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1. Introduction

More than 25 years after model predictive control (MPC) or receding horizon control (RHC)
appeared in industry as an effective tool to deal with multivariable constrained control
problems, a theoretical basis for this technique has started to emerge, see [1-3] for reviews of
results in this area.

The focus of this chapter is on MPC of constrained dynamic systems, both linear and nonlin‐
ear, to illuminate the ability of MPC to handle constraints that makes it so attractive to in‐
dustry. We first give an overview of the origin of MPC and introduce the definitions,
characteristics, mathematical formulation and properties underlying the MPC. Furthermore,
MPC methods for linear or nonlinear systems are developed by assuming that the plant un‐
der control is described by a discrete-time one. Although continuous-time representation
would be more natural, since the plant model is usually derived by resorting to first princi‐
ples equations, it results in a more difficult development of the MPC control law, since it in
principle calls for the solution of a functional optimization problem. As a matter of fact, the
performance index to be minimized is defined in a continuous-time setting and the overall
optimization procedure is assumed to be continuously repeated after any vanishingly small
sampling time, which often turns out to be a computationally intractable task. On the con‐
trary, MPC algorithms based on discrete-time system representation are computationally
simpler. The system to be controlled which usually described, or approximated by an ordi‐
nary differential equation is usually modeled by a difference equation in the MPC literature
since the control is normally piecewise constant. Hence, we concentrate our attention from
now onwards on results related to discrete-time systems.

By and large, the main disadvantage of the MPC is that it cannot be able of explicitly dealing
with plant model uncertainties. For confronting such problems, several robust model pre‐
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dictive control (RMPC) techniques have been developed in recent decades. We review dif‐
ferent RMPC methods which are employed widely and mention the advantages and
disadvantages of these methods. The basic idea of each method and some method applica‐
tions are stated as well.

Most MPC strategies consider hard constraints, and a number of RMPC techniques exist to
handle uncertainty. However model and measurement uncertainties are often stochastic,
and therefore RMPC can be conservative since it ignores information on the probabilistic
distribution of the uncertainty. It is possible to adopt a stochastic uncertainty description (in‐
stead of a set-based description) and develop a stochastic MPC (SMPC) algorithm. Some of
the recent advances in this area are reviewed.

In recent years, there has been much interest in networked control systems (NCSs), that is,
control systems close via possibly shared communication links with delay/bandwidth con‐
straints. The main advantages of NCSs are low cost, simple installation and maintenance,
and potentially high reliability. However, the use of the network will lead to intermittent
losses or delays of the communicated information. These losses will tend to deteriorate the
performance and may even cause the system to become unstable. MPC framework is partic‐
ularly appropriate for controlling systems subject to data losses because the actuator can
profit from the predicted evolution of the system. In section 7, results from our recent re‐
search are summarized. We propose a new networked control scheme, which can overcome
the effects caused by the network delay.

At the beginning of research on NCSs, more attention was paid on single plant through net‐
work. Recently, fruitful research results on multi-plant, especially, on multi-agent net‐
worked control systems have been obtained. MPC lends itself as a natural control
framework to deal with the design of coordinated, distributed control systems because it can
account for the action of other actuators while computing the control action of a given set of
actuators in real-time. In section 8, a number of distributed control architectures for inter‐
connected systems are reviewed. Attention is focused on the design approaches based on
model predictive control.

2. Model Predictive Control

Model predictive control is a form of control scheme in which the current control action is
obtained by solving, at each sampling instant, a finite horizon open-loop optimal control
problem, using the current state of the plant as the initial state. Then the optimization yields
an optimal control sequence and the first control in this sequence is applied to the plant. This
is the main difference from conventional control which uses a pre-computed control law.

2.1. Characteristics of MPC

MPC is by now a mature technology. It is fair to mention that it is the standard approach for
implementing constrained, multivariable control in the process industries today. Further‐
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more, MPC can handle control problems where off-line computation of a control law is diffi‐
cult or impossible.

Specifically, an important characteristic of this type of control is its ability to cope with hard
constraints on controls and states. Nearly every application imposes constraints. For in‐
stance, actuators are naturally limited in the force (or equivalent) they can apply, safety lim‐
its states such as temperature, pressure and velocity, and efficiency, which often dictates
steady-state operation close to the boundary of the set of permissible states. In this regard,
MPC is one of few methods having applied utility, and this fact makes it an important tool
for the control engineer, particularly in the process industries where plants being controlled
are sufficiently slow to permit its implementation.

