d) 6= ∅, i.e., there exist at least one timestamp t in which the
edge (u, v, d) is present, or, in other words, in which the dimension d connects u and v. Hereafter,
we omit this note in the definitions of our structural measures when this is not needed.

Also, we use the term dimension to indicate label, and we say that a node belongs to or appears
in a given dimension d if there is at least one edge labeled with d adjacent to it. We also say that
an edge belongs to or appears in a dimension d if its label is d. We assume that given a pair of
nodes u, v ∈ V and a label d ∈ L only one edge (u, v, d) may exist. Thus, each pair of nodes in G
can be connected by at most |L| possible edges. Hereafter P(L) denotes the power set of L.

8.1.1 Multidimensional Link Prediction

Given a pair of nodes in an evolving network, the literature on monodimensional network analysis
defines Link Prediction as the problem of estimating the likelihood that an edge will form between
two nodes. There can be several ways to reformulate it in the multidimensional setting. For exam-
ple, the classical definition may be preserved as it is, disregarding the dimensions, only focusing on
new connections between any two nodes. Another possible way is to specify a set of dimensions for
which we want to estimate the likelihood. A more specific formulation, that we use in the rest of
this work, require to estimate the likelihood that an edge will form between two nodes in a specific

1G. Rossetti, M. Berlingerio, and F. Giannotti, “Scalable link prediction on multidimensional networks”, in IEEE
ICDM, 2011.
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dimension. That is, we add an additional parameter to the classical definition. More formally we
define:

Definition 15 (Multidimensional Link Prediction) Given a multidimensional network mod-
eled as a multigraph G = (V,E,L, T, τ), the Multidimensional Link Prediction problem (from now
on, MLP) requires to return a function score : V × V × L → [0,+∞[ of scores measuring the
likelihood that any two pairs of nodes will connect in a specific dimension, in the future.

Local Measures: Neighborhood

Besides the classic definition of neighborhood, we adopt as connectivity measures the ones defined in
6.1: in particular the NeighborXor variant. Moreover, when computing the connectivity measures
we assume: τ(u, v, d) 6= ∅, thus we omit the temporal information in our measures.

While the classic formulation of the function Neighbors might be used directly into the formulas
of Common Neighbors and Adamic-Adar we will use its Xor variant in order to find a better fit for
the multidimensional settings which is able to capture the interplay among the dimensions w.r.t.
the exclusivity of connections.

Global Measures: Dimension Connectivity

While the Neighbor related measures defined in 6.1 are local to nodes, here we define four novel
global measures. In particular, we introduce the Dimension Connectivity and Average Correlation
measures on both the sets of nodes and edges.

Definition 16 (Node Dimension Connectivity) Let d ∈ L be a dimension of a network G =
(V,E,L, T, τ). The function NDC : L→ [0, 1] defined as

NDC(d) =
| {u ∈ V | ∃v ∈ V : (u, v, d) ∈ E} |

|V |
(8.1)

computes the ratio of nodes of the network that belong to the dimension d.

Definition 17 (Edge Dimension Connectivity) Let d ∈ L be a dimension of a network G =
(V,E,L, T, τ). The function EDC : L→ [0, 1] defined as

EDC(d) =
|{(u, v, d) ∈ E|u, v ∈ V }|

|E|
(8.2)

computes the ratio of edges of the network labeled with the dimension d.

While the two measures above regard the importance that a single dimension has w.r.t. the
connectivity of the network, we now define other two measures aimed at capturing the global
interplay among dimensions by looking at their average correlation.

Definition 18 (Average Node Correlation) Let d ∈ L be a dimension of a network G =
(V,E,L, T, τ). The function ANC : L→ [1/|L|, 1] is defined as

ANC(d) =

∑
d′∈LNJaccard(d, d′)

|L|
(8.3)

where NJaccard(d, d′) is the Jaccard correlation index on the node sets |N(d)∩N(d′)|
|N(d)∪N(d′)| , where N(d̄) =

{u | ∃ (u, v, d̄) ∈ E}. It computes the average node correlation of a dimension with all the others.

Definition 19 (Average Edge Correlation) Let d ∈ L be a dimension of a network G =
(V,E,L, T, τ). The function AEC : L→ [1/|L|, 1] is defined as

AEC(d) =

∑
d′∈LEJaccard(d, d′)

|L|
(8.4)
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τ(1, 2, 2) = {1, 3} τ(2, 3, 1) = {2, 3}
τ(2, 4, 1) = {1} τ(3, 4, 1) = {3}
τ(4, 5, 1) = {2, 3} τ(4, 5, 2) = {2, 3}
τ(4, 6, 1) = {3} τ(4, 6, 2) = {2, 3}
τ(4, 7, 1) = {1, 2} τ(5, 6, 1) = {1, 2, 3}
τ(5, 6, 2) = {1, 3} τ(6, 7, 2) = {1, 2, 3}

Figure 8.1: Toy example: Solid line is dimension 1, dashed is dimension 2.

where EJaccard(d, d′) is the Jaccard correlation index on the edge sets |E(d)∩E(d′)|
|E(d)∪E(d′)| , where E(d̄) =

{(u, v) | ∃(u, v, d̄) ∈ E}. It computes the average edge correlation of a dimension with all the
others.

Example 2 In Figure 8.1 the EDC of dimension d1 (solid line) is 7/12 since it has 7 edges out
of the 12 total edges of the network, while the EDC of d2 (dashed line) is 5/12. The NDC for d1

is 5/7 and NDC for d2 is 6/7. The AEC of d1 is (1 + 3/12)/2 = 0.625. For the same dimension,
ANC is (1 + 5/7)/2 = 0.857.

Temporal Measures

Besides the analysis of the multidimensional structure at both the local and global levels, we also
want to take into account the complete temporal history of each edge belonging to the network.
In order to do so, we define four different measures. Thus, here we make use of the τ function.

The first measure simply counts the number of temporal snapshots in which an edge is present
in a dimension:

Definition 20 (Frequency) Let (u, v, d) ∈ E be an edge of a network G = (V,E, L, T, τ). The
function Freq : E → [1, |T |] defined as

Freq(u, v, d) =| τ(u, v, d) | (8.5)

computes the frequency of an edge in terms of the number of temporal snapshots in which it appears.

We can aggregate the above by dimensions, counting the number of snapshots in which a pair
of nodes is connected:

Definition 21 (Over All Frequency) Let (u, v) be two nodes in V in a network G = (V,E, L, T, τ).
We define OAFreq : V × V → [1, |L| × |T |] as:

OAFreq(u, v) =

∣∣∣∣∣∣
⋃

{d∈L|(u,v,d)∈E}

τ(u, v, d)

∣∣∣∣∣∣ (8.6)

As time has a natural ordering, we may want to be able to give more (or less) importance to
more recent interactions when predicting new ones. To this end, we define two weighted measures
on the temporal history of an edge:

Definition 22 (Weighted Presence) Let (u, v, d) ∈ E be an edge of a network G = (V,E,L, T, τ).
The function WPres : E → [1,+∞[ is defined as

WPres(u, v, d) =
∑

{t∈τ(u,v,d)}

wt (8.7)

where wt is the weight of the temporal snapshot t. For simplicity, given the temporal ordering, we
assume wti = i.
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As done above, we can also aggregate WPres by dimensions:

Definition 23 (Over All Weighted Presence) Let (u, v) be two nodes in V in a network G =
(V,E,L, T, τ). The function OAWPres : V × V → [1,+∞[ defined as

OAWPres(u, v) =
∑

{d|(u,v,d)∈E}

WPres(u, v, d) (8.8)

Example 3 In the toy example in Figure 8.1, where we reported also the complete history of each
edge in the table, we have: Freq(4,5,1)=2; OAFreq(4,5)=4; WPres(4,5,1)=5; OAWPres(4,5)=10.

Predictive Models based on structural analysis

We now present several possible solutions for MLP, introducing a list of functions to use as scores.
It is clear how, in analogy with the LP problem in the monodimensional case, there can be a tax-
onomy of solutions, divided in supervised or unsupervised approaches, based on structural analysis
or on the extraction of frequent patterns of evolution, based on statistical analysis of temporal
series, and so on. In the rest of this section we present solutions based on the structural analysis of
the network. We start from the multidimensional reformulation of two classical approaches based
on neighborhood (Common Neighbors and Adamic-Adar), then we introduce other measures to be
taken into account in the final list of scoring functions. Our resulting solutions are then combina-
tions of supervised and unsupervised approaches, aimed at capturing all the possible strong and
weak signals of the non-trivial interplay of multidimensionality and temporal evolution.

All the available theoretical basic bricks previously defined can now be combined to build
our set of predictors for MLP. For convenience, in this section we use the notation N(◦, •) for
Neighbors(◦, •), and, in analogy, NXOR(◦, •) for NeighborsXOR(◦, •) .

Base predictors

We wanted to have basic predictors for our experiments, and we choose Common Neighbors [62]
and Adamic-Adar [61], as they are among the best w.r.t. predictive performances, as highlighted
by [63]. We can introduce a multidimensional version of them by using our function Neighbors:

Definition 24 (Multidimensional Common Neighbors) Let G = (V,E,L, T, τ) be a network
and (u, v, d) /∈ E be a candidate future edge. We define:

M -CN(u, v, d) = | N(u, d) ∩N(v, d) | (8.9)

Hereafter, we often use M-CN to refer to this predictor.

Definition 25 (Multidimensional Adamic Adar) Let G = (V,E, L, T, τ) be a network and
(u, v, d) /∈ E be a candidate future edge. We define:

M -AA(u, v, d) =
∑

z∈{N(u,d)∩N(v,d)}

1

log(|N(z, d)|)
(8.10)

Hereafter, we often use M-AA to refer to this predictor.
In the following, instead, we replace Neighbors with NeighborsXOR, by following the intuition

that more sophisticated multidimensional information may lead to better predictive performance.
As we will observe in our experimental results, this intuition was proved to be incorrect in the
networks used.

Definition 26 (Multidimensional Common NeighborsXOR) Let G = (V,E,L, T, τ) be a net-
work and (u, v, d) /∈ E be a candidate future edge. We define:

M -CNXOR(u, v, d) = | NXOR(u, d) ∩NXOR(v, d) | (8.11)
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Base
Multidim. Temporal
Measure Measure

M-AA
M-AA NDC
M-AA EDC
M-AA AEC
M-AA ANC
M-AA Freq
M-AA OAFreq
M-AA WPres
M-AA OAWpres
M-AA AEC WPres
M-AA AEC OAWPres
M-AA ANC WPres
M-AA ANC OAWPres

Base
Multidim. Temporal
Measure Measure

M-CN
M-CN NDC
M-CN EDC
M-CN EC
M-CN NC
M-CN Freq
M-CN OAFreq
M-CN WPres
M-CN OAWPres
M-CN AEC WPres
M-CN AEC OAWPres
M-CN ANC WPres
M-CN ANC OAWPres

Table 8.1: Taxonomy of the proposed approaches (non-XOR versions)

Definition 27 (Multidimensional Adamic AdarXOR) Let G = (V,E, L, T, τ) be a network
and (u, v, d) /∈ E be a candidate future edge. We define:

M -AAXOR(u, v, d) =
∑

z∈{NXOR(u,d)∩NXOR(v,d)}

1

log(|NXOR(z, d)|)
(8.12)

Observations on the scoring families

• In principle, it is possible to define several scores on the basis of the multidimensional mea-
sures presented above. For example, it is possible to multiply the NeighborsXOR of two nodes
in one dimension to obtain a score, ending up with a Preferential-Attachment like model [60].
We tried several combinations, but, due to extremely poor predictive performances, as tested
during our experimental stage, we do not report their definition. According to our experi-
ments, in fact, the multidimensional information gathered by our measures in the networks
used is not enough to predict new edges. This negative result is analog to the one obtained
by the authors of [73], who reported that their supervised model was not performing well
when used alone for prediction. In analogy with their strategy, we tried then to combine the
information learned from the data with unsupervised model.

• It is possible to define temporal scores based on modifications of the above measures. We
tried a few of them but, in analogy with the multidimensional scores, their predictive power
when used alone was very poor on our networks.

• Finally, we can define a scoring function by combining all the basic bricks presented in our
theory. In particular, we can aggregate the information provided by the baseline models
with the information provided by the multidimensional measures or the temporal ones. This
is exactly the line followed in [73], where the authors combine the information provided by
the model defined by the complete set of frequent evolution rules mined from the network
with the information provided by the baseline models. In analogy with their paper, we tried
several combinations of our proposed measures. Table 8.1 shows the non-XOR versions of
all the solutions we tested. Each line represents which basic bricks we used for building one
scoring function, for a total of 26 predictors. The basic bricks were combined by multiplying
their scores. Clearly, other aggregates or combinations are possible and we tried some of
them, but, due to poor predictive power, here we only report the best ones.



8.1. UNSUPERVISED LINK PREDICTION 137

Dataset |V | |E| Neighbors
min max avg global min max avg global min max avg gl. avg

DBLP train. 378 3 891 1 718.3 33 329 560 7 792 3 418.4 95 727 14 77 35.5 5.07
DBLP test 26 1 126 404.8 8 507 13 1 963 672.9 17 496 1 24 12.9 3.87
IMDb train. 9 9 219 1 581.4 12 146 36 310 811 39 568.3 989 208 8 885 228.1 62.84
IMDb test 3 2 181 354.1 2 844 3 36 658 4 676.4 116 910 2 161 61.7 31.43

Table 8.2: Basic statistics for our networks

Experiments

In order to better understand how the proposed approaches behave we report the results obtained
by applying them on real complex networks. The predictive performance is measured via ROC
(Receiver Operating Characteristic) curves computed on the results of the predictors. We use ROC
curves instead of Precision/Recall plots for their better comparability among different networks
and predictors. Moreover, as shown in [199] both curves lie in isomorphic spaces.

We choose to use for testing purposes two networks coming from different real world sources:
the bibliographic database DBLP2, from which we extracted a co-authorship network, and the
movie database IMDb3, from which we extracted a collaboration network. More in details, we
built the following two networks:

• DBLP. We extracted author-author relationships if two authors collaborated at least in one
paper. The dimensions are defined as the venues in which the paper was published. We
took only the publications in the most important 28 conferences in computer science, which
include VLDB, SIGKDD, WWW, AAAI and more. For the training set we narrowed the
temporal span to the 1999-2008 years and chose year 2009 as test set.

• IMDb. We extracted a collaboration network of the actors involved in Indian movie pro-
ductions. Two actor (nodes) are connected by an edge if they took part in at least one movie
together in a given year: as training set we considered the years from 1999 to 2008 and the
year 2009 as test set. To introduce multidimensionality we took care, for each actor-actor
edge, of the genres of the movie, ending up with 25 different dimensions.

Table 8.2 summarizes, for each network and set considered, the number of nodes, edges, and neigh-
bors, and reports for each of them min, max and average computed over the different dimensions
as well as their global values computed disregarding the multidimensional information (where “gl.
avg” is the average degree).

Evaluation of the results

We now want to give a quantitative evaluation of the results. We measure how well M-CN, M-AA
and their XOR versions perform, how the two versions of them compare, how much their predictive
power can be improved by multidimensional or temporal information, and we want to see if there
are global predictors that globally outperform all the others.

We applied all the scoring functions as reported in Table 8.1 to our networks. In Figure 8.2
we report the ROC curves computed on a significative selection of results. Figure 8.2 reports in
the first two rows the ROC curves computed in DBLP by using M-CN and M-AA, multiplied
by multidimensional information (first column), temporal information (second column) or both
of them (last column). The second row report the same, for IMDb. The last row of the figure
reports different sets of plots. In the first two column of Figure 8.2 we show the comparison
between the M-AA and M-CN on DBLP and IMDb, respectively, while in the third we group all
the four multidimensional base predictors on the DBLP network. In Figure 8.3, we report the

2http://dblp.uni-trier.de
3http://www.imdb.com
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Figure 8.2: ROC curves computed on the predictors based on Neighbors
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Figure 8.3: ROC curves computed on the predictors based on NeighborsXOR

comparison between all the four multidimensional base predictors on IMDb, and two examples of
the performances given by the predictors based on NeighborsXOR.

First, by comparing figures 8.2 and 8.3, we must observe a negative result: the XOR variant
of the Neighbors function is destroying part of the information about the neighbors. This can be
seen by the scale on the y axis of all the plots in Figure 8.3 (there, we show only the best results
obtained by the XOR versions). Due to the definition of our measures, the XOR is reducing the
number of total predictions issued. This is very clear from the plots in figures 8.2(o) and 8.3(a),
that compare the normal and XOR versions of the basic predictors for both the networks.

