799 research outputs found

    The challenge of long-distance over-the-air wireless links in the ocean: a survey on water-to-water and water-to-land miot communication

    Get PDF
    Robust wireless communication networks are a cornerstone of the modern world, allowing data to be transferred quickly and reliably. Establishing such a network at sea, a Maritime Internet of Things (MIoT), would enhance services related to safety and security at sea, environmental protection, and research. However, given the remote and harsh nature of the sea, installing robust wireless communication networks with adequate data rates and low cost is a difficult endeavor. This paper reviews recent MIoT systems developed and deployed by researchers and engineers over the past few years. It contains an analysis of short-range and long-range over-the-air radio-frequency wireless communication protocols and the synergy between these two in the pursuit of an MIoT. The goal of this paper is to serve as a go-to guide for engineers and researchers that need to implement a wireless sensor network at sea. The selection criterion for the papers included in this review was that the implemented wireless communication networks were tested in a real-world scenario.cofunded by the project K2D: Knowledge and Data from the Deep to Space with reference POCI-01-0247-FEDER-045941, cofinanced by the European Regional Development Fund (ERDF), through the Operational Program for Competitiveness and Internationalization (COMPETE2020), and by the Portuguese Foundation for Science and Technology (FCT) under the MIT Portugal Program. This work is also cofinanced by national funds through FCT–Fundação para a Ciência e Tecnologia, I.P., under project SONDA (PTDC/EME-SIS/1960/2020). T.M. thanks FCT for grant SFRH/BD/145070/201

    Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment

    Get PDF
    In the last decade, integrated logistics has become an important challenge in the development of wireless communication, identification and sensing technology, due to the growing complexity of logistics processes and the increasing demand for adapting systems to new requirements. The advancement of wireless technology provides a wide range of options for the maritime container terminals. Electronic devices employed in container terminals reduce the manual effort, facilitating timely information flow and enhancing control and quality of service and decision made. In this paper, we examine the technology that can be used to support integration in harbor's logistics. In the literature, most systems have been developed to address specific needs of particular harbors, but a systematic study is missing. The purpose is to provide an overview to the reader about which technology of integrated logistics can be implemented and what remains to be addressed in the future

    Scalable wireless sensor networks for dynamic communication environments: simulation and modelling

    No full text
    This thesis explores the deployment of Wireless Sensor Networks (WSNs) on localised maritime events. In particular, it will focus on the deployment of a WSN at sea and estimating what challenges derive from the environment and how they affect communication. This research addresses these challenges through simulation and modelling of communication and environment, evaluating the implications of hardware selection and custom algorithm development. The first part of this thesis consists of the analysis of aspects related to the Medium Access Control layer of the network stack in large-scale networks. These details are commonly hidden from upper layers, thus resulting in misconceptions of real deployment characteristics. Results show that simple solutions have greater advantages when the number of nodes within a cluster increases. The second part considers routing techniques, with focus on energy management and packet delivery. It is shown that, under certain conditions, relaying data can increase energy savings, while at the same time allows a more even distribution of its usage between nodes. The third part describes the development of a custom-made network simulator. It starts by considering realistic radio, channel and interference models to allow a trustworthy simulation of the deployment environment. The MAC and Routing techniques developed thus far are adapted to the simulator in a cross-layer manner. The fourth part consists of adapting the WSN behaviour to the variable weather and topology found in the chosen application scenario. By analysing the algorithms presented in this work, it is possible to find and use the best alternative under any set of environmental conditions. This mechanism, the environment-aware engine, uses both network and sensing data to optimise performance through a set of rules that involve message delivery and distance between origin and cluster hea

    Routing Protocols for Underwater Acoustic Sensor Networks: A Survey from an Application Perspective

    Get PDF
    Underwater acoustic communications are different from terrestrial radio communications; acoustic channel is asymmetric and has large and variable end‐to‐end propagation delays, distance‐dependent limited bandwidth, high bit error rates, and multi‐path fading. Besides, nodes’ mobility and limited battery power also cause problems for networking protocol design. Among them, routing in underwater acoustic networks is a challenging task, and many protocols have been proposed. In this chapter, we first classify the routing protocols according to application scenarios, which are classified according to the number of sinks that an underwater acoustic sensor network (UASN) may use, namely single‐sink, multi‐sink, and no‐sink. We review some typical routing strategies proposed for these application scenarios, such as cross‐layer and reinforcement learning as well as opportunistic routing. Finally, some remaining key issues are highlighted