In addition, another important characteristic of MPC is its ability to handle control problems
where off-line computation of a control law is difficult or impossible. Examples where MPC
may be advantageously employed include unconstrained nonlinear plants, for which on-
line computation of a control law usually requires the plant dynamics to possess a special
structure, and time-varying plants.

A fairly complete discussion of several design techniques based on MPC and their relative
merits and demerits can be found in the review article by [4].

2.2. Essence of MPC

As mentioned in the excellent review article [2], MPC is not a new method of control design.
Rather, it essentially solves standard optimal control problems which is required to have a
finite horizon in contrast to the infinite horizon usually employed in H2and H∞linear opti‐
mal control. Where it differs from other controllers is that it solves the optimal control prob‐
lem on-line for the current state of the plant, rather than providing the optimal control for all
states, that is determining a feedback policy on-line.

The on-line solution is to solve an open-loop optimal control problem where the initial state
is the current state of the system being controlled which is just a mathematical programming
problem. However, determining the feedback solution, requires solution of Hamilton-Jaco‐
bi-Bellman (Dynamic Programming) differential or difference equation, a vastly more diffi‐
cult task (except in those cases, such as H2and H∞linear optimal control, where the value
function can be finitely parameterized). From this point of view, MPC differs from other
control methods merely in its implementation. The requirement that the open-loop optimal
control problem be solvable in a reasonable time (compared with plant dynamics) necessi‐
tates, however, the use of a finite horizon and this raises interesting problems.

3. Linear Model Predictive Control

MPC has become an attractive feedback strategy, especially for linear processes. By now, lin‐
ear MPC theory is quite mature. The issues of feasibility of the on-line optimization, stability
and performance are largely understood for systems described by linear models.
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3.1. Mathematical formulation

The idea of  MPC is  not  limited to a particular  system description,  but  the computation
and implementation depend on the model representation. Depending on the context, we
will readily switch between state space, transfer matrix and convolution type models [4].
In addition, nowadays in the research literature, MPC is formulated almost always in the
state space. We will assume the system to be described in state space by a linear discrete-
time model.

x(k + 1)= Ax(k ) + Bu(k ), x(0)= x0 (1)

where x(k )∈ℝnis the state vector at timek , and u(k )∈ℝr  is the vector of manipulated varia‐
bles to be determined by the controller. The control and state sequences must satisfy

u(k )∈U, x(k )∈X. Usually, Uis a convex, compact subset of ℝr  and X convex, closed subset

ofℝ^{n}, each set containing the origin in its interior.

The control objective is usually to steer the state to the origin or to an equilibrium state xr  for

which the output yr =h (xr)= r  where ris the constant reference. A suitable change of coordi‐

nates reduces the second problem to the first which, therefore, we consider in the sequel.
Assuming that a full measurement of the state x(k ) is available at the current timek . Then for
event (x, k )(i.e. for state x at timek ), a receding horizon implementation is typically formu‐
lated by introducing the following open-loop optimization problem.

J ( p,m)(x(k )) (2)

subject to

u(k )∈U,
x(k)∈X,

(3)

(p ≥m)wherep denotes the length of the prediction horizon or output horizon, and m de‐
notes the length of the control horizon or input horizon. (When, p =∞we refer to this as the
infinite horizon problem, and similarly, whenp is finite, we refer to it as a finite horizon
problem). For the problem to be meaningful we assume that the origin (x =0, u =0) is in the
interior of the feasible region.

Several choices of the objective function J ( p,m)(x(k )) in the optimization eq.(2) have been re‐

ported in [4-7] and have been compared in [8]. In this Chapter, we consider the following
quadratic objective
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where u( · ) : = u(k)T , ..., u(k + m−1|k )T T is the sequence of manipulated variables to be op‐
timized; x(k + i |k), i =1, 2, ..., pdenote the state prediction generated by the nominal model
(1) on the basis of the state informations at time kunder the action of the control sequence
u(k ), u(k + 1|k), ..., u(k + i −1|k ); P0,  Q andR are strictly positive definite symmetric

weighting matrices. Let u( p,m)
* (i |k ), i =k , ..., k + m−1 be the minimizing control sequence for

J ( p,m)(x(k )) subject to the system dynamics (1) and the constraint (3), and J ( p,m)
*  be the opti‐

mizing value function.

A receding horizon policy proceeds by implementing only the first control u( p,m)
* (k |k ) to ob‐

tainx(k + 1)= Ax(k ) + Bu( p,m)
* (k |k ). The rest of the control sequence

u( p,m)
* (i |k ), i =k + 1, ..., k + m−1 is discarded and x(k + 1) is used to update the optimization

problem (2) as a new initial condition. This process is repeated, each time using only the first
control action to obtain a new initial condition, then shifting the cost ahead one time step
and repeating. This is the reason why MPC is also sometimes referred to as receding horizon
control (RHC) or moving horizon control (MHC). The purpose of taking new measurements
at each time step is to compensate for unmeasured disturbances and model inaccuracy, both
of which cause the system output to be different from the one predicted by the model. Fig.1
presents a conceptual picture of MPC.