Second, the temporal scores used as multiplier for the base predictors are able to restore 4 part
of the predictive power lost with the XOR, which can be additionally recovered by multiplying
also by the multidimensional measures. However, the XOR based prediction is globally very poor
compared to the normal one.

Third, consider the plots in figures 8.2(m) and 8.2(n). Here is shown the comparison between
M-AA and M-CN for the two networks. As we see, while in DBLP the global better performance
of the Adamic-Adar predictor is validated, this is not true for IMDb, where M-CN is performing
better. A possible explanation of this might be found in the structure of the two networks. In
addition to the global more dense structure of IMDb, we also note that this network tends to have
more cliques, that are also larger, w.r.t. DBLP, given that one movie usually joins together more
persons than one scientific paper. In this scenario, the prevalence of the Adamic-Adar intuition
(more importance to rarer neighbors) over the Common Neighbors one (higher score to nodes with
more neighbors in common) seems to lose its strength. In turns, M-CN for IMDb seems to be
difficult to boost by means of multidimensional or temporal information, as we can see in the
fourth row of Figure 8.2, that, on the other hand, destroy part of the predictive power of M-CN.

Next, consider the first two rows of Figure 8.2. In DBLP, the predictive power of both M-CN
and M-AA can be boosted by adding multidimensional or temporal information, with an even
more powerful conjunction (see (c) and (f)).

Regarding which multidimensional or temporal measures are able to help the prediction, we see
that: for the first, ANC and AEC globally tend to add predictive power (especially ANC), while
NDC and EDC globally lower the precision; for the second, it is clear from all the plots that the
weighted version of all the measures is more accurate in capturing the temporal information, and
that the OverAll versions of the measures behave better than the normal ones.

Globally speaking, the best predictors in the networks analyzed is the one built upon the
conjunction of OAWpres, ANC, and one of M-CN and M-AA.

Comparison with the random predictor

In analogy with previous works [63], we also compare the performance of our predictors with
the random one, used as baseline. The performance is here identified with the precision of the

4Not in terms of number of predictions, but in terms of their precision.
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Figure 8.4: Running times and statistics for the analyzed different IMDB subnetworks.

predictive model, which for the random predictor can be calculated as:

Precisionrandom =
|Etest|

|L| × |V |(|V |−1)
2

(8.13)

Given that all the introduced predictors are based on common neighborhood, they all output the
same set of predicted links, even if the scores might be different. For this reason, we can calculate
a single value of performance for all the proposed predictors:

Precision =
TruePositive

TruePositive+ FalsePositive
(8.14)

The boost of the performance for the networks analyzed, computed as the ratio Precision
Precisionrandom

,
was 35,150.4 for DBLP, and 7.1 for IMDb. As we see, the gain is much higher for DBLP, which is
a much sparser network (see Table 8.2).

Scalability

The last open question regards the degree of scalability of our approach. In order to answer it,
we built a few network with different node and edge sizes. In particular, we took the training
set of IMDb (the largest network), and produced 5 different subnetworks. We started taking the
nodes and edges belonging to only 5 dimensions, producing a first small network, then we added
5 dimensions (with the corresponding nodes and edges) at each step, until the entire network
was added. Table 8.4 summarizes the basic statistics (only number of nodes and edges) of the
subnetworks produced in this way. We decided to divide the 25 dimensions in such a way that the
number of edges would have increased (almost) uniformly. On these networks, we computed all the
measures, the predictors, and the aggregations as reported above. Figure 8.4 reports the running
times (in minutes) for the experiments. Since we had many aggregations, instead of reporting the
total computing time, we split it into four steps: computing the multidimensional measures (first
bar in every block of four); computing the multidimensional base predictors M-CN, M-CNXOR,
M-AA and M-AAXOR (second bar); computing all the aggregations (third bar); and computing
the temporal measures. As we see the running time grows linearly with the number of edges, with
a maximum time of 30 minutes. According to their definition, and to this empirical evaluation, our
proposed predictors are scalable, and the required computing time grows linearly with the number
of edges.

Discussion

We have formulated the Multidimensional Link Prediction problem, and introduced different classes
of scalable predictors aiming at capturing the underlying model of node interactions, the multi-



8.1. UNSUPERVISED LINK PREDICTION 141

dimensional information and the complete temporal history of a link in the network. We have
shown that it is possible to predict new links in multiplex networks, and our results confirm the
ones provided by the literature of unsupervised monodimensional link prediction: although un-
supervised models such as the Adamic-Adar or the Common Neighbors have a high influence in
the evolution of a network, their accuracy as predictors may be boosted by combining them with
the analysis of peculiar structural (i.e., the ones introduced by multidimensional measures) and
temporal properties.
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8.2 Superivsed Interaction Prediction1

In 8.1 we have observed how, even applying simple unsupervised approaches, we were able to
achieve interesting performances in predicting new edges in multiplex networks. Moreover, exploit
topological information along with additional semantic carried by nodes and edges (i.e., dimension-
ality and temporal patterns) appears to be the road to follow in order to increase the accuracy of
well-known link prediction methodologies. This observation has lead to the proliferation of works
(as [200]) which propose supervised strategies able to tackle from a data mining perspective this
complex problem. As we have already discussed, the classic formulation of the Link Prediction
problem involves the use of the observed network status to predict new edges that are likely to
appear in the future as well as to unveil hidden connections among existing nodes. However, graph
structures are often used to describe rapid-scale human dynamics: social interactions, call graphs,
buyer-seller scenarios and scientific collaborations are only few examples. For this reason, here our
aim is to exploit the temporal information carried by the appearance and disappearance of edges
in a fully dynamic context to overcome the limitations imposed by the analysis of a static scenario
when making predictions.
To model rapid scale dynamics we will adopt the interaction network model:

Definition 28 (Interaction Network) An interaction network G = (V,E, T ), is defined by a
set of nodes V and a set of timestamped edges E ⊆ V × V × T describing the interactions among
them. An edge e ∈ E is thus described by the triple (u, v, t) where u, v ∈ V and t ∈ T . In particular,
each edge e represents an interaction between nodes u and v that took place at a particular time t.

To easily analyze an interaction network G we discretize it in τ consecutive snapshots of the
same duration, thus obtaining a set of graphs G = (G0 . . . , Gτ ) temporally ordered. When dealing
with interaction networks, two different models can be used to discretize their evolution:

i) agglomerative growth, and

ii) interval bounded observations.

The former model assumes that, given two consecutive snapshot t and t + 1 and their related
networks Gt = (V t, Et, T t) and Gt+1 = (V t+1, Et+1, T t+1), all the nodes and interactions present
in the first will be present in the second. More formally it assumes that holds:

∀t, t+ 1 : V t ⊂ V t+1, Et ⊂ Et+1, T t ⊂ T t+1

Conversely, the latter splits the network following a memoryless assumption: the interactions
belonging to Gt are only the ones that appear in the interval (t − 1, t). In the following we will
adopt this last model since it allows us to make predictions not only for interactions that will take
place among previously unconnected nodes but also to predict edges that have already appeared
in the past. This decision is made in order to better simulate the dynamics that real interaction
networks exhibit allowing nodes and edges both to rise and fall.

Due to the more complex model analyzed, hereafter we will refer to this peculiar formulation
of the LP problem as the Interaction Prediction (IP in short) one. Given these preliminaries, we
can now introduce its formal definition:

Definition 29 (Interaction Prediction) Given an interaction network G, observed for each
time t ∈ T , where T = {0, 1, . . . , τ − 1, τ}, the interaction prediction problem aims to predict new
interactions that will took place at time τ + 1.

In the following section we introduce our supervised approach to solve the interaction prediction
problem.

1G. Rossetti, R. Guidotti, D. Pennacchioli, D. Pedreschi and F. Giannotti, “Time-Aware Interaction Prediction
in Dynamic Social Networks exploiting Community Discovery”, 2014
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8.2.1 Time-Aware Interaction Prediction

The peculiar formulation of the interaction prediction problem introduces new challenges to an
already complex task. Due to the evolutionary behavior of the networks subject of our investigation,
a particular effort is needed in order to find a reasonable way to take care of structural dynamics
during the prediction phase. Our idea is to make use of timestamped network observations and
community knowledge besides classical features in order to learn a robust machine learning model
able forecast new interactions.

We design our approach to follow four stages:

1. For each temporal snapshot t ∈ T we compute a partition Ct = {Ct0, . . . , Ctk} of Gt using a
community discovery algorithm. Then we define, for each t and C, GtC = (V tC , E

t
C) as the

sub-graph induced on Gt by the nodes in Ct, such that V tC ⊆ Vt and EtC ⊆ Et.

2. We consider the interaction communities Ct of G and, for each t ∈ T , we compute a set
of measures F for each pair of nodes pair (u, v) ∈ W t

C such that W t
C = {(u, v) : u, v ∈

V tC ∧distance(u, v) ≤ δ∧Ct ∈ Ct}, that is (u, v) belong to the same community at time t and
they are at most δ hops of distance in the shortest path connecting them. Thus we obtain
values f tu,v describing structural features, topological features and community features of the
node pairs (u, v) at time t.

3. With these values, for each couple of nodes (u, v) ∈ W t
C and feature f ∈ F we build a time

series Sfu,v using the sequence of measures f0
u,v, f

1
u,v, . . . , f

τ
u,v. Then, we apply well-known

forecasting techniques in order to obtain its future expected value fτ+1
u,v .

4. Finally, we use the set of expected values fτ+1
u,v for each feature f ∈ F to build a classifier

that will be able to predict future intra-community interactions.

In the following we analyze each step by itself, proposing some instantiations of the proposed
methodology able to address the IP problem.

Stage 1: Community Discovery

In order to evaluate the impact of community structure on the predictive power of the proposed
methodology, we have decided to test three different CD algorithms, namely: Louvain, Info-
hiermap and Demon. In order to better highlight the characteristics of each algorithm, we report
the their major peculiarity while in the experimental section we will discuss how they affect the
predictive power of our methodology. We remind that we adopted community discovery algorithms
to split interaction networks into communities, then we used these communities to both calculate
the features that will be illustrated in the following and to perform the predictions of new interac-
tions.

• Louvain, already introduced in 7.3, is a heuristic method based on modularity optimization
[110]. It is fast and scalable on very large networks and reach high accuracy on ad hoc
modular networks. The optimization is performed in two steps. First, the method looks for
“small” communities by optimizing modularity locally. Second, it aggregates nodes belonging
to the same community and builds a new network whose nodes are the communities. These
steps are repeated iteratively until a maximum of modularity is attained and a hierarchy of
communities is produced. Louvain produces a complete non-overlapping partitioning of the
graph. As most of the approaches based on modularity optimization it suffers of a “scale”
problem that cause the extraction of few big communities and a high number of very small
ones.

• Infohiermap is one of the most accurate and best performing hierarchical non-overlapping
clustering algorithm for community discovery [194] studied to optimize community conduc-
tance. The graph structure is explored with a number of random walks of a given length and
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with a given probability of jumping into a random node. Intuitively the random walkers are
trapped in a community and exit from it very rarely. Each walk is described as a sequence
of steps inside a community followed by a jump. By using unique names for communities
and reusing a short code for nodes inside the community, this description can be highly
compressed, in the same way as re-using street names (nodes) inside different cities (commu-
nities). The renaming is done by assigning a Huffman coding to the nodes of the network.
The best network partition will result in the shortest description for all the walks.

• Demon is a fully incremental and limited time complexity algorithm for community discovery
already introduced in 7.1.

We chose to use the aforementioned algorithms since, due to their formulations, they cover three
different kind of community definitions: modularity, conductance and density based ones. Since
in our test we vary the structural properties of the communities used to extract the classification
features, in the experimental analysis we will be able to understand which network partitioning
approach is able to provide better insights.

Stage 2: Features Design

Identify the right set of features to train a classifier is one of the most complex part of every su-
pervised link prediction approach. We have decided to use information belonging to three different
families: pairwise structural features, global topological features and community features.

a) Pairwise Structural Features

In this class fall all the measures used in literature to score the likelihood of new links in un-
supervised scenarios. From hereafter, given a graph G, we will use the following notation: Γ(u)
identifies the set of neighbors of a node u in G; | • | represents the cardinality of the set •.
Starting from the measures proposed in [63] we restricted our set to the following ones:

• Common Neighbour (CN)
This metric computes assign as likelihood score of a new link the number of neighbors shared
by endpoints [201]. More formally,

CN(u, v) = |Γ(u) ∩ Γ(v)| (8.15)

• Jaccard Coefficient (JC)
This coefficient measures the likelihood of two nodes to establish a new connection as the
ratio among their shared neighbors and the total number of distinct neighbors they have
[202]. It is defined as:

JC(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

(8.16)

• Adamic Adar (AA)
This measure refines CN by increasing the importance of nodes which posses less connections
[61]. Its formal definition is:

AA(u, v) =
∑

w∈Γ(u)∩Γ(v)

1

log |Γ(w)|
(8.17)

• Preferential Attachment (PA)
The PA measure assumes that the probability of a future link between two nodes is propor-
tional to their degree [33]. Hence, it is defined as:

PA(u, v) = |Γ(u)| × |Γ(v)| (8.18)
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As a direct consequence to their formulation CN , JC and AA share the same result set com-
posed by all the pair of nodes at distance at most two in G: However, the values obtained by the
three measures for the same edge do not correlate (i.e., having a high CN does not imply having
high JC or AA). On the contrary, PA produces scores for all the possible pairs: to uniform its
result set to the ones produced by other measures, in the following we consider this value only for
the couples of node at most at distance δ = 3 which belong to the same community.

b) Global Features

The features discussed so far look at the nodes immediate surroundings. However, also the position
of a node within the network carries valuable information that can be exploited in order to predict
which kind of nodes are attracted by it. In literature a wide set of measures were proposed to
estimate the centrality of nodes and edges as well as their rank within a network. These scores
are, often, computationally expensive to calculate: for this reason we have decided to make use
only of two of them, specifically:

• Degree Centrality (DC)
This measure is conceptually the simplest among the node centrality ones. It relates the
centrality of a node with its degree: more formally,

DC(u) = |Γ(u)| (8.19)

• PageRank (PR)
PR is a link analysis algorithm introduced in [14] and used by the Google web search engine.
It assigns a numerical score to each element of a hyperlinked set of documents with the
purpose of measuring its relative importance within the set.

PR(u) =
1− d
N

+ d
∑

(u,v)∈E

PR(v)

|Γ(v)|
(8.20)

where PR(u) is the page rank score of node u, N is the total number of nodes and d is the
damping factor. In our experimentation we used the default value for d (0.85).

The DC and PR scores were computed for both the endpoints of new edges: the underlying idea
is to understand if there is some correlation among the centrality of two nodes and the likeli-
hood of the appearance of a new interaction between them. This can be seen as a generalization
of the PA measure where the operator defining the combination of the individual scores is not fixed.

Community Features

One of the most pressing issue related to link prediction regards the reduction of false positive
forecasts. To this extent, as briefly mentioned before, we exploit community discovery as a way
to reduce the number of predictions provided by the chosen pairwise structural features. Making
predictions only between nodes belonging to the same community allows the predictive process
to focus only on connections that are highly likely to appear, thus discarding the ones connecting
different graph substructures. However, following the general intuition behind the idea of com-
munity, we can take advantage of more specifically designed measures: indeed, all the information
we can gather from the topological analysis of the communities can be used as features describing
the extended surroundings of nodes. With this aim we have decided to introduce the following
features:

• Community Size (CS)
The number of nodes belonging to the community C. Defined GC = (VC , EC) as the graph
induced on G by the nodes in C, we have:

CS(GC) = |VC | (8.21)
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• Community Edges (CE)
The number of edges within nodes in C, formally:

CE(GC) = |EC | (8.22)

• Shared Communities (SC)
Given two nodes u, v ∈ V and a set of communities C = {C0 . . . Cn} CS(u, v, C) identifies the
number of communities shared by u and v. When dealing with network partitions SC takes
value in {0, 1} while in case of overlapping communities its domain is [0, |C|].

• Community Density (D)
Community density is computed as the ratio of edges belonging to the community over the
number of possible edges among all the nodes within it.

D(C) =
|EC |

|VC | × (|VC | − 1)
(8.23)

• Transitivity (T)
T identifies the ratio of triangles with respect to open “triads” (two edges with a shared
vertex) in GC .