    Securing Marine Data Networks in an IoT Environment

    Get PDF
    With the huge proliferation of sensory applications, the Internet of Things (IoT) is promising connectivity capacity far beyond the conventional computing platforms, with an ultimate goal of connecting all everyday objects. Sensory applications in the marine environment are foreseen to be an integral part of this connected world, forming the Internet of Marine Things (IoMaT). While some efforts that aim to establish network connectivity in such a sparse environment exist, securing these networks is still an unreached goal. This paper introduces a secure Mobile Ad-hoc/Delay Tolerant routing protocol (S-MADNET) for the marine environment over VHF equipment available on the majority of ships. The proposed secure network is designed to use the existing Automatic Identification System (AIS) that ships use for positioning and navigation aid. An IoMaT routing module that forwards marine sensory data using the proposed secure protocol is also presented, taking the AIS system level considerations into account. Furthermore, a new AIS message format with IoMaT support is proposed that accommodates the requirements of the secure routing protocol. Evaluation results show that the proposed S-MADNET routing protocol outperforms its counterparts in terms of packet delivery rates and packet duplication rates, while maintaining data security

    Utilization Of A Large-Scale Wireless Sensor Network For Intrusion Detection And Border Surveillance

    Get PDF
    To control the border more effectively, countries may deploy a detection system that enables real-time surveillance of border integrity. Events such as border crossings need to be monitored in real time so that any border entries can be noted by border security forces and destinations marked for apprehension. Wireless Sensor Networks (WSNs) are promising for border security surveillance because they enable enforcement teams to monitor events in the physical environment. In this work, probabilistic models have been presented to investigate senor development schemes while considering the environmental factors that affect the sensor performance. Simulation studies have been carried out using the OPNET to verify the theoretical analysis and to find an optimal node deployment scheme that is robust and efficient by incorporating geographical coordination in the design. Measures such as adding camera and range-extended antenna to each node have been investigated to improve the system performance. A prototype WSN based surveillance system has been developed to verify the proposed approach

    EFFICIENT DYNAMIC ADDRESSING BASED ROUTING FOR UNDERWATER WIRELESS SENSOR NETWORKS

    Get PDF
    This thesis presents a study about the problem of data gathering in the inhospitable underwater environment. Besides long propagation delays and high error probability, continuous node movement also makes it difficult to manage the routing information during the process of data forwarding. In order to overcome the problem of large propagation delays and unreliable link quality, many algorithms have been proposed and some of them provide good solutions for these issues, yet continuous node movements still need attention. Considering the node mobility as a challenging task, a distributed routing scheme called Hop-by-Hop Dynamic Addressing Based (H2- DAB) routing protocol is proposed where every node in the network will be assigned a routable address quickly and efficiently without any explicit configuration or any dimensional location information. According to our best knowledge, H2-DAB is first addressing based routing approach for underwater wireless sensor networks (UWSNs) and not only has it helped to choose the routing path faster but also efficiently enables a recovery procedure in case of smooth forwarding failure. The proposed scheme provides an option where nodes is able to communicate without any centralized infrastructure, and a mechanism furthermore is available where nodes can come and leave the network without having any serious effect on the rest of the network. Moreover, another serious issue in UWSNs is that acoustic links are subject to high transmission power with high channel impairments that result in higher error rates and temporary path losses, which accordingly restrict the efficiency of these networks. The limited resources have made it difficult to design a protocol which is capable of maximizing the reliability of these networks. For this purpose, a Two-Hop Acknowledgement (2H-ACK) reliability model where two copies of the same data packet are maintained in the network without extra burden on the available resources is proposed. Simulation results show that H2-DAB can easily manage during the quick routing changes where node movements are very frequent yet it requires little or no overhead to efficiently complete its tasks

    A smart sensor grid to enhance irrigation techniques in Jordan using a novel event-based routing protocol

    Get PDF
    Due to rapid changes in climatic conditions worldwide, environmental monitoring has become one of the greatest concerns in the last few years. With the advancement in wireless sensing technology, it is now possible to monitor and track fine-grained changes in harsh outdoor environments. Wireless sensor networks (WSN) provide very high quality and accurate analysis for monitoring of both spatial and temporal data, thus providing the opportunity to monitor harsh outdoor environments. However, to deploy and maintain a WSN in such harsh environments is a great challenge for researchers and scientists. Several routing protocols exist for data dissemination and power management but they suffer from various disadvantages. In our case study, there are very limited water resources in the Middle East, hence soil moisture measurements must be taken into account to manage irrigation and аgriculturаl projects. In order to meet these challenges, a Smart Grid that supports a robust, reactive, event-based routing protocol is developed using Ad hoc On-Demand Multipath Distance Vector (AOMDV) as a starting point. A prototype WSN network of 5 nodes is built and a detailed simulation of 30 nodes is also developed to test the scalability of the new system
    corecore