Figure 1. Principle of model predictive control.
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Three practical questions are immediate [1]:

1. When is the problem formulated above feasible, so that the algorithm yields a control
action which can be implemented?

2. When does the sequence of computed control actions lead to a system which is closed-
loop stable?

3. What closed-loop performance results from repeated solution of the specified open-
loop optimal control problem?

These questions will be explained in the following sections.

3.2. Feasibility

The constraints stipulated in (3) may render the optimization problem infeasible. It may
happen, for example, because of a disturbance, that the optimization problem posed above
becomes infeasible at a particular time step. It may also happen, that the algorithm which
minimizes an open-loop objective, inadvertently drives the closed-loop system outside the
feasible region.

3.3. Closed loop stability

In either the infinite or the finite horizon constrained case it is not clear under what condi‐
tions the closed loop system is stable. Much research on linear MPC has focused on this
problem. Two approaches have been proposed to guarantee stability: one based on the origi‐
nal problem (1), (2), and (3) and the other where a contraction constraint is added [9, 10].
With the contraction constraint the norm of the state is forced to decrease with time and sta‐
bility follows trivially independent of the various parameters in the objective function. With‐
out the contraction constraint the stability problem is more complicated.

General proofs of stability for constrained MPC based on the monotonicity property of the
value function have been proposed by [11] and [12]. The most comprehensive and also most
compact analysis has been presented by [13] and [14] whose arguments we will sketch here.

To simplify the exposition we assumep =m = N , then J ( p,m) = JN as defined in eq.(2). The key

idea is to use the optimal finite horizon costJN
* , the value function, as a Lyapunov function.

One wishes to show that

JN
* (x(k ))− JN

* (x(k + 1))>0, for x ≠0 (5)

Rewriting JN
* (x(k ))− JN

* (x(k + 1))gives,

JN
* (x(k ))− JN

* (x(k + 1)) = x T (k )Qx(k ) + u *T (x(k))Ru *(x(k ))

+ J N −1
* (x(k + 1))− JN

* (x(k + 1))
(6)
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If it can be shown that the right hand side of (6) is positive, then stability is proven. Due to
Q >0 andR >0, the first term x T (k )Qx(k) + u *T (x(k ))Ru *(x(k ))  is positive. In general, it can‐
not be asserted that the second term J N −1

* (x(k + 1))− JN
* (x(k + 1))  is nonnegative.

Several approaches have been presented to assure that the right hand side of (6) is positive,
please refer to [1]. The various constraints introduced to guarantee stability (end constraint
for all states, end constraint for unstable modes, terminal region, etc.) may lead to feasibility
problems. For instance, the terminal equality constraint may become infeasible unless a suf‐
ficiently large horizon is used.

3.4. Open-loop performance objective versus closed loop performance

In receding horizon control only the first of the computed control moves is implemented,
and the remaining ones are discarded. Therefore the sequence of actually implemented con‐
trol moves may differ significantly from the sequence of control moves calculated at a par‐
ticular time step. Consequently the finite horizon objective which is minimized may have
only a tentative connection with the value of the objective function as it is obtained when the
control moves are implemented.

4. Nonlinear model predictive control

Linear MPC has been developed, in our opinion, to a stage where it has achieved sufficient
maturity to warrant the active interest of researchers in nonlinear control. While linear mod‐
el predictive control has been popular since the 70s of the past century, the 90s have wit‐
nessed a steadily increasing attention from control theorists as well as control practitioners
in the area of nonlinear model predictive control (NMPC).

The practical interest is driven by the fact that many systems are in general inherently non‐
linear and today’s processes need to be operated under tighter performance specifications.
At the same time more and more constraints for example from environmental and safety
considerations, need to be satisfied. In these cases, linear models are often inadequate to de‐
scribe the process dynamics and nonlinear models have to be used. This motivates the use of
nonlinear model predictive control.