T = 3
|triangles(GC)|
|triads(GC)|

(8.24)

• Max Degree (MD)
MD identifies the degree (w.r.t. the community subgraph) of the principal hub for the
community C.

MD(C) = max{|Γ(u)| : u ∈ VC} (8.25)

• Average Degree (AD)
AD identifies the average degree (w.r.t. the community subgraph) of the nodes within the
community C.

AD(C) =

∑
u∈VC |Γ(u)|
|VC |

(8.26)

Stage 3: Forecasting Models

The third stage of our approach involves the adoption of time series forecasting models in order to
obtain, given subsequent observation of the same feature for the same pair of nodes, an estimation
of its future value. Since the behavior of the observed time series is not known in advance, we adopt
several forecasting models based on different assumptions. Since the time series we are analyzing
are not large, we have decided to not employ complex models that are known to be very efficient on
extended observation periods. In fact, we tested four simple and computationally efficient models
that have shown to record good performances on short time series. In the following definitions we
identify with Zt = (t = 1 . . . τ) a time series with τ observations and with Θt its forecast at time t.

• Last Value (Lv)
This first method considers as forecast the last observed value of the time series. The forecast
is defined as:

Θt = Zt−1 (8.27)

• Average (Av)
The forecast is given by the average of all the observations in Zt:

Θt =

∑T
i=1 Zi
τ

(8.28)
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• Moving Average (Ma)
This approach makes the prediction by taking the mean of the n most recent observed values
of a series Zt. In our experiments we have ranged n in the interval [1, τ ].

Θt =

∑τ
i=τ−n Zi

n
(8.29)

• Linear Regression (LR)
Linear Regression fits the time series to a straight line. The level α and the trend β parameter
(used to estimate the slope of the line) are defined by minimizing the sum of squared errors
between the observed values of the series and the expected values estimated by the model.
This forecast is defined as:

Θt+h = αt + hβt (8.30)

Stage 4: Classifier Models

Predicting correctly new interactions is not an easy task. The complexity is mainly due to the
highly unbalanced class distribution that characterizes the solution space: real world networks are
generally sparse, thus the number of new links/interactions over the total possible ones tends to be
small. We have seen how it is possible, at least to some extent, mitigate this problem by restricting
the prediction set (i.e., by limiting the forecast to nodes at distance at most δ and predicting only
new edges among nodes within the same community). However, even adopting such precautions we
can expect a substantial unevenness between the positive and the negative classes. This translates
into a very high, hard to improve, threshold for the baseline model (i.e., in case of a network having
density=0.1, which identifies the presence of “only” 1

10 of the possible edges, the majority classifier
is capable to reach more than 0.9 of accuracy). To overcome this issue we adopted class balancing
through downsampling (as performed in previous works, like [78]), thus obtaining balanced classes
and a baseline model having 0.5 accuracy. Indeed we pursued such approach but, in order to
provide an estimate of the real predictive power expressed by our methodology we also tested it
against the real unbalanced class distribution.

Moreover, since the main focus of this work is to propose a mining approach to the IP prob-
lem and not to discuss a specific classification model, we have decided to evaluate our strategy
independently from a specific classifier: for this reason in the following section we discuss results
achieved by an ensemble of classifiers and we show the scores only for the best performing ones. In
detail, we have tested six models: Decision Tree (C4.5, C&R, CHAID, QUEST), Neural Network
and Logistic Regression.

Experiments and Results

Here we report the results obtained by applying our approach to two real world interaction net-
works. Firstly the datasets used to perform the experiments are briefly introduced, then the results
obtained in a balanced class scenario are reported together with a deep analysis of the best per-
forming community discovery algorithms, features and forecast models. Finally, we extend our
experiments to evaluate the proposed approach on an unbalanced class scenario.

Datasets

We tested our approach on two networks: an interaction network obtained from a Facebook-like2

Social network, and a co-authorship graph extracted from DBLP3. These datasets allow us to
test our procedure on two different grounds: a “virtual” context, in which people share thoughts
and opinions via a social media platform, and a “professional” one. The general statistics of the
datasets are shown in Table 8.3, while a brief resume is the following:

2http://toreopsahl.com/datasets/
3http://dblp.org
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Network Nodes Interactions #Snapshots kCC σCC kD σD
DBLP 747,700 5,319,654 10 (years) 0.665 0.018 3.113e-05 9.602e-06
Social 1,899 113,145 6 (months) 0.105 0.015 8.600e-03 1.400e-03

Table 8.3: Statistics for the analyzed networks.

• Social: The Facebook-like social network originates from an online community for students
at University of California, Irvine. The dataset includes the users that sent or received at
least one message during 6 months. We discretize the network in 6 monthly snapshot and
use the first 5 to compute the features needed to predict the edges present in the last one.

• DBLP: We extract author-author relationships (i.e., two researchers are connected iff they
are co-author of at least one paper). The co-authorship relations fall in temporal window
of 10 years (2001-2010). The network is discretized on yearly basis: we use the first 9 years
to compute the features and set as target for the prediction the edges belonging to the last one.

To underlying the low density of the observed networks across the various snapshots, we report
their average value (kD) in Table 8.3 together with the average network clustering coefficient kCC
and their variances, σD and σCC respectively. We can immediately notice that the low variances
guarantee the reliability of both the averages of density and clustering coefficient. For this reason,
it is remarkable the fact that Social is more dense than DBLP even though its clustering coefficient
is considerably lower than DBLP. This can be explained by the fact that, due to its nature, when a
new interaction appears in DBLP, more than a couple of users is involved, creating automatically a
complete clique, while, in Social, a new interaction just expresses the exchange of a direct message
between the two users.

Balanced scenario

To better highlight how the proposed approach performs on real world networks, we need to com-
pare the outcome of its instantiations varying the combination of community discovery algorithm
and time series forecast models used. In the following analysis we will make use of some measures
aimed at identifying the performances of the tested classifiers. In particular, we will use accuracy
and AUC which are defined in terms of the confusion matrix of a binary classifier (see Table 8.4):

• Accuracy, defined as ACC = TP+TN
TP+FN+TN+FP , measures the ratio of correct prediction over

the total;

• AUC identifies the area under the receiver operating characteristic (ROC). It is used to
illustrate the performances of binary classifiers: it relates its True Positive rate (TPR =

TP
TP+FN ) with its False Positive rate (FPR = FP

FP+TN ) providing a visual interpretation
useful to compare different models on the same data.

We carried out a first preliminary study aimed at identifying, fixed the community discovery
algorithm, the optimal window size n for the moving average (Ma) forecast. By definition the Lv
and Av are special cases of the more general Ma: particularly, the former is equivalent to Ma when
n = 1 while the latter when n = τ . In Figure 8.5 are shown, for the three community discovery

predicted
class 0 class 1

actual
class 0 TN (true neg.) FP (false pos.)
class 1 FN (false neg.) TP (true pos.)

Table 8.4: Confusion matrix of a binary classifier.
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(a) (b)

Figure 8.5: Moving Average (Ma): AUC values varying observation window size n ∈ [0, τ ], dots
highlight highest ones.

algorithms, how the classification accuracy behaves varying the observation window n.

We can observe different trends for Social and DBLP networks: in the former the AUC is
maximized by the classifier built upon Demon communities, while in the latter the same approach
is the one with lower performances. This is probably due to the particular definition of ego-
network based overlapping communities provided by this approach which is tailored explicitly for
social contexts. Furthermore, by observing these plots we can conclude that, in order to obtain
higher performances using Ma, two strategies are consistent:

1. minimize n using as forecast the last value (Lv) in order to make inference approximating
the future with the actual network status, or

2. use n ' τ in order to have a better estimation of the whole historical trends.

Hereafter, we will make use of the best scoring classifiers identified in Figure 8.5 to detail our anal-
ysis: we will refer to them as the Ma models for each specific network and community definition.

As second step we compare the outcomes of the classifiers built using the LR forecast models
with the Ma ones. In Figure 8.6 are shown the ROC curves for both Social and DBLP datasets. In
the former we can observe how LR and Ma provide very similar results even if the moving average
is always capable to obtain slightly better performances. DBLP shows the same trend: a small
gap between the two approaches (for this reason we omit the LR curve). Moreover, we report in
Table 8.5 AUC and the ACC score for all the compared methods.

Once identified the two best performing classifiers for Social (Demon Ma and Infohiermap
Ma) and for DBLP (Louvain Ma and Infohiermap Ma) w.r.t. AUC and ACC, we need to

Network DBLP Social
Algorithm AUC ACC AUC ACC
Demon Ma 0.907 85.58% 0.981 93.55%
Demon LR 0.901 84.35% 0.970 91.87%
Louvain Ma 0.930 87.72% 0.880 80.27%
Louvain LR 0.926 87.48% 0.883 81.37%
Infohiermap Ma 0.920 86.69% 0.890 81.34%
Infohiermap LR 0.917 86.18% 0.886 80.89%

Table 8.5: Compared algorithms performances.
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(a) (b)

Figure 8.6: ROC curves of the compared methods in balanced scenario for each community dis-
covery algorithm. For Social (a) we draw LR and Ma forecast methods, while for DBLP (b) we
draw only Ma ones.

investigate which are the key features that contribute to their performances. With this aim, we
report in Figure 8.7 the relative importance of each feature used by the classifier for each method.
We can see how in Social the classifier built upon Demon (a), as well as the one using Info-
hiermap communities (b), gives high importance to degree centrality and community measures
(in particular density, size and average degree), and tends to make less discriminating decision
using pairwise structural features (with the exception of PA). Conversely, in DBLP (bottom) the
community features set seems to show small predictive power for both the analyzed algorithms.
This discrepancy is probably due to the different nature of the studied networks: one, Social, natu-
rally models real social interactions occurring in a short period, while the other, DBLP, is inferred
from less volatile connections (working collaborations) that are developed through years.

In order to understand the boost provided to the classification task by the adoption of the right
community discovery algorithm, we designed two different baselines: Structural Forecast (SF ) and
Filtered Structural Forecast (FSF ). The SF model trains the classifier using only the forecasts for
the pairwise structural features (CN , AA, PA and JC) computed on all the couple of nodes at
distance at most 3 hops present in the whole network, not taking into account the presence/absence
of shared communities among them. On the other hand, the FSF model restricts the computation
to the node pairs belonging to the same community as the proposed approach does. As case study
we report in Table 8.6 AUC and ACC of the best Ma and LR baselines for the Social dataset.

Since for this dataset our best performing approach is the one built upon Demon communities,
the structural features for the FSF baseline were computed using such network partition. The
obtained results show that, using features extracted from the communities, we are able to gain
0.025 in AUC and 3.45% in ACC with respect to the FSF Ma baseline, and 0.08 in AUC and
10.67% in ACC with respect to the FS Ma one. This highlights the importance of communities
for the interaction prediction task, not only in providing features for pair of nodes, but also in
filtering the dataset in order to choose a more fitting selection of nodes for the prediction.

Algorithm AUC ACC
SF Ma 0.901 82.88%
SF LR 0.895 82.18%
FSF Ma 0.956 90.10%
FSF LR 0.937 88.09%

Table 8.6: Baselines for the balanced scenario on Social using Structural Forecast (SF) and Filtered
Structural Forecast (FSF).
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Figure 8.7: Features relative importance.

Without loss of generality, in the following of this section, in order to reduce the number of
comparisons, we will report a full analysis only for the Social dataset. Furthermore, the results
obtained for the DBLP scenario do not differ significantly from the ones discussed so far with
the exception, as seen previously, of the best community discovery algorithm (Louvain instead
of Demon). However, this divergence is due to the different nature and topology of the networks
analyzed.

Feature Class Prevalence

Since our models are built upon three different classes of features (structural, topological and
community related), it is mandatory to test their performances against the classifiers that use
separately each one of them. Such analysis allow us to assess the predictive power of each class of
features, giving an idea of their overall importance for the complete model. We built a classifier
for each community discovery algorithm and each feature class by using together all the forecasted
versions of the features belonging to it. As shown in Table 8.7, regardless the community discovery
algorithm used, the most predictive features are the ones belonging to the topology class, followed
by structural and community ones. However, we can observe how the AUC and ACC are always
higher for the model based on the Demon approach: this trend suggests that such algorithm is
the one that better bounds, at least for this network, the nodes that are more likely to establish
future interactions.
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Algorithm AUC ACC
Demon Structural 0.957 90.59%
Demon Topology 0.962 91.44%
Demon Community 0.903 83.53%
Louvain Structural 0.850 78.63%
Louvain Topology 0.875 79.38%
Louvain Community 0.724 66.64%
Infohiermap Structural 0.876 79.85%
Infohiermap Topology 0.887 80.81%
Infohiermap Community 0.667 62.11%

Table 8.7: Compared classifier performances for different class of features on Social dataset.

Complete Classifier

In the following, we investigate if the good performances of the analyzed classifiers can be improved
by combining all the features obtained at the end of the forecasting stage (i.e., all the time series
forecasts computed with Ma and LR).

Algorithm AUC ACC
Demon All 0.981 93.90%
Louvain All 0.901 83.05%
Infohiermap All 0.894 81.91%
FS All 0.959 90.44%

Table 8.8: Compared classifier performances using all the features obtained at the end of the
forecasting stage on Social dataset.

As we can see in Table 8.8, the performance boost is negligible with respect to Demon Ma, in
fact we are able to gain only 0.35% in ACC maintaining the same AUC w.r.t. the results shown
in Table 8.5. This means that the feature set used by our best classifier is “stable”: its extension
do not produce advantages that justify an increase of model complexity. Conversely, for Louvain
and Infohiermap the gain in both AUC and ACC is more evident: this is probably caused by
the different degree of approximation introduced for each feature in the forecasting stage.

Features Forecast Correlation

As consequence to the fact that there are only slight differences in performances when the classifiers
are built using different forecasting methods, we decided to investigate which are the correlations
among the forecasted values calculated by LR and Ma with n ∈ [0, τ ]. We analyzed each feature
separately observing the correlation average, median, and variance. In Table 8.9 we report the

Algorithm Structural Topology Community
Demon 0.023 0.001 0.003
Louvain 0.009 0.017 0.018
Infohiermap 0.042 0.015 0.081

Table 8.9: Average of the variances of the correlations for different classes of features on Social.

average of the variances of these values aggregated for different class of features. From this Table
emerges that, regarding structural features, Louvain has the lowest average of variances of cor-
relations, while, for topological and community related features, it is Demon the approach which
guarantee correlations. As result we can say that, if we use Infohiermap (that has the highest
average of the variances) to extract the communities from the interaction network, we should focus
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on the choice of the different forecasting method applied. On the other hand, if we calculate the
communities with Demon, it does not matter very much which kind of forecast technique (LR or
Ma) we use to calculate the expected values. This statement holds less strongly for Louvain, that
has a low correlation variance only for pairwise structural features.

Features Forecast Deviation

In order to fully understand the potential of the method proposed, we trained the classifier using
the real values at time τ + 1. This was done only with the aim of estimating the goodness of the
expected value calculated with different forecasting method. Making the prediction on the Social
dataset we observed very good performances close to those reached using the expected values, as
we can see in Table 8.10.

Algorithm AUC ACC
Demon 0.987 95.76%
Louvain 0.888 81.16%
Infohiermap 0.846 75.95%

Table 8.10: Compared algorithms performances with real values at time τ + 1.

This is an indicator that a good approximation of the real values is important to build a reliable
classifier. Thus, we analyzed the deviations of the expected values of the different forecasting
methods with the real ones, calculating ((fτ+1

u,v − f̂τ+1
u,v )2), and we detected the following interesting

points.
With the exception of Louvain, LR has the worse approximation with real values. This indi-

cates that using Demon or Infohiermap it is better to apply Ma to forecast the expected values.
Moreover, Louvain is generally worse than the others for every feature, while Infohiermap works
better for structural and global topological and Demon minimizes the error for the community
ones (which is consistent with the results discussed during the analysis of the complete classifier
scenario). The previous observations result from the analysis of the squared error distribution de-
picted in Figure 8.8. At any rate, independently from the community discovery algorithm or from
the forecasting method, the deviation is nearly always very low justifying the good performances
previously exposed.

