4,772 research outputs found

    Discrete-Time Model Predictive Control

    Get PDF

    State-of-the-art in control engineering

    Get PDF
    AbstractThe paper deals with new trends in research, development and applications of advanced control methods and structures based on the principles of optimality, robustness and intelligence. Present trends in the complex process control design demand an increasing degree of integration of numerical mathematics, control engineering methods, new control structures based of distribution, embedded network control structure and new information and communication technologies. Furthermore, increasing problems with interactions, process non-linearities, operating constraints, time delays, uncertainties, and significant dead-times consequently lead to the necessity to develop more sophisticated control strategies. Advanced control methods and new distributed embedded control structures represent the most effective tools for realizing high performance of many technological processes. Main ideas covered in this paper are motivated namely by the development of new advanced control engineering methods (predictive, hybrid predictive, optimal, adaptive, robust, fuzzy logic, and neural network) and new possibilities of their SW and HW realizations and successful implementation in industry

    Mean-Field-Type Games in Engineering

    Full text link
    A mean-field-type game is a game in which the instantaneous payoffs and/or the state dynamics functions involve not only the state and the action profile but also the joint distributions of state-action pairs. This article presents some engineering applications of mean-field-type games including road traffic networks, multi-level building evacuation, millimeter wave wireless communications, distributed power networks, virus spread over networks, virtual machine resource management in cloud networks, synchronization of oscillators, energy-efficient buildings, online meeting and mobile crowdsensing.Comment: 84 pages, 24 figures, 183 references. to appear in AIMS 201

    Human-in-the-Loop Model Predictive Control of an Irrigation Canal

    Get PDF
    Until now, advanced model-based control techniques have been predominantly employed to control problems that are relatively straightforward to model. Many systems with complex dynamics or containing sophisticated sensing and actuation elements can be controlled if the corresponding mathematical models are available, even if there is uncertainty in this information. Consequently, the application of model-based control strategies has flourished in numerous areas, including industrial applications [1]-[3].Junta de Andalucía P11-TEP-812

    Temporal multi-level coordination techniques oriented to regional water networks: Application to the Catalunya case study

    Get PDF
    In this paper, a multi-layer model predictive control (MPC) with temporal multi-level coordination for regional water supply systems is proposed. First, a multi-layer control structure resulting from a functional decomposition of water network is briefly presented. Inside each layer, an MPC based controller is used. Between related layers, a temporal multi-level coordination mechanism is used to generate control strategies which consider objectives and time scales of both layers. The upper layer which is named supply layer works in a daily scale in order to achieve the global management policies for the different reservoirs. The lower layer which is named transportation layer works in an hourly scale and is in charge of manipulating the actuators (pumps and valves) set-point to satisfy the local objectives. The results of the modelling will be applied to the Catalunya Regional Water Network and this paper presents the simulation results based on an aggregate model of this network.This research has been partially funded by CDTI (MCyT) project HIDROPTIM IDI-20100722, the DGR of Generalitat de Catalunya (SAC group Ref. 2009/SGR/1491), the AGAUR by an FI grant and by EFFINET grant FP7-ICT-2012-318556 of the European Commission.Peer Reviewe

    Real-time optimal control of river basin networks

    Full text link
    River basins are key components of water supply grids. River basin operators must handle a complex set of objectives including runoff storage, flood control, supply for consumptive use, hydroelectric power generation, silting management, and maintenance of river basin ecology. At present, operators rely on a combination of simulation and optimization tools to help them make operational decisions. The complexity associated with this approach makes it suitable for long term planning but not daily or hourly operation. The consequence is that between longerterm optimized operation points, river basins are largely operated in open loop. This leads to operational inefficiencies most notably wasted water and poor ecological outcomes. This paper proposes a systematic approach using optimal control based on simple low order models for the real-time operation of entire river basin networks. © 2011 IFAC

    Modeling and real-time control of urban drainage systems: A review

    Get PDF
    Urban drainage systems (UDS) may be considered large-scale systems given their large number of associated states and decision actions, making challenging their real-time control (RTC) design. Moreover, the complexity of the dynamics of the UDS makes necessary the development of strategies for the control design. This paper reviews and discusses several techniques and strategies commonly used for the control of UDS. Moreover, the models to describe, simulate, and control the transport of wastewater in UDS are also reviewed.This work has been partially supported by Mexichem, Colombia through the project “Drenaje Urbano y Cambio Climático: Hacia los Sistemas de Alcantarillado del Futuro.” Fase II, with reference No. 548-2012, the scholarships of Colciencias No. 567-2012 and 647-2013, and the project ECOCIS (Ref. DPI2013-48243-C2-1-R).Peer Reviewe
    corecore