2,321 research outputs found

    Shadow Estimation Method for "The Episolar Constraint: Monocular Shape from Shadow Correspondence"

    Full text link
    Recovering shadows is an important step for many vision algorithms. Current approaches that work with time-lapse sequences are limited to simple thresholding heuristics. We show these approaches only work with very careful tuning of parameters, and do not work well for long-term time-lapse sequences taken over the span of many months. We introduce a parameter-free expectation maximization approach which simultaneously estimates shadows, albedo, surface normals, and skylight. This approach is more accurate than previous methods, works over both very short and very long sequences, and is robust to the effects of nonlinear camera response. Finally, we demonstrate that the shadow masks derived through this algorithm substantially improve the performance of sun-based photometric stereo compared to earlier shadow mask estimation

    Real-time Cinematic Design Of Visual Aspects In Computer-generated Images

    Get PDF
    Creation of visually-pleasing images has always been one of the main goals of computer graphics. Two important components are necessary to achieve this goal --- artists who design visual aspects of an image (such as materials or lighting) and sophisticated algorithms that render the image. Traditionally, rendering has been of greater interest to researchers, while the design part has always been deemed as secondary. This has led to many inefficiencies, as artists, in order to create a stunning image, are often forced to resort to the traditional, creativity-baring, pipelines consisting of repeated rendering and parameter tweaking. Our work shifts the attention away from the rendering problem and focuses on the design. We propose to combine non-physical editing with real-time feedback and provide artists with efficient ways of designing complex visual aspects such as global illumination or all-frequency shadows. We conform to existing pipelines by inserting our editing components into existing stages, hereby making editing of visual aspects an inherent part of the design process. Many of the examples showed in this work have been, until now, extremely hard to achieve. The non-physical aspect of our work enables artists to express themselves in more creative ways, not limited by the physical parameters of current renderers. Real-time feedback allows artists to immediately see the effects of applied modifications and compatibility with existing workflows enables easy integration of our algorithms into production pipelines

    Penumbra maps: approximate soft shadows in real-time

    Get PDF
    Journal ArticleGenerating soft shadows quickly is difficult. Few techniques have enough flexibility to interactively render soft shadows in scenes with arbitrarily complex occluders and receivers. This paper introduces the penumbra map, which extends current shadow map techniques to interactively approximate soft shadows. Using object silhouette edges, as seen from the center of an area light, a map is generated containing approximate penumbral regions. Rendering requires two lookups, one into each the penumbra and shadow maps. Penumbra maps allow arbitrary dynamic models to easily shadow themselves and other nearby complex objects with plausible penumbrae

    SeaWiFS technical report series. Volume 5: Ocean optics protocols for SeaWiFS validation

    Get PDF
    Protocols are presented for measuring optical properties, and other environmental variables, to validate the radiometric performance of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and to develop and validate bio-optical algorithms for use with SeaWiFS data. The protocols are intended to establish foundations for a measurement strategy to verify the challenging SeaWiFS accuracy goals of 5 percent in water-leaving radiances and 35 percent in chlorophyll alpha concentration. The protocols first specify the variables which must be measured, and briefly review rationale. Subsequent chapters cover detailed protocols for instrument performance specifications, characterizing and calibration instruments, methods of making measurements in the field, and methods of data analysis. These protocols were developed at a workshop sponsored by the SeaWiFS Project Office (SPO) and held at the Naval Postgraduate School in Monterey, California (9-12 April, 1991). This report is the proceedings of that workshop, as interpreted and expanded by the authors and reviewed by workshop participants and other members of the bio-optical research community. The protocols are a first prescription to approach unprecedented measurement accuracies implied by the SeaWiFS goals, and research and development are needed to improve the state-of-the-art in specific areas. The protocols should be periodically revised to reflect technical advances during the SeaWiFS Project cycle

    Characteristics of flight simulator visual systems

    Get PDF
    The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality

    Linear color correction for multiple illumination changes and non-overlapping cameras

    Get PDF
    Many image processing methods, such as techniques for people re-identification, assume photometric constancy between different images. This study addresses the correction of photometric variations based upon changes in background areas to correct foreground areas. The authors assume a multiple light source model where all light sources can have different colours and will change over time. In training mode, the authors learn per-location relations between foreground and background colour intensities. In correction mode, the authors apply a double linear correction model based on learned relations. This double linear correction includes a dynamic local illumination correction mapping as well as an inter-camera mapping. The authors evaluate their illumination correction by computing the similarity between two images based on the earth mover's distance. The authors compare the results to a representative auto-exposure algorithm found in the recent literature plus a colour correction one based on the inverse-intensity chromaticity. Especially in complex scenarios the authors’ method outperforms these state-of-the-art algorithms

    Deep Shading: Convolutional Neural Networks for Screen-Space Shading

    No full text
    In computer vision, Convolutional Neural Networks (CNNs) have recently achieved new levels of performance for several inverse problems where RGB pixel appearance is mapped to attributes such as positions, normals or reflectance. In computer graphics, screen-space shading has recently increased the visual quality in interactive image synthesis, where per-pixel attributes such as positions, normals or reflectance of a virtual 3D scene are converted into RGB pixel appearance, enabling effects like ambient occlusion, indirect light, scattering, depth-of-field, motion blur, or anti-aliasing. In this paper we consider the diagonal problem: synthesizing appearance from given per-pixel attributes using a CNN. The resulting Deep Shading simulates all screen-space effects as well as arbitrary combinations thereof at competitive quality and speed while not being programmed by human experts but learned from example images
    • …
    corecore