As an additional analysis we also studied the Sum of Squared Error (SSE) for each forecasting
method of each feature. By ranking the SSE among the various features (properly normalized in
order to be comparable), we find out that, with respect to the other combinations, Infohiermap
with LR has the highest SSE for each attribute. On the other hand, the best approximations are
achieved by Infohiermap and Demon with Ma with n ∈ {3, 4}. Indeed, with the exception of
AA, Louvain never has the lowest SSE among the features used. At the same time, by ranking the
SSE among the different community discovery algorithms and forecasting techniques, it emerges
that with Louvain the lowest SSE belong to AA while the highest to SC. On the contrary, with
Demon the lowest SSE belong to SC, while the highest changes with respect to the forecasting
method. Finally, as far as Infohiermap concerns, we cannot derive nothing interesting. Thus,
probably, due to its nature related to ego-networks, Demon gives better results than the other
community discovery algorithms for community features, while AA works really well with the
communities extracted by Louvain.

Unbalanced scenario

We have shown how our approach is able to obtain valid results in case of balanced class distribu-
tion. Unfortunately this scenario is not common when addressing the IP problem. Furthermore,
making predictions on new interactions that will appear in a dynamic network involves, potentially,
computing scores for all the |V |×(|V |−1) pair of nodes of the network itself. Indeed, social tissues
are very sparse: such topological connotation is the main reason for a high rate of False Positive
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Figure 8.8: Boxplots of squared errors per feature. For lack of space reasons, we report just the
most significant algorithms.

predictions as well as for naive overfitting models that maintain high accuracy just predicting the
absence of new links (i.e., the majority classifier in case of supervised learning). Indeed, predicting
every object as belonging to the larger class achieves a high performance in prediction, but it rep-
resents a useless classification strategy. For this reason, evaluate the performances of a classifier
in highly unbalanced scenarios is not an easy, but very important, task. Since we want to predict
correctly new links, our primary purpose is to reach high precision avoiding the generation of false
positive predictions.

For this reason, as already done in 7.3, for the unbalanced scenario we will discuss, besides
AUC and ACC, the Lift Chart and precision of the tested classifiers.

Here we report the precision instead of the accuracy because, unlike the balanced scenario
(where starting from a ratio of 50−50 the accuracy has a strong significance), in the unbalanced one
it is very easy to get a high, but meaningless, accuracy. This is due to the fact that, as consequence
to the sparsity of the interaction network, the majority classifier can predict always “no edge” with
no effort reaching very high performances. Besides this we report the Lift Chart because, conversely
from AUC and PPV (with which shares, describing isomorphic spaces, the conveyed information),
it is able, even in unbalanced scenarios, to graphically emphasize the improvements provided by
the tested classifier against a baseline model.

The datasets considered are the same ones analyzed in the balanced scenario, Social and DBLP:
however, in this case we preserved the original ratio between the node pairs with and without a
future interaction. We use for both networks the Demon algorithm to extract communities. This
choice is due to the following reasons:
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(a) (b)

Figure 8.9: Lift Charts of the compared methods in unbalanced scenario.

• Social: Demon reach the best performances in the balanced scenario, for this reason we
expect that it will behave well even in unbalanced scenario;

• DBLP: Using Louvain (i.e., the best performer in the balanced scenario) in the unbalanced
scenario, all the classification models outputs the majority classifier.

In Social, the ratio of negative class over the total amount of possible pairs is 95.947%, that
means that a majority classifiers predicting no edge for all the pairs would have an accuracy of
almost 96%. As output from the classification phase with Ma we have a model which reaches
an AUC of 0.966 with a prediction accuracy of 98.75% and a precision w.r.t. the positive class
of 95.61%. These are very significant results: on one hand we have an accuracy improvement of
2.803% in an ideal window of 4.053% (100% − 95.947%) with respect to the majority classifier
while, on the other, we have a very high precision on the positive class, considering that a classifier
predicting always an edge would have a precision of 4.053%.

In addiction to the Ma model, we also build three classifiers each one of them considering all
the forecasts for a single category of features: topological, structural, and community.

In Figure 8.9(a) we show the Lift Chart of the four models applied to Social. From the chart
emerges that after the Ma model, the most promising is the one built upon the topological features
followed by structural and community ones.
Also in this highly unbalanced scenario, we want to “measure” how much the chosen community
approach impacts the efficiency of our workflow filtering in the “promising pairs”. By building the
dataset with all possible pairs without the community discovery approach, we have the majority
class, i.e., the absence of link, with a ratio of 98.96% over the total number of entries. In order
to better compare the two cases, we filter out randomly some pair with no edge, bringing the
accuracy of the majority classifier at 95.947% (like in the case with community discovery). Again
we compare the performances for the SF and FSF , reported in Table 8.11, but now considering
the precision instead of the accuracy. We can see that we gain almost a 10% of precision just
filtering out, in any time slot, all the pairs not belonging to the same community.

Algorithm AUC PREC
SF Ma 0.897 64.06%
SF LR 0.893 62.62%
FSF Ma 0, 918 74.71%
FSF LR 0.932 72.45%

Table 8.11: Baselines for the unbalanced scenario on Social using SF and FSF.
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In DBLP case study, the resulting classifier has an AUC of 0.86, an ACC of 98.135% and a
precision with respect to the positive class of 44.78%. The majority class (no link) has a ratio of
98.13% over all the instances of the dataset. A possible reason of the lower performances obtained
on DBLP w.r.t. Social ones, is that in the latter an interaction represent a real social action
between two different actors, while in DBLP an interaction model a relation of co-authorship in
a paper, and the co-authorship is not, in our opinion, a strong representative of social interaction
(see 5.1.2). However, we can notice that the performances are not completely bad: we have a
precision of 44.78%, starting from a ratio of positive class of 1.865% (100%− 98.135%), that is 24
times better than predicting for any pair the presence of the edge. Finally, we can observe from
the Lift Chart in Figure 8.9(b) how, differently from the Social case, the most predictive set of
features are the community ones, over the structural and topological.

Discussion

In this work we have tackled the Interaction Prediction problem in a dynamic network scenario.
Since networks often model rapidly evolving realities that cannot easily be “frozen” in time without
loss of information, a time-aware approach to link prediction is mandatory to achieve valuable
results. Moreover, due to the intrinsic high computational cost of the approaches that solve
this problem, it is important to reduce the list of possible candidates for which to compute a
prediction (preferably avoiding the generation of false positives). To this extent we have exploited
the community structure of social networks to both bound the result set, and design features
whose analysis through time allows the description of a high performance supervised learning
strategy. The results obtained with the proposed methodology open the way to several future lines
of analysis. Indeed, more accurate time series forecast techniques can be evaluated in order to
reduce the forecast error and evolutionary community discovery approaches can be used in order to
incorporate community life-cycle features within the predictive process. Moreover, w.r.t. the type
of dataset used, it could be possible to consider other classes of features such as mobility knowledge
and spatial co-location. All these improvement will lead to more narrow and sophisticated classifiers
that, taking into account an more heterogeneous feature set, will be able to better predict future
human interactions.



Chapter 9

Modeling Collective Dynamics

Time changes everything except
something within us which is always
surprised by change.

— Thomas Hardy

In the 2nd part of this thesis, we have already seen that Community Discovery is one of the most
discussed problem within the complex network analysis field. There, we have already proposed a
valid approach (Demon, 7.1) that has shown to be a good fit for the analysis of social contexts:
indeed, we have shown how, in such settings, the structures it defines are able to bound homophily
and how this information can be used in order to address different tasks (namely, Quantification
7.2 and Social Engagement 7.3). However, even if the problems we have studied so far with the
support of our algorithm are shaped by an intrinsic dynamism, Demon does not provide any
support to directly exploit such information.
As observed in 8.2, Social networks often describe highly dynamic realities: in these cases we are
prone to consider them as composed by volatile “interactions” more than permanent “ties”. In
these settings the community discovery problem needs to be reformulated: nodes changes their
connectivity as time goes by and this affect their involvement into communities. For this reason in
9.1 we introduce a novel algorithm, Tiles, which builds and maintains updated communities by
continuously looking at the interactions that occur among the nodes of the network. This approach
will enable us to an online observation of communities and to a more fine grained analysis of their
life-cycles.
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9.1 Evolutionary Community Discovery1

As we have extensively discussed in 7.1, the concept of “community” in a complex network in-
tuitively depicts a set of individuals that are very similar, or close to each other more than to
anybody else outside the community. However, a completely shared formal definition of “commu-
nity” does not exist: different approaches capture different characteristics and are based on a wide
variety of assumptions. Given those circumstances, it is very difficult assess the goodness of the
communities identified by a specific algorithm: for this reason each family of approaches proposes
its own evaluation metric tailored to capture the properties modeled by the extracted structures.
Until recent years, community discovery algorithms were proposed to deal only with static graphs.
This choice underlines a QSSA (quasi-steady state approximation) assumption: networks can be
frozen in time because mutation in their topology happens only in the long run. Indeed, dealing
with flattened networks simplifies the formulation of algorithms aimed to extract knowledge from
them: however this assumption cannot be always satisfied.

Indeed, networks are often used to model complex and rapid-scale human dynamics: social
interactions, call graphs, buyer-seller scenarios are all examples of realities for which a QSSA as-
sumption is extremely stringent and, inevitably, lead to analytical results that overestimate (or
underestimate) the real connectivity. The aforementioned interaction networks reveal scenarios in
which a static community discovery approach fails to identify meaningful knowledge. A community
extracted from a social network, without taking into account the temporal ordering and the delay
of interactions, will group together agents that have been in contact rarely and whose interactions
can be very distant in time one from the others (as shown in Figure 9.1). These structures, that
doubtless satisfy the community quality function for the adopted algorithm, do not reveal a picture
consistent with the actual reality. To overcome this limitation the classical community discovery
problem has to be reformulated: as done for clustering approaches [126] we need to introduce an
evolutionary variant able to deal with rapidly evolving scenarios. Several strategies have been pro-
posed to identify and track communities and their lifecycle. However, only few of the algorithms
proposed so far approach in a direct way the following problem: evolutionary interaction-based
community detection on highly dynamic networks.
In this work, we propose a solution for the aforementioned problem presenting Tiles (a.k.a. “Tem-
poral Interactions: a Local Edge Strategy”), an evolutionary community discovery algorithm which
follows a domino effect. In order to apply Tiles, the observation period does not need to be split
in fixed temporal snapshots: each time a new interaction took place the community memberships
for the new edge’s endpoints and adjacent nodes are re-evaluated. Using a call graph of one mil-
lion users, a Facebook interaction networks, an interaction network of 8 million users of a Chinese

1G. Rossetti, L. Pappalardo, D. Pedreschi and F. Giannotti, “Tiles: Evolutionary Community Discovery”, 2014

x y

u

1

21

(a) t=2

x y j

zvu 3

33

1

21

(b) t=3

x y j

zvu 3

33

51

21

4

5

(c) t=5

Figure 9.1: Communities identified by a dynamic community discovery algorithm. Numbers on the
edges represent the interaction time. A static algorithm does not take into account the network
evolution and would only identify one community (c). An evolutionary algorithm conversely finds
several different communities since the network is observed during different stages of its evolution:
if observed at t = 2 (a) we have the community C0 = {u, x, y}; at t = 3 a new community
C1 = {v, z, j} appears and for t = 5 all nodes are part of a single community.
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microblogging platform observed for one year and synthetic benchmark graphs with ground truth
communities we will show a comparison between Tiles results and those produced by classical
CD algorithm, highlighting how a direct interaction-based approach reveals new and interesting
community patterns.

Evolutionary Community Discovery

The overwhelming number of papers on Community Discovery proposed in recent years express
clearly the real issue to address: researchers are not interested in formulating “The Community
Discovery algorithm” but in finding the right algorithm for each specific declination of the problem.
Following this path, our approach aims to cope with a specific and not yet deeply studied scenario:
community discovery in dynamic interaction networks.
Networks are dynamic objects: online social interaction networks, call graphs, economic transac-
tions are all sources of information that evolve over time. As we have extensively discussed, the
rise of new nodes and edges can lead to deep mutations of network topology. An analysis that
considers dynamic networks as static entities - frozen in time - necessarily introduces bias on its
results. For this reason, while modeling dynamic phenomena the Community Discovery problem
needs to be revised and its formulation extended:

Definition 30 (Evolutionary Community Discovery) Given an interaction streaming source
S and a graph G = (V,E), where V is the set of nodes and E the set of timestamped edges (e ∈ E
is defined as a triple (u, v, t) where u, v ∈ V and t ∈ N is the time of the edge generation by S)
the Evolutionary Community Discovery problem (henceforth ECD) aims to identify, and maintain
updated, the community structure that compose G as new interactions are generated by S.

The interaction streaming source S models the rising of new interactions among pair of nodes
without any restrictions: particularly, the interaction endpoints can be already part of the graph
or newcomers which join the network for the first time. The ECD problem models scenarios where
interactions among entities do not occur with a rigid temporal discretization but, conversely, flow
“as a stream” as time goes by. After all, this is how our social interactions actually take place:
phone calls, SMS messages, tweets, Facebook posts do not appear at predetermined time slots,
but they are produced in a fluid streaming fashion. Consequently, the social communities we are
involved with change their topology fluidly over time. For this reasons, a valid algorithm for the
ECD problem needs to be able to answer the following question: given a community C at times-
tamp t and a streaming source S, what will be its structure at an arbitrary time t+∆? In contrast
with static community detection algorithms, an algorithm designed for the ECD problem needs to
produce a series of observations of communities through time.

ECD models all those situations in which several interactions could occur among each couple
of entities during the observation period. The community extraction can be approached following
two different assumptions: (i) networks evolve in an accumulative fashion (i.e., once appeared
edges and nodes are stable and will not disappear) or (ii) networks evolve gradually changing some
entities from an observation to a subsequent one (i.e., edges and nodes can leave the network after
a certain period). The first assumption fits the problem when a very strong relationship among
nodes is defined for the network. We can apply such idea, for instance, to identify communities on a
graph composed by several connected family trees: in this case the relationships expressed by edges
(“be relatives”) is a very strong one (even if seen rarely, a distant uncle remains still a relative, as
well as the parent we live with). However, such example models a very specific kind of networks
for which edges and nodes appear and disappear rarely. Real social networks are often built on
less strong relationships definitions (as we have seen in 6.2) where edges establish instantaneous
connections that in time decrease their strength until becoming useless. For instance, in a call
graph we can imagine that the social strength of a phone call weakens after a certain time: the
same thing happens for users’ interactions on OSNs as Facebook or Twitter. In these general
cases the second assumption seems to be the most meaningful one. One problem of the “limited
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Figure 9.2: The appearance of a new edge: dashed line edges highlight new interactions; dashed
line rectangles identify the periphery of communities; continuous line rectangles identify their core.
(a) both nodes appears for the first time or one of them already exists but is not central; (b)
a new node joins a strong community and become part of its periphery; (c) a new interaction
occurs between nodes which are central in different communities: the endpoints become part of
the periphery of the new joined communities; (d) a node, central for a community and periphereal
in a different one, becomes central in the latter.

memory” growth assumption is how to find an acceptable temporal threshold that could be used
to describe the TTL (time to live) of interactions. Such problem is context dependent: due to
the different semantics of networks interactions, all the choices that can be made to overcome this
issue are necessarily heuristics.
In the following section we introduce an algorithm capable to satisfy both the proposed scenarios
relying on a single parameter: the expected TTL for the edges.

9.1.1 The Tiles algorithm

Social interactions determine how communities form and evolve. Even the appearance of a sin-
gle new edge in the network leads to perturbations of the communities equilibrium. A common
approach in literature to address CD in dynamic contexts is to split the network into temporal
snapshots and repeat a static community detection for each snapshot, in order to study the vari-
ation of its mesoscale structures as time goes by. This approach, however, introduces an evident
issue: which temporal threshold has to be chosen to partition the network? This problem, which
is obviously context dependent, also introduces another issue: once the algorithm is performed on
each snapshot how can we identify the same community in consecutive time slots?

To overcome those issues we have designed Tiles, an algorithm that does not impose fixed
temporal thresholds for the partition of the network and the extraction of communities. It pro-
ceeds in a streaming fashion updating the observed communities whenever a new interaction is
generated by the streaming source. As a fall of a domino tile, every time a new interaction emerges
in the network, Tiles exploits a label propagation procedure to propagate the changes to the
node surroundings, adjusting the neighbors’ community memberships. According to Tiles, the
belonging of a node to a community can be of two types:

• weak membership, which identify nodes in the “periphery” of the community (peripheral
nodes);

• strong membership, for nodes in the “core” of the community (core nodes).

