2,853 research outputs found

    Graph classes and forbidden patterns on three vertices

    Full text link
    This paper deals with graph classes characterization and recognition. A popular way to characterize a graph class is to list a minimal set of forbidden induced subgraphs. Unfortunately this strategy usually does not lead to an efficient recognition algorithm. On the other hand, many graph classes can be efficiently recognized by techniques based on some interesting orderings of the nodes, such as the ones given by traversals. We study specifically graph classes that have an ordering avoiding some ordered structures. More precisely, we consider what we call patterns on three nodes, and the recognition complexity of the associated classes. In this domain, there are two key previous works. Damashke started the study of the classes defined by forbidden patterns, a set that contains interval, chordal and bipartite graphs among others. On the algorithmic side, Hell, Mohar and Rafiey proved that any class defined by a set of forbidden patterns can be recognized in polynomial time. We improve on these two works, by characterizing systematically all the classes defined sets of forbidden patterns (on three nodes), and proving that among the 23 different classes (up to complementation) that we find, 21 can actually be recognized in linear time. Beyond this result, we consider that this type of characterization is very useful, leads to a rich structure of classes, and generates a lot of open questions worth investigating.Comment: Third version version. 38 page

    Maximum Weight Independent Sets in Odd-Hole-Free Graphs Without Dart or Without Bull

    Full text link
    The Maximum Weight Independent Set (MWIS) Problem on graphs with vertex weights asks for a set of pairwise nonadjacent vertices of maximum total weight. Being one of the most investigated and most important problems on graphs, it is well known to be NP-complete and hard to approximate. The complexity of MWIS is open for hole-free graphs (i.e., graphs without induced subgraphs isomorphic to a chordless cycle of length at least five). By applying clique separator decomposition as well as modular decomposition, we obtain polynomial time solutions of MWIS for odd-hole- and dart-free graphs as well as for odd-hole- and bull-free graphs (dart and bull have five vertices, say a,b,c,d,ea,b,c,d,e, and dart has edges ab,ac,ad,bd,cd,deab,ac,ad,bd,cd,de, while bull has edges ab,bc,cd,be,ceab,bc,cd,be,ce). If the graphs are hole-free instead of odd-hole-free then stronger structural results and better time bounds are obtained

    On dynamic threshold graphs and related classes

    Get PDF
    This paper deals with the well known classes of threshold and difference graphs, both characterized by separators, i.e. node weight functions and thresholds. We design an efficient algorithm to find the minimum separator, and we show how to maintain minimum its value when the input (threshold or difference) graph is fully dynamic, i.e. edges/nodes are inserted/removed. Moreover, exploiting the data structure used for maintaining the minimality of the separator, we study the disjoint union and the join of two threshold graphs, showing that the resulting graphs are threshold signed graphs, i.e. a superclass of both threshold and difference graphs. Finally, we consider the complement operation on all the three introduced classes of graphs. All these operations produce in output the modified graph in terms of their separator and require time linear w.r.t. the number of different degrees. We observe that recomputing from scratch the separator would run either in linear (for threshold and difference graphs) or quadratic (for threshold signed graphs) time w.r.t. the number of nodes of the graph

    Dynamically mantaining minimal integral separator for Threshold and Difference Graphs

    Get PDF
    This paper deals with the well known classes of threshold and difference graphs, both characterized by separators, i.e. node weight functions and thresholds. We show how to maintain minimum the value of the separator when the input (threshold or difference) graph is fully dynamic, i.e. edges/nodes are inserted/removed. Moreover, exploiting the data structure used for maintaining the minimality of the separator, we handle the operations of disjoint union and join of two threshold graphs. © Springer International Publishing Switzerland 2016

    On graphs with no induced subdivision of K4K_4

    Get PDF
    We prove a decomposition theorem for graphs that do not contain a subdivision of K4K_4 as an induced subgraph where K4K_4 is the complete graph on four vertices. We obtain also a structure theorem for the class C\cal C of graphs that contain neither a subdivision of K4K_4 nor a wheel as an induced subgraph, where a wheel is a cycle on at least four vertices together with a vertex that has at least three neighbors on the cycle. Our structure theorem is used to prove that every graph in C\cal C is 3-colorable and entails a polynomial-time recognition algorithm for membership in C\cal C. As an intermediate result, we prove a structure theorem for the graphs whose cycles are all chordless
    • …
    corecore