The system to be controlled is described, or approximated by a discrete-time model

x(k + 1)= f (x(k), u(k )),
y(k )=h (x(k )),

(7)

where f ( · ) is implicitly defined by the originating differential equation that has an equili‐
brium point at the origin (i.e. f (0, 0)=0). The control and state sequences must satisfy (3).
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4.1. Difficulties of NMPC

The same receding horizon idea which we discussed in section 3 is also the principle under‐
lying nonlinear MPC, with the exception that the model describing the process dynamics is
nonlinear. Contrary to the linear case, however, feasibility and the possible mismatch be‐
tween the open-loop performance objective and the actual closed loop performance are
largely unresolved research issues in nonlinear MPC. An additional difficulty is that the op‐
timization problems to be solved on line are generally nonlinear programs without any re‐
deeming features, which implies that convergence to a global optimum cannot be assured.
For the quadratic programs arising in the linear case this is guaranteed. As most proofs of
stability for constrained MPC are based on the monotonicity property of the value function,
global optimality is usually not required, as long as the cost attained at the minimizer de‐
creases (which is usually the case, especially when the optimization algorithm is initialized
from the previous shifted optimal sequence). However, although stability is not altered by
local minimum, performance clearly deteriorates.

The next section focuses on system theoretical aspects of NMPC. Especially the question on
closed-loop stability is considered.

4.2. Closed-loop stability

One of the key questions in NMPC is certainly, whether a finite horizon NMPC strategy
does lead to stability of the closed-loop or not. Here only the key ideas are reviewed and
no detailed proofs are given. Furthermore, notice that we will not cover all existing NMPC
approaches, instead we refer the reader to the overview papers [2, 15, 16]. For all the fol‐
lowing sections it is assumed that the prediction horizon is set equal to the control hori‐
zon, that is,p =m.

4.2.1. Infinite horizon NMPC

As pointed out, the key problem with a finite prediction and control horizon stems from the
fact that the predicted open and the resulting closed-loop behavior is in general different.
The most intuitive way to achieve stability is the use of an infinite horizon cost [17, 18], that
is, pin (4) is set to∞. As mentioned in [19], in the nominal case, feasibility at one sampling
instance also implies feasibility and optimality at the next sampling instance. This follows
from Bellman’s Principle of Optimality [20], that is the input and state trajectories computed
as the solution of the NMPC optimization problem (2), (3) and (7) at a specific instance in
time, are in fact equal to the closed-loop trajectories of the nonlinear system, i.e. the remain‐
ing parts of the trajectories after one sampling instance are the optimal solution at the next
sampling instance. This fact also implies closed-loop stability. When the system is both in‐
finite-horizon and constrained, [21] considered this case for T-S fuzzy systems with PDC law
and non-PDC law. New sufficient conditions were proposed in terms of LMIs. Both the cor‐
responding PDC and non-PDC state-feedback controllers were designed, which could guar‐
antee that the resulting closed-loop fuzzy system be asymptotically stable. In addition, the
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feedback controllers would meet the specifications for the fuzzy systems with input or out‐
put constraints.

4.2.2. Finite horizon NMPC

In this section, different possibilities to achieve closed-loop stability for NMPC using a finite
horizon length have been proposed. Just as outlined for the linear case, in the proof the val‐
ue function is employed as a Lyapunov function. A global optimum must be found at each
time step to guarantee stability. As mentioned above, when the horizon is infinity, feasibility
at a particular time step implies feasibility at all future time steps. Unfortunately, contrary to
the linear case, the infinite horizon problem cannot be solved numerically.

Most of approaches modify the NMPC setup such that stability of the closed-loop can be
guaranteed independently of the plant and performance specifications. This is usually ach‐
ieved by adding suitable equality or inequality constraints and suitable additional penalty
terms to the objective functional. These additional constraints are usually not motivated by
physical restrictions or desired performance requirements but have the sole purpose to en‐
force stability of the closed-loop. Therefore, they are usually termed stability constraints.

Terminal equality constraint. The simplest possibility to enforce stability with a finite pre‐
diction horizon is to add a so called zero terminal equality constraint at the end of the pre‐
diction horizon [17, 23, 28], i.e. to add the equality constraint x(k + p |k )=0to the
optimization problem (2), (3) and (7). This leads to stability of the closed-loop, if the optimal
control problem possesses a solution atk , since the feasibility at one time instance does also
lead to feasibility at the following time instances and a decrease in the value function.

The first proposal for this form of model predictive control for time-varying, constrained,
nonlinear, discrete-time systems was made by [17]. This paper is particularly important, be‐
cause it provides a definitive stability analysis of this version of discrete-time receding hori‐
zon control (under mild conditions of controllability and observability) and shows the value
function JN

*  associated with the finite horizon optimal control problem approaches that of
the infinite horizon problem as the horizon approaches infinity. This paper remains a key
reference on the stabilizing properties of model predictive control and subsumes much of
the later literature on discrete-time MPC that uses a terminal equality constraint.