If a node is involved in at least a triangle with the others belonging to the same community it is
defined as a core node, otherwise a peripheral one. Only core nodes are allowed during the label
propagation phase to spread community membership to their neighbors (which become peripheral
nodes if they do not participate in any triangle within the core). Tiles is an overlapping algorithm,
i.e., each node can belong to different communities, which can represent the different spheres of
the social world of an individual (friends, work, etc.).

The algorithm takes as input four parameters: (i) the graph G, which is initially empty; (ii) an
edge streaming source S; (iii) τ , a temporal observation threshold; (iv) a Time To Leave value for
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Algorithm 7 Tiles(G, S, τ , ttl)

Require: G: undirected graph, S: streaming source, τ : temporal observation threshold, ttl: time to leave
1: actualt = 0
2: while S.isActive( ) do
3: e←S.getNewInteraction( )
4: G.removeExpiredEdges(ttl, actualt)
5: if e 6∈ G then
6: G.addEdge(e)
7: end if
8: if |Γ(eu)|==1 & |Γ(ev)| > 1 then
9: WeakPropagation(eu, ev)

10: else if |Γ(eu)| > 1 & |Γ(ev)|==1 then
11: WeakPropagation(ev, eu)
12: else
13: CN ←Γ(eu) ∩ Γ(ev)
14: if |CN | == 0 then
15: WeakPropagation(eu, ev)
16: WeakPropagation(ev, eu)
17: else
18: StrongPropagation(eu, ev, CN)
19: end if
20: end if
21: if et - actualt == τ then
22: OutputCommunities(G)
23: actualt = et
24: end if
25: end while

the interactions. The temporal observation threshold τ specifies how often we want to observe the
structure of the communities, and allows us to customize the output of the algorithm. Furthermore,
the TTL impacts the overall stability of the observed phenomena. Studying a dynamic network
we can model its evolutionary behavior to comply to one of the following general scenarios: (a)
accumulative or (b) limited memory growth. The former assumes that once an interaction among
a pair of nodes has taken place it has to be considered permanent; conversely, the latter states
that interactions gradually lose their strength as time goes by till disappear. TTL will be used to
interpolate this two behaviors.

The execution of the algorithm produces as output, for each node, a series of timestamped
observations: one every τ . Each observation is composed by two sets: the weak community mem-
berships and the strong community memberships of the node. Setting τ equals to the streaming
source clock ensures a punctual observation of community status on each new network update.
The behavior of Tiles is shown in Algorithm 7.

First of all (line 3-7) the new edge e = (u, v) generated by the source S is added to the graph.
Then the following scenarios are considered:

1. both the nodes u and v appear for the first time in the graph. No other actions are performed
until the next interaction is produced by the source (Figure 9.2(a));

2. one node appears for the first time and the other is already existing but peripheral. Since
peripheral nodes are not allowed to propagate the community membership, no action is
performed until the next edge is produced by the source (Figure 9.2(a)). The same case
applies when both nodes are existing but peripheral;

3. one node appears for the first time in G, while the other is an already existing core node
(line 8-11). The new node inherits a weak community membership from the existing core
node (Figure 9.2(b));
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(a) (b) (c) (d)

Figure 9.3: Community Growth: four consecutive updates extracted from a Facebook interaction
network (FB07 network). Colors identify “core” communities. “Periphereal” nodes are identified
by solid lines while nodes that are not involved in communities by dashed lines. New interactions
are shown in red.

4. both nodes are core ones already existing in G (line 13-18). In this case two sub-scenarios
can emerge:

(a) Nodes u and v do not have common neighbors (line 14-16): they propagate each other a
weak community membership through the WeakPropagation procedure (Figure 9.2,
bottom left).

(b) Nodes u and v do have common neighbors (line 18): their community memberships are
re-evaluated and the changes propagated to their surroundings by the StrongPropa-
gation function (Figure 9.2(c-d)).

Tiles communities grow gradually expanding their core and their peripheries through the
WeakPropagation and the StrongPropagation procedures. The WeakPropagation pro-
cedure regulates the events in which a new node becomes part of an already established community.
Since the newcomer is not involved in any triangle with other nodes of the community it becomes
part of its periphery. The same function is performed when a new interaction connects existing
nodes that does not share any neighbors. The StrongPropagation procedure assumes that the
nodes u and v have at least a common neighbor z. For each triple (u, v, z) if at least two nodes
are core for the same community the third one becomes core as well (example in Figure 9.3(c-d)),
otherwise a new community is created upon the new triangle (example in Figure 9.3(a, b)). Once
the core nodes are established, they propagate a weak membership to their neighbors, if they are
not already within the community.

Due to its streaming definition, the complexity of Tiles is mainly shaped by the edge insertion
phase, which can cause perturbation on the network topology and induce updates on the community
structure. In the worst case scenario, this step has complexity O(|V |) since the most costly rule
is applied when the edge endpoints u and v share |V | neighbors. However, reaching such upper
bound is unusual due to the power law degree distribution which characterizes real world interaction
networks: in such specific scenario the probability of having a node with degree k is v kγ (where
usually 2 ≥ γ ≥ 3).

Expired edges removal

Tiles provides a valid solution to the ECD problem for the accumulative network growth scenario.
If we want to allow nodes and edges to leave the network we need to introduce a removeExpired-
Edges procedure (Algorithm 8) that follows a strategy consistent with the proposed community
definition (line 4 of Algorithm 7). Tiles execution is parametric on a time to live value for in-
teractions: when ttl is set to 0 an edge disappears immediately after its rising (causing an empty
network at each new step); when ttl is set to +∞ we fall in the accumulative growth scenario
described so far. When ttl assumes value in (0,+∞) each edge ceases to exist after a ttl time from
its generation by the streaming source S.
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Once expired, an edge is removed from the graph (Algorithm 8, line 2). To improve the
readability of the code, we report a linear search for expired interactions among all the ones present
in the graph: however, the actual implementation uses a priority queue in order to minimize
the number of tested interactions. The removal of an edge (u, v) causes the re-evaluation of
community memberships both for nodes u, v and some other community members (i.e., their
first level neighbors, lines 3-5). If after the removal of the expired edge the original community
is broken into multiple connected components (lines 11-15), each one of them is considered as a
new community. In order to assign each node to the periphery or the core of a community, the
UpdateNodeRoles procedure (Algorithm 9) is called. This function analyzes the local clustering
coefficient (CC) of each node within the specific community and retain as cores the ones with
CC > 0 (Algorithm 9, lines 3-5) and as periphereal ones with CC = 0 (lines 6-11). Once ensured
that the node roles within the modified community are consistent, a propagation is performed
on the neighborhood of nodes which moved from the core to the periphery. Figure 9.4 shows an
example of edge removal scenario.
The edge removal phase has cost O(|RQttl| ∗ |to update|3), where O(|to update|3) is due to the
clustering coefficient computation (a naive implementation has cubic cost on the number to update
of nodes whose role have to be updated) and RQttl ⊂ RQ2 is the set of interactions candidate for
the removal for the specific ttl. As ttl→ 0, |RQttl| becomes small while when ttl→∞ it increases
its size: in the latter case the removal phase were executed rarely (until were not executed at all
when ttl exceeds the observation period available for the data). For those reasons, this value can
be seen as a constant.

Tiles properties

Due to its streaming nature, Tiles shows two main properties: (i) It can be used incrementally on a
precomputed community set; (ii) it can be parallelized if specific conditions are satisfied. Moreover,
in presence of a deterministic interaction source S, Tiles output is uniquely determined. In the
following section, we discuss and formalize such characteristics.

Property 5 (Incrementality.) As specified above, Tiles is called on an initially empty graph.
However, it also works when a non-empty graph and a set of precomputed communities are passed
as parameters. Given a deterministic streaming source St at time t and a non-empty graph Gt,
whose nodes are assigned to a community set Ct = (c1, c2, . . . , cn), Tiles has the incrementality
property:

TILES(Gt, St) = TILES(G,S0) (9.1)

2RQ stands for Removal Queue.
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Figure 9.4: Expired edge removal. (a) the actual community where the edge (v, j) is candidate
for removal; (b) the updated community: node j and y leave the community core because not
involved in a triangle with central nodes (clustering coefficient equals to 0), node k and m leave
the community periphery due to the propagation phase.



164 CHAPTER 9. MODELING COLLECTIVE DYNAMICS

Algorithm 8 removeExpiredEdges(ttl,actualt)

Require: ttl: edges time to live, actualt: actual timestamp.
1: for all e in E do
2: if (actualt-et)≤ ttl then
3: removeEdge(e)
4: shared communities = communities shared by eu and ev
5: to update = {Γ(eu) ∩ Γ(ev)}∪{eu, ev}
6: for c ∈ shared communities do
7: components = getComponents(c)
8: if |components| == 1 then
9: UpdateNodeRoles(c, to update)

10: else
11: for subcom ∈ |components| do
12: sc = NewCommunity(subcom)
13: RemoveNodes(c, subcom nodes)
14: UpdateNodeRoles(sc, subcom)
15: end for
16: end if
17: end for
18: end if
19: end for

Algorithm 9 UpdateNodeRoles(c, to update)

Require: c: community, to update: set of nodes.
1: C = Subgraph(c)
2: for node ∈ to update do
3: if ClusteringCoefficient(node)>0 then
4: ccentral = ccentral ∪ {node}
5: else
6: if c ∈ ncentral then
7: ncentral = ncentral − {node}
8: nperiphery = nperiphery ∪ {node}
9: weakPropagation(node, c)

10: end if
11: end if
12: end for

where G is an empty graph, C is an empty community set, S0 is the streaming source S at the
initial time. Since Tiles is incremental, the final community evolutions produced starting with the
source S at time 0 or at time t are identical, assuming that the streaming source is deterministic.

This property provides the foundations on which Tiles is built: it describes the incremental nature
of the algorithm update process. Given a Tiles-valid community set at time t this property
ensure that, applying Tiles, the final result will be valid as well. Indeed, using as starting point
a community partition which do not satisfy Tiles constraints it is not possible to make any
assumptions on the final adherence of the identified substructures with the ones that would have
been find by the same approach starting from scratch.

Property 6 (Compositionality.) Tiles is parallelizable by identifying disjoint streams of edges
produced by the deterministic streaming source S. Given a graph G, and two disjoint stream of
edges Si, Sii iff ∀(u1, v1) ∈ Si (u2, v2) ∈ Sii: (c(u1)∪c(v1))∩(c(u2)∪c(v2)) = ∅, where c(·) returns
the set of communities the node is part of, then:

TILES(G,S) = TILES(G,Si) ∪ TILES(G,Sii) (9.2)

The underlying idea is to operate updates on network subgraphs that are disjoint w.r.t. the
communities assigned to the nodes: this is made possible by the constrained label propagation used
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Figure 9.5: Comparison of several community detection algorithms on the same case. (a) NMI vs.
µ; (b) NMI vs. network density; (c) runtime vs. network size.

to spread community membership. Moreover, this property also holds for the edge removal phase
(considering the list of edges to be removed at each iteration as a streaming source). Isolating
interactions among nodes of different communities makes possible to parallelize the algorithm,
allowing a speed up of the computation of community evolution. We will briefly discuss the impact
this property has on the runtime when evaluating our algorithm on synthetic data.

Experimental Results

Evaluating results provided by a community discovery algorithm is a complex task, since a shared
and universally accepted definition of what a community is does not exist. In literature, each
algorithm proposes its own idea of a community and of the properties nodes should share in order
to belong at the same partition of the network. Moreover, different Community Discovery algo-
rithms are often designed to solve slightly different problems (i.e., overlapping and non-overlapping
communities, static and dynamic communities, modularity-based and density-based communities).
In the following we propose a validation of Tiles against other algorithms on synthetic networks
with ground truth communities. Then we characterize the communities produced by Tiles on
two real datasets of social interactions. Finally, we discuss the impact of the TTL parameter on
community lifecycle when using Tiles in an edge removal scenario.

Evaluation on Synthetic networks

A comparison with the communities produced by different algorithms is the most straightforward
way to assess the strengths and weakness of Tiles. Hence, in this section, we compare our algo-
rithm with other static and dynamic community detection ones, using for Tiles an accumulative
growth scenario (ttl = ∞, no edge removal). The plethora of community definitions introduced
by different approaches makes questionable a direct comparison of the outputs obtained by two
algorithms on the same network when a ground truth is not provided. Unfortunately, datasets
with ground truth, i.e., real partition of the network into communities, are hard to find, especially
for large scale networks. For this reason, we have performed our comparison over several synthetic
datasets, estimating the resemblance of algorithms’ communities with the provided ground truth
partition of the network. As previously done in 7.1, to compare the ground truth with the structure
delivered by the algorithm we adopt the Normalized Mutual Information (NMI) score, a measure
of similarity borrowed from information theory [188] which in its general form is defined as:

NMI(X : Y ) =
H(X) +H(Y )−H(X,Y )

(H(X) +H(Y ))/2

pdf where H(X) is the entropy of the random variable X associated to the partition produced
by the algorithm, H(Y ) is the entropy of the random variable Y associated to the ground truth
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Figure 9.6: (First row) Community size distribution for CG (a), FB07 (b) and WEIBO (c). (Second
row) Community per node distribution for CG (d), FB07 (e) and WEIBO (f).

partition, whereas H(X,Y ) is the joint entropy. NMI ranges in [0,1] and is maximized when
the confronted communities are identical. To cope with the overlapping nature of the extracted
communities we adopt the NMI variant defined in [189].

To obtain a ground truth community partition of the networks we used the LFR benchmark
[203], which generates synthetic networks along with ground truth communities, according to the
following input parameters:

• N , the network size (from 1k to 500k nodes);

• C, the network density (from 0 to 0.9, steps of 0.1);

• µ, the average per-node ratio between the number of edges to its communities and the number
of edges with the rest of the network (from 0 to 0.9, steps of 0.1).

We produced a total of 2500 different static synthetic networks varying the input parameters of
the LFR model. On the generated networks we applied Tiles and other overlapping community
detection algorithms. One algorithm, iLCD [132] is a dynamic algorithm which re-evaluates com-
munities at each new interaction produced by a streaming source according to the path lengths
between each node and its surrounding communities. The other two algorithms are static ones:
(i) Demon [4], which exploits a label propagation procedure to build communities starting from
ego networks; (ii) cFinder [204], which computes communities based on the Clique Percolation
Method (CPM). It is worth underlining that the LFR benchmark does not generate a timestamped
stream of edges. For this reason, we imposed a random temporal order on the edges in order to
simulate the streaming source S needed to apply Tiles and iLCD. Conversely, such ordering is
not needed for the other two algorithms since they are static.

As shown in Figure 9.5(a) we observe that varying the parameter µ, Tiles produces commu-
nities whose NMI w.r.t. the ground truth is comparable to Demon and cFinder, but significantly
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(a) CG (b) FB07 (c) WEIBO

Figure 9.7: Distribution of average clustering coefficient per community for CG (a), FB07 (b) and
WEIBO (c). Each color identify a ttl value.

outperforms iLCD, its only direct competitor. In Figure 9.5(b) we can observe how the NMI of
the compared methods are stable till the density parameter C reach 0.5 (half of all the possible
edges are present in the network). Such a high density values, however, is not unusual for real
interaction networks, where the density usually falls in the range [0.05, 0.2]. Figure 9.5(c) compares
the execution time of Tiles, iLCD and Tilesp, an instantiation of our algorithm which exploits
the compositionality property in order to parallelize the computation. We can observe that the
vanilla version of Tiles (implemented in Python) has an execution time comparable to iLCD
(implemented in Java). Moreover, we are able to achieve the same results with Tilesp while sig-
nificantly reducing the runtime. In the latter case we maintain the same interaction ordering used
for the former approaches and impose limited parallelism, i.e., at most 2 synchronous updates at a
time on consecutive interactions among nodes which satisfy the previously introduced constraint.
Our algorithm produces communities whose NMI w.r.t. ground truth is significantly higher than
the other dynamic community detection algorithm, with a similar execution time.

Evaluation on Real data

In order to characterize Tiles communities we analyzed three real world interaction networks:
a wall post network extracted from Facebook, a Chinese micro-blogging mention network, and
a nation-wide call graph extracted from mobile phone data. Those datasets allow us to test
the algorithm on two different grounds: two “virtual” contexts where people share thoughts and
opinions via social media platforms, and a “real” one where people directly keep in touch through
a mobile phone. The general statistics of the datasets are shown in Table 9.1.

• Facebook network. The FB07 network used in our experiments is extracted from the
WOSN2009 [205] dataset3 and regards online interactions between users via the wall feature
in the New Orleans regional network during 2007. We adopted an observation period τ of
one week.

• Call Graph. The call graph is extracted from a big mobile phone dataset collected by a Eu-
ropean carrier for billing and operational purposes. It contains date, time and coordinates of
the phone tower routing the communication for each call and text message sent by 1, 007, 567
costumers, in a period of one month. We discarded all the calls to external operators. As τ
we adopted a window of 3 days.

• WEIBO interactions. This dataset is obtained from the 2012 WISE Challenge4: built
upon the logs of a popular Chinese micro-blog service5, its interactions represent mentions

3http://socialnetworks.mpi-sws.org/data-wosn2009.html
4http://www.wise2012.cs.ucy.ac.cy/challenge.html
5http://weibo.com
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(a) CG (b) FB07 (c) WEIBO

(d) CG (e) FB07 (f) WEIBO

Figure 9.8: (Top) Tiles communities nodes coverage; (Bottom) Distribution of transition time
from periphery to core and ratio of nodes that move from the periphery to the core across consec-
utive observations.

of users in short messages. We selected a single year, 2012, and used an observation window
one week.

It is worth noting that any arbitrary chosen value of τ does not affect the execution of Tiles but
only the moments of community status observation. The τ threshold is introduced with the mere
purpose of simplifying the analysis of results and reduce the number of consecutive community
observations. However, setting the τ parameter to the clock of the stream source will provide as
output the full community updates history of communities.

We analyze four aspects of the communities produced by Tiles: (i) the distribution of commu-
nity size; (ii) the distribution of community overlap; (iii) the distribution of communities’ average
clustering coefficient; (iv) the transition time of nodes from the periphery to the core of commu-
nities. The size of Tiles communities follows a heavy tail distribution for all datasets (Figure
9.6, top). This means that the vast majority of communities have few nodes while a small but
significant portion of nodes have several thousands nodes. Such a great heterogeneity also charac-
terizes the community overlap, i.e., how many different communities a node belongs to (Figure 9.6,
bottom). The majority of nodes belong to just one or two communities, while some nodes belong
to thousands different communities. Figure 9.7 shows the average clustering coefficient of commu-
nities computed over the core nodes. Communities maintain high average clustering coefficients as

Network Nodes Edges CC #Observations (τ)

FB07 19 561 304 392 0.104 52 (1 week)

CG 1 007 567 16 276 618 0.067 10 (3 days)

WEIBO 8,335,605 49,595,797 0.014 52 (1 week)

Table 9.1: Datasets statistics. CC identify the network clustering coefficient.
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Figure 9.9: Example of Community Lifecycle extracted from WEIBO: each nodes represent a
community with its id. Events are identified by the relative letter: (B) birth, (M) merge, (A)
absorption, (S) split, (D) death. Merged communities and residual of splits are highlighted with
thicker community lines.

time goes by, with minimum values of 0.6 for FB07 and WEIBO networks and 0.8 for CG. These
values are significantly higher than the overall clustering coefficients of the networks (see Table
9.1) highlighting how Tiles is capable of identifies dense social structures. Due to its definition
Tiles searches for precise patterns within a network structure: 3-clique based communities. The
resulting nodes coverage, i.e., how many nodes are included into communities, is hence strictly
related to the clustering coefficient of the analyzed network: the greater the clustering coefficient
the higher is the nodes coverage. This tendency is depicted in Figure 9.8(top) where we report,
for CG, FB07 and WEIBO, how the ratio of “core” nodes, “periphery” nodes and the sum of the
two (total nodes coverage) change in time during the period of observation. FB07 has a clustering
coefficient of 0.104 showing a high coverage: the 80% of nodes are included in some communities.
In contrast, CG and WEIBO reach a coverage of 40 − 50% due to their low overall clustering
coefficient (0.067 and 0.014, respectively). A peculiarity of Tiles is the concept of community
periphery. As already discussed, peripheral nodes are not involved in triangles with other nodes
of the community. Every node first joins a community as peripheral node then it becomes core
node once it is involved within a triangle with other core nodes. We find that the expected time
of transition from the periphery to the core of a community is generally short (Figure 9.8 bottom,
blue continuos line): in CG 40% of nodes become core nodes in just 3 days; in FB07 15% of nodes
perform the transition during the first week; in WEIBO almost 60% of transitions occur within a
single week. We also investigated how many nodes perform the transition from periphery to core
across consecutive community observations: given two observation of a community C, what is the
ratio of core nodes in C at t + ∆ that where in the peripheral nodes at time t? We observe that
this ratio has values between the 30% and 50% of the nodes for CG and FB07, and around 70% for
WEIBO (Figure 9.8, green dashed line). This means that almost the half of the peripheral nodes
become core nodes in the subsequent time window in all the networks.

Event-based Community Lifecycle

Several works on evolutionary community discovery focus on the analysis of the events which
regulates community life-cycles (i.e., birth, merge, split and death of communities). Even if Tiles
is not explicitly designed to output such events it allows us to identify them and capture the exact
moments in which each event takes place. Observing step by step the network evolution we can
track its perturbations. In order to perform an event-based analysis of community life-cycles we
identify five main events:

• Birth (B): the community first appearance, this state coincides with the formation of the
rising of the first set of core nodes;
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• Merge/Absorption: two (or more) communities merge when their core nodes completely
overlap: we define Absorbed (A) the communities which expanding collide with an existing
one and Merged (M) the already existing community;

• Split (S): a community splits in one or more subsets during the edge removal phase;

• Death (D): a community is considered dead when its core node set is empty.

In Figure 9.9 is shown an example of community life-cycle extracted from the WEIBO dataset.
Analyzing the trends trough time of such events we can characterize the evolution of the whole
network topology. As an example, Figure 9.10 shows such trends for WEIBO when the ttl is set
to one week (left) and one month (right). We can notice that the observed trends follow more or
less the same patterns regardless the chosen persistence threshold: the only major effect that we
observe is the increase of merge and decrease of split events when a higher ttl is used.

Time To Leave analysis

In order to analyze how different TTLs impact the communities characteristics we execute Tiles
varying the ttl values on FB07 (1 week, 2 weeks, 3weeks, 1 month, 2 months, 6 months +∞), CG (1
day, 3 days, 1 week, 2 weeks, +∞) and WEIBO (1 week, 2 weeks and 1 month). We have already
shown how ttl affect the overall ratio of community life-cycle events, now we study the degree of
stability induced on such structures at a micro level. We are interested in capturing the impact
ttl has on the rates of node join/leave towards communities. Figure 9.11 shows two series of plots:
(i) on the top, the trends for nodes’ join/leave actions w.r.t. communities; (ii) on the bottom,
how such trends relate on average to the stability of communities. As ttl increases, nodes and
communities tend to stabilize quickly and leave actions emerge less frequently. On the other hand,
Figure 9.12 shows the community average life (i.e., the number of weeks/days from its rising to its
disappearance) w.r.t. its average size. A correlation between the two measures clearly emerges:
in FB07 and CG bigger communities live longer regardless the value of ttl while in WEIBO we
observe a negative correlation between size and average community life. Moreover, increasing ttl
the expected life and size of communities tends to grow reaching their maximum when the removal
phase is avoided (ttl = +∞). This observation is reinforced by the average clustering coefficient
trend shown in Figure 9.7: lower ttl values produce more compact community structures. Our
experiments show that, as expected, interactions time to live deeply affects the outcome of the
algorithm. In particular we observe that:

• higher ttl values produce bigger communities and foster the stabilization of the node mem-
berships;

• lower ttl values produce smaller, denser, and often more unstable communities.

(a) One week removal (b) One month removal

Figure 9.10: Event trends in WEIBO. (a) One week vs. (b) one month edge removal.
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(a) CG (b) FB07 (c) WEIBO

(d) CG (e) FB07 (f) WEIBO

Figure 9.11: Community membership evolution. (First row) Low TTL: CG one day, FB07 one
weeks, WEIBO one week; (Second row) High TTL: CG and FB07 no removal, WEIBO one month.

We can argue that reasonable values for this threshold are the ones which lead to a stability rate
trend (for both nodes and communities) that overcome the join/leave ones. When this condition is
satisfied, Tiles is able to extract communities with stable life-cycles (i.e., they do not appear and
fall apart quickly). However, the choice of ttl is obviously context dependent (i.e., it is reasonable
to assume that different phenomena can be characterized with different interactions persistence).

Discussion

In this work we proposed Tiles, an algorithm which solves the problem of tracking the evolution
of overlapping communities in interaction networks. Tiles follows a “domino” approach: each new
interaction determines the re-evaluation of community memberships for the endpoints and their
neighborhoods. We define two types of community memberships: weak membership, describing
nodes in the periphery of the community; and strong membership, for core nodes which are involved

(a) CG (b) FB07 (c) WEIBO

Figure 9.12: Community size vs. avg. life: each color identify a different ttl value.
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in at least a triangle within the community. The compositionality is an interesting property of
Tiles, which allows for the parallelization of the algorithm and the speed up of communities
computation. Other interesting characteristics, emerged by the application of the algorithm on
real world scenarios (a call graph and two social interaction network), are the skewed distribution
of community size, and the high average clustering coefficient within communities. Moreover,
compared with another dynamic community detection algorithm on synthetic networks, Tiles
shows better execution times as well as a higher correspondence with the ground truth communities.
Many lines of research remain open for future works: among them one of the most promising in
our opinion involves the incorporation of dynamic aging procedures which automatically adjust the
TTL of edges using information related to specific user trend activity. Moreover, the mechanisms
which regulate the node transitions from the periphery to the core of a community are another
interesting aspect to investigate: indeed, understanding them could lead to the extraction of very
expressive features that can be used to approach the interaction prediction problem.



Chapter 10

Information Diffusion

Diffusion is essentially a social process
through which people talking to people
spread an innovation.

— Everett Rogers

In the previous chapters we have seen how network local structures as well as the complex
topologies built upon them are subject to changes as time goes by. However, in social contexts,
dynamism can be expressed not only by the edges and nodes which compose the network tissue
but also by the information that flow through them. Several studies have addressed the problem
of Information Diffusion from multiple perspectives with the aim of describe, model and forecast
specific real world phenomena (i.e., virus spreading, information cascades. . . ). In 10.1, starting
from a dataset concerning the music listenings of almost 70 000 British users of Last.fm, a music-
oriented OSN, we address a particular declination of the Information Diffusion problem: Social
Prominence.
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10.1 Social Prominence1

One of the most fascinating problems in SNA regards the understanding and modeling of diffusive
phenomena. Modeling diffusion processes on complex networks enables us to tackle problems like:
preventing epidemic outbreaks [152], favoring the adoption of new technologies and behaviors,
design effective word-of-mouth communication strategies. In this work, we are focused on the
social prominence aspect of the diffusion problem in networks.

In the setting of favoring social influence, most of the attention of researchers has been put
on how to maximize the number of nodes subject to the spreading process. This is usually done
by choosing appropriate seeds in critical parts of the network, such that their likelihood of being
prominent users, i.e., nodes that are active on an innovation before all the other nodes, is maximum,
to possibly achieve larger cascades. While larger cascades are obviously part of the overall aim, we
argue that it is not the unique dimension of this problem. Three other dimensions are relevant:
the width, the depth and the strength of the social prominence of any given node in a network. The
width of a node is being prominent for its immediate neighbors; the depth capture its ability to
be the root of long cascades; the strength is being the root of an intense activity.

Real-world scenarios focus on specific diffusion patterns requiring a multidimensional under-
standing of the prominence mechanics at play, along the three mentioned dimensions. Some ex-
amples are: (i) an analyst needs information from the personal acquaintances of a subject, the
important aspect is that many subject’s direct connections respond, ignoring people two steps
away or more; (ii) a person wants to find another person with a given object, the important aspect
is that some people are able to pass her message through a chain pointing to the target; (iii) an
artist wants to influence people in a social network to her art, the important aspect is that some
people are influenced above the threshold that will make them aware of the art. In (i) we want a
broad diffusion in the first degree of separation. In (ii) we require a targeted diffusion similar to a
Depth First Search. In (iii) there is the need of a high-intensity diffusion. Different scenarios may
require any combination of the three.

In this work, we make use of three measures to capture the characteristics of these three
scenarios: the Width, Depth and Strength of social prominence. The Width measures the ratio of
the neighbors of a node that follows the node’s actions. The Depth measures how many degrees of
separation there are between a node and the other nodes that followed its actions. The Strength
measures the intensity of the action performed by some nodes after the leader.

We study what the relations are between these three measures to understand if we are capturing
three orthogonal dimensions of social prominence. We also study the relations between the Width,
Depth and Strength measures and different node properties, with the aim of predicting the diffusion
patterns of different events, given the characteristics of the nodes that lead their diffusion.

To validate our concepts, we constructed a social network from the music platform Last.Fm2,
along with the data about how many times and when each user listens to a song performed by a
given artist. We detect who are the prominent users for each artist, i.e., the users who start listening
to an artist before any of their neighbors. We calculate for each prominent user its Width, Depth
and Strength, along with its network statistics such as the degree and the betweenness centrality,
looking for associations between them. We then create a case study to understand what are the
different dynamics in the spread of artists belonging to different music genres, by using the artists’
tags.

10.1.1 Leader Characterization

Each diffusion process has its starting points. Any idea, disease or trend is firstly adopted by
particular kinds of actors. Such actors are not like every other actor: they have an increased
sensibility and they are the first to perform an action in a given social context. We call such actors
prominent users, or leaders, because they are able to anticipate how other actors will behave. Given

1D. Pennacchioli, L. Pappalardo, G. Rossetti, D. Pedreschi, F. Giannotti, and M. Coscia, “The three dimensions
of social prominence”, in Social Informatics, 2013.

2http://www.last.fm/

http://www.last.fm/
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Figure 10.1: Toy Example. In (a) the social graph G and action set A, where x, y ∈ Ψ are the
objects of the actions; in the center the induced subgraph for the action x; in (b) the diffusion tree
for x. In red we highlighted the leader (root) for the given tree.

a graph, several interesting problems arise regarding how information spreads over its topology:
can we identify the leaders? Can we characterize them? What kind of knowledge should we expect
to extract from their analysis?

Our approach aims to detect leaders through the analysis of two correlated entities: the topology
of the social graph and the set of actions performed by the actors (nodes). When discussing the
roles of those entities, we refer respectively to the following definitions:

Definition 31 (Social Graph) A social graph G is composed by a set of actors (nodes) V con-
nected by their social relationships (edges) E. Each edge e ∈ E is defined as a couple (u, v) with
u, v ∈ V and, where not otherwise specified, has to be considered undirected. With Γ(u) we identify
the neighbor set of a node u.

Definition 32 (Action) An action au,ψ = (w, t) defines the adoption by an actor u ∈ V , at a
certain time t, of a specific object ψ with a weight w ∈ R. The set of all the actions of nodes
belonging to a social graph G will be identified by A, while the object set will be called Ψ.

We identify with Gψ = (Vψ, Eψ), where Vψ ⊂ V and Eψ ⊂ E, the induced subgraph on G
representing respectively the set of all the actors that have performed an action on ψ, and the
edges connecting them. We depict an example of the social graph and the set of actions in Figure
10.1 (a), where the induced subgraph for the object x is highlighted with a dashed line. In the
Figure, a1,x refers to the user 1 performing the action x; and a1,x = (1, 0) means that user 1
performed x one time, starting at the tilmestep 0.

Given the nature of a diffusion process, we would expect that each leader will be prominent
among its neighbors, being the root of a cascade event that follows some rigid temporal constraints.
Our constraint is that a node u precedes a neighbor v iff given tu,ψ ∈ au,ψ and tv,ψ ∈ av,ψ is verified
that tv,ψ > tu,ψ and tv,ψ − tu,ψ ≤ δ. Here, δ is a temporal resolution parameter that limits the
cascade effect: if tv,ψ − tu,ψ > δ, we say that v executed action av,ψ independently from u, as u’s
prominence interval is over.

We transform each undirected subgraph Gψ in a directed one imposing that the source node of
an edge must have performed its action before the target node. After that, each edge (u, v) will
be labeled with min(tu,ψ, tv,ψ) to identify when the diffusion started going from one node to the
other. The directed version of Gψ represent all the possible diffusion paths that connect leaders
with their “tribes” (Figure 10.1 (b) an example for the object x ∈ Ψ).

From now on, for a given object ψ, we will refer to the corresponding leader set as Lψ: when
no action is specified the set L will be used to describe the union of all the Lψ for the graph G.
To be defined a leader an actor should not have any incoming edges in Gψ. This is because a
prominent user cannot act after another user (they are, in their surroundings, innovators), and is
a direct consequence to the adoption of a directed graph to express diffusion patterns. Given this
definition, for each directed connected component Cψ ⊂ Gψ multiple nodes can belong to Lψ.
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Algorithm 10 The pseudo-code of ExtractLeaders.

Require: G = (V,E);A; Ψ, δ;
Ensure: L, T
1: T ← {}, L ← {}
2: for ψ ∈ Ψ do
3: Gψ ← InducedSubgraph(G, ψ, δ)
4: Tψ ← {}, Lψ ← {}
5: for Cψ ∈ Gψ do
6: for l ∈ Cψ do
7: if InDegree(Cψ, l)==0 then
8: Lψ ← Lψ ∪ l
9: Tl,ψ ←MST (Cψ, l)

10: Tψ ← Tψ ∪ Tl,ψ
11: end if
12: end for
13: end for
14: L ← L ∪ Lψ
15: T ← T ∪ Tψ
16: end for
17: return L, T

Realistically, a leader may be influenced by exogenous events. This is not a problem as we are
not measuring a node’s influence, but a node’s prominence, i.e., its propensity to act faster than
others to any kind of exogenous and/or endogenous influence. To study the path of diffusion given
an action a and a leader l we use a minimum diffusion tree:

Definition 33 (Leader’s Minimum Diffusion Tree) Given an action aψ, a directed connected
component Cψ and a leader l ∈ Lψ, the minimum diffusion tree Tl,ψ ⊂ Cψ is the Minimum spanning
tree (MST) having its root in l and built minimizing the temporal label assigned at the edges.

An example of minimum diffusion tree for the node 1 and object x is shown in Figure 10.1
(right). For each object, the diffusion process on a given network is independent. Moreover, given
temporal dependencies on its adoption (expressed through actions a∗,ψ ∈ A), it is possible to
identify the origin points of the diffusion. The identified leaders will show different topological
characteristic and will be prominent in their surroundings in different ways: our aim is to classify
diffusion leaders characterizing some of their common traits.

To sum up, we use the leader extraction procedure ExtractLeaders as defined in Algorithm
10. For all objects ψ ∈ Ψ, we extract the directed induced subgraph Gψ by filtering all nodes
that performed an action a∗,ψ ∈ A and all the edges between them (performed by InducedSub-
graph where δ is the temporal constraint discussed before). Then, for each connected component
Cψ ∈ Gψ we choose as our leaders all the nodes without incoming edges. We add them to the
leader set Lψ and we store in Tψ their Minimum Diffusion Trees (calculating the minimum span-
ning tree MST with root in l using only nodes in Cψ). At the end, we return the union of Lψ and
Tψ.

The proposed algorithm has low complexity. First, we cycle over all the actions (O(|Ψ|)).
Then, we cycle over all the connected components of Gψ and, for each one, we cycle over the nodes
belonging to them: together the two cycles reach the complexity of O(|Vψ|). Within the inner loop
a minimum spanning tree (O(log |V |), with Kruskal’s algorithm) is computed for every leader. As a
consequence, the final complexity of ExtractLeaders is O(|Ψ|×|V | log |V |). For large networks,
it is fair to assume that |Ψ| << |V |, so the complexity would be Θ(|V | log |V |). Moreover, since
each action is independent from the others, with |Ψ| processors the exact complexity would be
O(|V | log |V |).
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10.1.2 Local Diffusion Measures

To capture the three dimensions of social prominence we need three network measures. We call
these measures Width, the ratio of neighbors mirroring an action after a node; Depth, how many
degrees of separation are in between a node and the most distant of the nodes mirroring its actions;
and Strength, how strongly nodes are mirroring a node’s action.

Given a leader, the Width aims to capture the direct impact of her actions on her neighbors,
i.e., the degree of importance that a leader has over her friends.

Definition 34 (Width) Let G be a social graph, ψ ∈ Ψ an object and l ∈ Lψ ⊂ V a leader: the
function width : Lψ → [0, 1] is defined as:

width(l, ψ) =
|{u|u ∈ Γ(l) ∧ ∃au,ψ ∈ A}|

|Γ(l)|
(10.1)

The value returned is the ratio of all the neighbors that, after the action of the leader, have
adopted the same object.

The Depth measure evaluates how much a leader can be prominent among other prominent
leaders, which can be prominent on other leaders and so on.

Definition 35 (Depth) Let Tl,ψ be a minimum diffusion tree for a leader l ∈ Lψ and a given
object ψ ∈ Ψ: the function depth : Tl,ψ → N computes the length of the maximal path from l to a
node u ∈ Tl,ψ. The function depthavg : Tl,ψ → R computes the average length of paths from l to
any leaf of the tree.

The last proposed measure, the Strength, tries to capture quantitatively the total weight of
the adoption of an object after the leader’s action. A leader is strongly prominent if the nodes
among which she is prominent are very engaged in adopting what she adopted. Direct prominence
diminishes as new adopters become more distant, in the network sense, from the original innovator.
Therefore, we decided to introduce a distance damping factor.

Definition 36 (Strength) Let Tl,ψ be a minimum diffusion tree for a leader l ∈ Lψ and an object
ψ ∈ Ψ; 0 < β < 1 a damping factor: the function strength : Tl,ψ × (0, 1)→ R is defined as:

strength(Tl,ψ, β) =
∑

i∈[0,depth(l)]

βiL(Tl,ψ, i) (10.2)

where L : Tl,ψ × N→ R is defined as:

L(Tl,ψ, i) =
∑

{u|u∈Tl,ψ∧distance(l,u)=i}

wu,ψ
wu

(10.3)

and represents the sum, over all the nodes u at distance i from l, of the ratio between the weight
of action ψ and the total weight of all the actions taken.

Example 4 Given the graph in Figure 10.1, what are the Width, Depth and Strength values for
the red node leader and the action x?

• Width: from Figure 10.1(left) we see that Γ(1) = {2, 4, 7, 8}, i.e., 4 nodes. Given that

Γx(1) = {u|u ∈ Γ(1) ∧ ∃au,x} = {2, 4}, we have width(1, x) = |Γx(1)|
|Γ(1)| = 0.5.

• Depth: the leaves in Figure 10.1(rigth) are nodes 3, 4 and 6. Node 4 is a direct neighbor
of 1, while node 3 is two edges away. The longest chain is 1 → 2 → 5 → 6, therefore
depth(T1,x) = 3. We can also calculate depthavg(T1,x), that is the average path length in the
tree from node 1 to all the leaves: 1+2+3

3 = 2.
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Figure 10.2: (a) Log-binned distribution of the nodes’ degree. (b) Log-binned distribution of
number of listeners per artist.

• Strength: we need to use the number of times each node performed action x. We also set our
damping faction β = 0.5. At the first degree we have nodes 2 and 4, that performed action
x 2 and 4 times respectively; they also performed action y 1 and 2 times respectively: their
contribution is then β0 × ( 2

2+1 + 4
4+2 ). Nodes 2 and 5 are at the second degree of separation

as they never performed action y, therefore they add: β1×(1+1). Finally, at the third degree
of separation, node 6 adds β2 × 6

6+6 . Wrapping up, strength(T1,x, 0.5) = 2.4583̄.

Experiments

Here we present the analyzed data which were extracted from the music OSN Last.fm. We use
the data to characterize the Width, Depth and Strength measures, by searching for associations
with network topology measures. Finally, we analyze the prominence of different users for different
musical genres.

Last.fm Data

Last.fm is an online social network platform, where people can share their own music tastes and
discover new artists and genres basing on what they, or their friends, like. Users send data about
their own listenings. For each song, a user can express her preferences and add tags (e.g., genre
of the song). Lastly, a user can add friends (undirected connections, the friendship request must
be confirmed) and search her neighbors w.r.t. musical tastes. A user can see, in her homepage,
her friends’ activities. The co-presence of these characteristics makes Last.fm the ideal platform
on which test our method, as it contains everything we need: social connections that can convey
social prominence, a measure of intensity proportional to the number of listening of an artist, rich
metadata attached to each song/artist and an intrinsic temporal dimension of users’ actions.

Using Last.fm APIs3, we obtained a sample of the UK user graph, exploring the network with
a breadth-first approach, up until the fifth degree of separation from our seeds. For each user, we
retrieved: (a) her connections, and (b) for each week in the time window from Jan-10 to Dec-11,
the number of single listenings of a given artist (e.g., in the week between April 11,2010 and April
18,2010 the user 1234 has listened 66 songs from the artist Metallica).

For each artist we have a list of tags, weighted with the number of users that assigned the tag to
the artist (e.g., Metallica has 4 tags: “metal” with counter 50 670, “hard rock” with 23 405, “punk”
with 10 500 and “adrenaline” with 670). We split tags, associating the counter to each single word
(in the last example: (metal, 50 670), (punk, 10 500), (hard, 23 405), (rock, 23 405), (adrenaline,
670)), then we filtered the words referring to a musical genre ((metal, 50 670), (punk, 10 500), (rock,

3http://www.last.fm/api/

http://www.last.fm/api/
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Width Strength Degree Clustering Neigh Deg Bet Centr Clo Centr

AVG Depth -0.03 -0.23 -0.08 0.05 -0.08 -0.02 -0.13
Width - 0.01 -0.31 0.13 0.05 -0.07 -0.59
Strength - - 0.02 -0.02 0.03 0.00 0.04
Degree - - - -0.16 -0.02 0.77 0.56
Clustering - - - - -0.05 -0.06 -0.32
Neigh Deg - - - - - -0.00 0.39
Bet Centr - - - - - - 0.22

Table 10.1: Pearson correlation coefficient ρ between Width, Depth, Strength and other network
statistics for our leaders.

23 405)). Finally, we assigned a musical genre to an artist iff the survived tag with the greater
counter had the relative rate ≥ 0.5 (in the example: rmetal(Metallica) = 50670

50670+10500+23405 ' 0.6,
so Metallica are definitely metal).

After the crawl and cleaning stages, we built our social graph G. In G each node is a user and
each edge is generated using the user’s friends in the social media platform. The total amount of
nodes is 75969, with 389639 edges connecting them. In Figure 10.2(a) we depicted the log-binned
degree distribution of G, along with the best fit. Each action in the data is one user listening to an
artist w times in week t. In Figure 10.2(b) we depicted the log-binned distribution of the number
of listeners per artist, along with the best fit.

Since we are interested in leaders, we need to focus only on new artists that were previously
not existent. If an artist was in activity before our observation time window, there is no way to
know if a user has listened to it before, therefore nullifying our leader detection strategy. For this
reason, we focus only on artists whose first listening is recorded six months after the beginning of
our observation period. Each artist belongs to a music genre (coded in its tag). We decided to
focus on music genres with sufficient popularity, namely: dance, electronic, folk, jazz, metal, pop,
punk, rap and rock. A genre’s popularity is determined by having at least 10 artists with at least
100 listeners. To sum up, we focus on the artists who appear for the first time after six months
in our observation period, with at least 100 listeners and belonging to one of the mentioned nine
tags. The cardinality of our action set A is 168216 actions, while the object set Ψ contains a total
of 402 artists.

In our experimental settings, we set our damping factor β = 0.5 for the calculation of the
Strength measure. We also set δ = 3, meaning that if a user listened to a particular artist three
weeks or more after its neighbor then we do not consider her neighbor to be prominent for her for
that action.4

Characterization of the Measures

For each leader, besides Width, Depth and Strength, we calculated also the degree (number of
edges connected to the node), the clustering coefficient (ratio of triangles over the possible triads
centered on the node), the neighbor degree (average degree of the neighbors of the node), the
betweenness (share of the shortest paths that pass through the node) and closeness centrality
(inverse average distance between the node and all the other nodes of the network).

In Table 10.1 we report the Pearson correlation coefficient ρ between the network measures.
We highlighted the correlations whose p-value was significant or whose absolute value was strong
enough to draw some conclusions. For the significance of p-values, the traditional choice is to set
the threshold at p < 0.01. However, given the high number of observations available, we decided
to be more restrictive, setting our threshold at p < 0.0005. We also consider a ρ value significant
if |ρ| > 0.1.

The Depth measure is associated with low closeness centrality. This means that a deep promi-
nence is associated to nodes at the margin of the network. It is expected that nodes with high

4To assure experiment repeatability, we made our cleaned dataset and our code available at the page http:

//goo.gl/h53hS

http://goo.gl/h53hS
http://goo.gl/h53hS


180 CHAPTER 10. INFORMATION DIFFUSION

Clustering Clo Centr

Partial ρ 0.087216 -0.536861
p-value 1.57× 10−14 0

Table 10.2: Partial correlation and p-value of Clustering and Closeness Centrality with Width,
controlling for Degree values.

closeness centrality have also low Depth: being central, they cannot generate long chains of dif-
fusion. The eccentricity of all the nodes of the network ranges from 6 to 10, meaning that some
leaders cannot have a Depth larger than 5. To make a fair comparison, we recalculate the Depth
value capping it at 5, meaning that any Depth value larger than 5 is manually reduced to 5. Then,
we recalculate the correlation ρ between the Depth capped to 5 and the closeness centrality obtain-
ing as result ρ = −0.1366, with p < 0.0005. We can conclude that central nodes are not associated
with deep spread of their prominence in a social network.

For the Width measure, the anti-correlation with the degree is not meaningful, as the degree
is in the denominator of Definition 34. However, we observe a positive association with clustering,
i.e., nodes could be prominent in a tightly connected community; and a negative association with
closeness centrality, i.e., central nodes could not spread a wide influence. Both associations could
be explained with the negative correlation with degree. Therefore, for both measures we run a
partial correlation, controlling for the degree. In practice, we calculate the correlation between
Width and clustering (or closeness centrality) by keeping the degree constant. Results are in Table
10.2: even if significant according to the p-value, the relationship between Width and clustering
is very weak and deserves further investigation. On the other hand, it is confirmed that central
nodes are also associated with low Width, regardless their degree.

From Table 10.1, we see that the Strength measure is not correlated with traditional network
statistics. As a consequence, hubs associated with low Depth and low Width, do not have nec-
essarily high Strength, making their prominence in a network questionable. Moreover, Strength
appears to be negatively associated with Depth, suggesting a trade-off between how deeply a node
can be prominent in a network and how strong this prominence is on the involved nodes.

The anti-correlation between the Strength and the Depth may be due to β: from Definition
36 β decreases nodes’ contributions at each degree of separation (i.e., at increasing Depths). As
a consequence, nodes farther from the leader contribute less to its Strength, i.e., the highest the
Depth the smallest are the contributions to the Strength. We recalculated the Strength values
by setting β = 1, therefore ignoring any damping factor and nullifying this effect. We obtained
as result ρ = −0.4168 and a significant p-value, therefore concluding that β is not causing the
anti-correlation between Depth and Strength.

To sum up, we summarize the associations as follows: (i) central nodes are not necessarily
prominent in a social network (low Width and Depth), a result that confirms [206] and [207]; (ii)
longer cascades (higher Depths) are associated with a lower degree of engagement (lower Strengths),
a phenomenon possibly related to the role played by “weak ties”; (iii) be prominent among neigh-
bors is probably easier if the node is in a tightly connected community, but more evidences have
to be brought to reject the role played by the node’s degree.

Case Study: Music Genres

Here, we present a case study based on Last.fm data. Our aim is to use our Leader extraction
technique and the proposed Width, Depth and Strength measures to characterize the spread of
musical genres among the users of the service. We recall that the object set Ψ is composed by 402
artists, each one having a tag corresponding to her main music genre.

For each couple leader l and object ψ, we calculate Depth, Width and Strength values; we
compute the size of the Leader’s Minimum Diffusion Tree (|Tl,ψ|); and we group together the
objects with the same tag. To characterize the typical values of Width, Depth and Strength for
each tag we cannot use the average or the median. This is because Strength and Width values
are skewed, and it is the combination of the three measures that really characterizes the leaders.
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Cluster size dance ele folk jazz met pop punk rap rock

0 1822 1.25 1.13 1.54 1.37 1.50 0.76 1.31 1.13 1.10
1 136 1.28 1.55 1.28 2.35 0.78 0.73 0.64 1.35 0.70
2 664 0.59 0.87 0.98 0.48 0.95 0.97 1.50 1.20 1.19
3 482 1.26 1.16 1.09 1.12 0.91 0.80 2.48 1.24 0.89
4 973 1.14 1.20 1.15 1.41 0.80 0.91 0.66 0.97 0.97
5 512 1.29 0.96 0.95 1.09 1.10 0.97 0.33 1.06 1.01
6 682 0.89 0.79 0.61 0.64 1.13 1.08 1.07 1.08 1.01
7 124 0.75 1.45 0.35 0.64 0 1.09 0 1.02 0.62
8 524 0.93 1.01 1.12 0.91 1.15 1.07 0.43 0.95 0.87
9 937 0.40 0.46 0.19 0.23 0.45 1.56 0.13 0.37 1.06
10 232 0.72 0.57 0.27 0.99 0.38 1.44 0.38 0.46 1.00
11 612 0.74 0.94 0.71 0.40 0.70 1.27 0.07 0.68 0.83

Table 10.3: (a) The RCA scores of the presence of each tag in each cluster.

We cluster leaders using as features their Width, Depth and Strength values. We used the Self-
Organizing Map (SOM) method [208] because:

• SOM does not require to set the number of clusters k;

• k-means outperforms SOM only if the number of resulting clusters is very small (less than
7) [209], but our study of the best k to be used in k-means with the Sum of Squared Errors
(SSE) methodology resulted in an optimal number of clusters falling in a range between 9
and 13 (in fact, SOM returned 12 clusters); and

• SOM performs better if the data points are contained in a warped space [210], which is our
case.

In Table 10.3, we report a presence score for each tag in each cluster. There are larger and
smaller clusters and some tags attract more listeners than others. To report just the share of leaders
with a given tag in a given cluster is not meaningful. We correct the ratio with the expected number
of leaders with the given tag in the cluster, a measure known as Revealed Comparative Advantage:

RCA(i, j) =
freqi,j
freqi,∗

/
freq∗,j
freq∗,∗

, where i is a tag, j is a cluster, freqi,j is the number of leaders who

spread an artist tagged with tag i that is present in cluster j. For each cluster we highlighted the
tag with the highest unexpected presence.

The centroids of the SOM are depicted in Figure 10.3: Depth on the x-axis, Strength on the y-
axis and the Width as the color (Strength and Width are in log scale). We can identify the clusters
characterized by the highest and lowest Strength (9 and 4 respectively); by the highest and lowest
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Figure 10.3: The centroids of our clusters.
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Figure 10.4: Distribution of number of objects (a) and of tags (b) per leader.

Depth (2 and 9 respectively); and by the highest and lowest Width (11 and 1 respectively). There
are also clusters with relatively high combinations of two measures: cluster 10 with high Strength
and Width or cluster 5 with high Depth and Width.

From Table 10.3 we obtain a description of what values of Width, Depth and Strength are
generally associated with each tag. For space constraints, we report only a handful of them for the
clusters with extreme values. Jazz dominates clusters 1 (with the lowest Width) and 4 (with the
lowest Strength): this fact suggests that jazz is a genre for which it is not easy to be prominent.

Cluster 9, with the lowest Depth but the highest Strength, is dominated by pop (that dominates
also clusters 10 and 11, both with high Strength but low Depth). As a result, we can conclude
that prominent leaders for pop artists are embedded in groups of users very engaged with the new
artist. On the other hand, it is unlikely that these users will be prominent among their friends too.

Finally, cluster 2 with the highest density has a large majority of punk leaders. From this
evidence, we can conclude that punk is a genre that can achieve long cascades, exactly the opposite
of the pop genre.

We move on to the topological characteristics of the leaders per tag. A caveat: a leader is not
bounded to be leader just for one object ψ, but she is free to be prominent in many ψ. Thus, one
leader can be counted in more than one tag. To help understand the magnitude of the issue, we
depicted in Figure 10.4 the number of leaders influencing their neighbors for a given amount of
actions (left) and for a given amount of tags (right). The y axis is logarithmic. The typical leader
influences one neighbor for one artist. However, some leaders express their leadership for 8 objects
and 4 tags.

In Figure 10.5 we depict the log-binned distributions, for the leaders of each tag, of four topolog-
ical measures: degree, closeness centrality, clustering and neighbor degree. We omit betweenness
centrality for its very high correlation with degree. Overall, there is no significant distinction
between the tags in the distributions of the topological features.

The most noticeable information is carried by the degree distributions (Figure 10.5(a)). Each
distribution appears very different from the overall degree distribution (Figure 10.2(a)). There are
fewer leaders with low degree than expected, therefore it appears that a high degree increases the
probability of being a leader. On the other hand, we know that central hubs have on average lower
Depth and Width. As a consequence, it appears that the best leader candidates are the nodes with
an average degree, and from Figure 10.5(a) we see that each tag has many leaders with a Degree
between 10 and 100.

Using our leaders’ Minimum Diffusion Trees, we extract some patterns that help us obtaining
a complementary point of view over the leader prominence for different music genres. We mine a
graph dataset composed by all diffusion trees Tl,ψ with the VF2 algorithm [211]. Suppose we are
interested in counting how frequent is the following star pattern: a leader influences three of its
neighbors in the diffusion trees of pop artists. In our data, we have 5043 diffusion trees for pop
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Pattern dance electronic folk jazz metal pop punk rap rock

3.62%
(35.42%)

3.04%
(22.50%)

3.94%
(30.30%)

7.25%
(62.50%)

4.14%
(23.08%)

3.69%
(32.01%)

6.56%
(27.59%)

4.01%
(27.97%)

4.22%
(30.43%)

2.55%
(25.00%)

3.92%
(29.00%)

3.15%
(24.24%)

4.35%
(37.50%)

4.83%
(26.92%)

3.61%
(31.29%)

10.66%
(44.83%)

5.60%
(38.98%)

4.12%
(29.71%)

3.40%
(33.33%)

3.79%
(28.00%)

3.94%
(30.30%)

4.35%
(37.50%)

6.90%
(38.46%)

4.73%
(41.01%)

12.30%
(51.72%)

4.99%
(34.75%)

4.52%
(32.61%)

Table 10.4: Presence of different diffusion patterns per tag.

artists, and 581 have at least four nodes. Since the VF2 algorithm found the star pattern in 186
of these graphs, we say that it appears in 3.69% of the trees, or in 32.01% of the trees that have
enough nodes to contain it.

In Table 10.4 we report the results of mining three patterns of four nodes: i) the star-like
pattern described above; ii) a chain where each node is prominent for (at least) one neighbor; iii)
a split where the leader is prominent for a node, which itself is prominent for two other neighbors.
Two values are associated to each pattern and tag pair: the relative overall frequency, and the
relative frequency considering only the trees with at least four nodes (in parentheses).

There is no necessary relation between the patterns and Width, Depth and Strength measures:
a low Depth does not imply the absence of the chain pattern, nor does a high Width imply a
high presence of the star pattern. However, the combination of the two measures may provide
some insights. For instance, we saw in Fig 10.3 that jazz leaders are concentrated in the lowest
Width cluster. However, many jazz leaders who affect at least three nodes tend to be prominent
in their neighbors, much more than in any other genre (7.25% of all leaders, 62.5% of leaders who
are prominent for at least three other nodes). Therefore, jazz leaders have low prominence among
their friends, however they are likely to have at least three neighbors for which they are prominent.

The chain pattern is more commonly found in pop leaders than in folk ones, even though the
clusters of their leaders described in Table 10.3 would suggest the opposite. It seems that pop
leaders are not likely to be prominent for nodes any further than the third degree of separation,
while folk leaders tend to generate longer cascade chains. Also in this case, punk leaders are
commonly found in correspondence with chain patterns, just as Table 10.3 suggested.

Although pop leaders show a much greater Strength value than metal ones (by confronting
in Figure 10.3 their presence in high Strength clusters like 9 or 10 and low Strength clusters like
8 and 0), the split pattern tends to be more frequent in the metal genre (6.90% against 4.73%
of the trees). This phenomenon suggests us that metal leaders tend to be prominent for nodes
strongly devoted to metal, inducing them to spread the music to their neighbors. Pop leaders, on
the other hand, affect more neighbors with higher Width and Strength, presumably flooding their
ego networks with the songs they like.

Discussion

We presented a study of the propagation of behaviors in a social network. Instead of just studying
cascade effects and the maximization of influence by a given starting seed, we decided to analyze
three different dimensions: the prominence of a leader w.r.t. its direct neighbors, w.r.t. the
distance it spread its influence and w.r.t. the level of engagement shown by influenced nodes. We
characterized each of these concepts with a different measure: Width, Depth and Strength. We
applied our leader detection algorithm to a real world network. Our results show that: (i) central
hubs are usually incapable of having a strong effect in influencing the behavior of the entire network;
(ii) there is a trade-off between how long the cascade chains are and how engaged each element of
the chain is; (iii) to achieve maximum engagement it is better to target leaders in tightly connected
communities, although for this last point we do not have conclusive evidence. We also included a
case study in which we show how artists in different musical genres are spread through the network.
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Many future developments are possible. The limited prominence that central hubs have on the
overall network may be studied in conjunction with the problem of network controllability [212].
Alternative leader detection techniques, such as the ones presented in [213], can be confronted
with our proposed algorithm. Finally, a deeper analysis of the properties of the Width, Depth and
Strength measures can be performed, using additional techniques and exploiting data from other
social media services like Twitter and Facebook.
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Chapter 11

Conclusion

Reasoning draws a conclusion, but does
not make the conclusion certain, unless
the mind discovers it by the path of
experience.

— Roger Bacon

In this thesis, we have highlighted how several network problem formulations need to be revised
in order to comply with the inherent dynamics expressed by social phenomena. In order to better
describe the role time plays in shaping the local structures as well as more complex topologies of
social networks we organized our work in three parts.

Firstly, we identified a set of interesting problems which, in our opinion, can take advantage
from the introduction of temporal dynamics both in their definition and in the analytical processes
designed to solve them. For all these tasks we reported the classical definitions and analyzed the
current state of art. Secondly, we presented our contribution to well-known problem of static net-
work analysis discussing novel approaches able to address and solve both individual and collective
issues. Finally, we reported our contribution to the emerging field of dynamic network analysis:
moving from the results previously discussed, we described how to reformulate some static problem
in order to involve time into the analytical process. In particular we propose time-aware approaches
to solve Link Prediction and Community Discovery in evolving networks as well as a methodol-
ogy to estimate social prominence in a musical taste diffusion scenario. The definition of scalable
analytical instruments able to extract meaningful knowledge from complex evolving structures,
i.e., social networks, will play a relevant role in the era of Big Data. Nowadays forecasting and
nowcasting are among the most intriguing and complex issues to deal with: selectively tracking
dynamic processes in real time will became in the next few years one of the main need for data
owners. Our approach to the evolutionary community discovery problem, Tiles, has to be seen as
one of the first attempts to deal online with structure perturbation generated by dynamic complex
processes.

The future research directions for the analytical approaches proposed in thesis can be mainly
divided in three tracks. The first line of research involves the temporal extension for those problems
introduced in the 2nd part of the thesis which were not addressed in the 3rd. Network quantification
and social engagement are certainly two very relevant case studies that can be fruitfully extended
to capture the semantic dynamics of evolving social networks. Moreover, our approach to the
link-based object ranking, Ubik, can be easily extended to comply with dynamic scenarios and to
produce time-aware results that model expertise decay through time. A second track involves an
in depth study and characterization of collective and individual temporal dynamics. Varying the
temporal scale used to model dynamic processes different informations can be captured: restricting
the frequency of observation to minutes or even seconds we are able to describe interaction trends
and to study patterns of communication which correlate specific pair of individual; moving from
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minutes to hours small sized frequent pattern begin to emerge describing well defined social ties;
aggregating for days or even weeks, complex community structures start to appear; while observing
a dynamic phenomenon for a longer period allow the identification of its own temporal “signature”.
A third track of research involves the study of diffusive processes in dynamic network scenarios.
Allowing the network topology to change over time while studying how a virus, an idea or even
musical taste diffuse can lead to a better understanding of how and at which rate in a real world
context viral phenomena manifest and generate cascades.
Our final goal will be to provide the scientific world with tools able to support the extraction of
valuable knowledge from dynamic processes that shape network structures: indeed, we believe that
nowadays network dynamics competencies should be part of the workbench of any complex system
scientist.
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[65] C. Zhou, L. Zemanová, G. Zamora, C. Hilgetag, and J. Kurths, “Hierarchical organization
unveiled by functional connectivity in complex brain networks,” Phys. Rev. Lett., 2006.

[66] S. Redner, “Teasing out the missing links,” Nature, 2008.

[67] P. H. M. Huss, “Currency and commodity metabolites: their identification and relation to
the modularity of metabolic networks,” IET Syst. Biol., 2007.

[68] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer, “Learning probabilistic relational models,”
in 16th International Joint Conference on Artificial Intelligence, 1999.

[69] B. Taskar, M. F. Wong, P. Abbeel, and D. Koller, “Link prediction in relational data,” in
Neural Information Precessing Systems, 2004.

[70] D. Heckerman, C. Meek, and D. Koller, “Probabilistic entity-relationship models, prms, and
plate models,” in 21st International Conference on Machine Learning, 2004.

[71] C. A. Bliss, M. R. Frank, C. M. Danforth, and P. S. Dodds, “An evolutionary algorithm
approach to link prediction in dynamic social networks,” arXiv preprint arXiv:1304.6257,
2013.

[72] Z. Bao, Y. Zeng, and Y. Tay, “sonlp: Social network link prediction by principal component
regression,” in Proceedings of the 2013 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, pp. 364–371, ACM, 2013.

[73] B. Bringmann, M. Berlingerio, F. Bonchi, and A. Gionis, “Learning and predicting the
evolution of social networks,” IEEE Intelligent Systems, vol. 25, no. 4, pp. 26–35, 2010.

[74] M. Bilgic, G. M. Namata, and L. Getoor, “Combining collective classification and link pre-
diction,” ICDMW ’07, (Washington, DC, USA), pp. 381–386, IEEE Computer Society, 2007.



11.0. BIBLIOGRAPHY 193

[75] M. Pujari and R. Kanawati, “Supervised rank aggregation approach for link prediction in
complex networks,” in Proceedings of the 21st international conference companion on World
Wide Web, pp. 1189–1196, ACM, 2012.

[76] N. Shibata, Y. Kajikawa, and I. Sakata, “Link prediction in citation networks,” Journal of
the American Society for Information Science and Technology, vol. 63, no. 1, pp. 78–85, 2012.

[77] S. Spiegel, J. Clausen, S. Albayrak, and J. Kunegis, “Link prediction on evolving data using
tensor factorization,” in New Frontiers in Applied Data Mining, pp. 100–110, Springer, 2012.

[78] R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla, “New perspectives and methods in link
prediction,” in Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 243–252, ACM, 2010.

[79] S. Soundarajan and J. Hopcroft, “Using community information to improve the precision of
link prediction methods,” in Proceedings of the 21st international conference companion on
World Wide Web, pp. 607–608, ACM, 2012.

[80] P. Sarkar, D. Chakrabarti, and M. Jordan, “Nonparametric link prediction in dynamic net-
works,” arXiv preprint arXiv:1206.6394, 2012.

[81] P. R. da Silva Soares and R. Bastos Cavalcante Prudencio, “Time series based link predic-
tion,” in Neural Networks (IJCNN), The 2012 International Joint Conference on, pp. 1–7,
IEEE, 2012.

[82] X. Feng, J. Zhao, and K. Xu, “Link prediction in complex networks: a clustering perspective,”
The European Physical Journal B, vol. 85, no. 1, pp. 1–9, 2012.

[83] K. Jahanbakhsh, V. King, and G. C. Shoja, “Predicting human contacts in mobile social
networks using supervised learning,” in Proceedings of the Fourth Annual Workshop on Sim-
plifying Complex Networks for Practitioners, pp. 37–42, ACM, 2012.

[84] M. Fire, R. Puzis, and Y. Elovici, “Link prediction in highly fractional data sets,” in Handbook
of Computational Approaches to Counterterrorism, pp. 283–300, Springer, 2013.

[85] Y. Xu and D. Rockmore, “Feature selection for link prediction,” in Proceedings of the 5th
Ph. D. workshop on Information and knowledge, pp. 25–32, ACM, 2012.

[86] R. Lichtnwalter and N. V. Chawla, “Link prediction: fair and effective evaluation,” in Ad-
vances in Social Networks Analysis and Mining (ASONAM), 2012 IEEE/ACM International
Conference on, pp. 376–383, IEEE, 2012.
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