In fact, the main advantages of this version are the straightforward application and the con‐
ceptual simplicity. On the other hand, one disadvantage of a zero terminal constraint is that
the system must be brought to the origin in finite time. This leads in general to feasibility
problems for short prediction/control horizon lengths, i.e. a small region of attraction. From
a computational point of view, the optimization problem with terminal constraint can be
solved in principle, but equality constraints are computationally very expensive and can on‐
ly be met asymptotically [24]. In addition, one cannot guarantee convergence to a feasible
solution even when a feasible solution exists, a discomforting fact. Furthermore, specifying a
terminal constraint which is not met in actual operation is always somewhat artificial and
may lead to aggressive behavior. Finally, to reduce the complexity of the optimization prob‐
lem it is desirable to keep the control horizon small, or, more generally, characterize the con‐
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trol input sequence with a small number of parameters. However, a small number of
degrees of freedom may lead to quite a gap between the open-loop performance objective
and the actual closed loop performance.

Terminal constraint set and terminal cost function. Many schemes have been proposed [24,
26-28, 30, 31, 36, 37], to try to overcome the use of a zero terminal constraint. Most of them
either use the so called terminal region constraint

x(k + p |k )∈X f ⊆X (8)

and/or a terminal penalty term E (x(k + p |k)) which is added to the cost functional. Note
that the terminal penalty term is not a performance specification that can be chosen freely.
Rather E  and the terminal region X f in (8) are determined off-line such that stability is en‐
forced.

• Terminal constraint set. In this version of model predictive control, X f is a subset of X con‐
taining a neighborhood of the origin. The purpose of the model predictive controller is to
steer the state to X f  in finite time. InsideX f , a local stabilizing controller kf ( · ) is em‐
ployed. This form of model predictive control is therefore sometimes referred to as dual
mode, and was proposed. Fixed horizon versions for constrained, nonlinear, discrete-time
systems are proposed in [32] and [33].

• Terminal cost function. One of the earliest proposals for modifying (2), (3) and (7) to ensure
closed-loop stability was the addition of a terminal cost. In this version of model predic‐
tive control, the terminal cost E ( · ) is nontrivial and there is no terminal constraint so that
X f =ℝn. The proposal [34] was made in the context of predictive control of unconstrained
linear system. Can this technique for achieving stability (by adding only a terminal cost)
be successfully employed for constrained and/or nonlinear systems? From the literature
the answer may appear affirmative. However, in this literature there is an implicit re‐
quirement that x(k + p |k )∈X f is satisfied for every initial state in a given compact set,
and this is automatically satisfied if N  is chosen sufficiently large. The constraint
x(k + p |k )∈X f then need not be included explicitly in the optimal control problem ac‐
tually solved on-line. Whether this type of model predictive control is regarded as having
only a terminal cost or having both a terminal cost and a terminal constraint is a matter of
definition. We prefer to consider it as belonging to the latter category as the constraint is
necessary even though it is automatically satisfied if N  is chosen sufficiently large.

Terminal cost and constraint set. Most recent model predictive controllers belong to this
category. There are a variety of good reasons for incorporating both a terminal cost and a
terminal constraint set in the optimal control problem. Ideally, the terminal cost E ( · ) should
be the infinite horizon value function J∞

*( · ) if this were the case, thenJN
* ( · ) = J∞

*( · ), on-line
optimization would be unnecessary, and the known advantages of an infinite horizon, such
as stability and robustness, would automatically accrue. Nonlinearity and/or constraints
render this impossible, but it is possible to choose E ( · ) so that it is exactly or approximately
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equal to J∞
*( · ) in a suitable neighborhood of the origin. Choosing X f  to be an appropriate

subset of this neighborhood yields many advantages and motivates the choice of E ( · ) and
X f  in most of the examples of this form of model predictive control.

For the case when the system is nonlinear but there are no state or control constraints, [35]
use a stabilizing local control lawkf ( · ), a terminal cost function E ( · ) that is a (local) Lyapu‐
nov function for the stabilized system, and a terminal constraint set X f  that is a level set of
E ( · ) and is positively invariant for the systemx(k + 1)= f (x(k), kf (x(k ))). The terminal con‐
straint is omitted from the optimization problem solved on-line, but it is nevertheless shown
that this constraint is automatically satisfied for all initial states in a level set ofJN

* ( · ). The
resultant closed-loop system is asymptotically (or exponentially) stabilizing with a region of
attraction that is this level set ofJN

* ( · ).

When the system is both nonlinear and constrained, E ( · )and X f include features from the
example immediately above. In [36], kf ( · ) is chosen to stabilize the linearized system
x(k + 1)= Ax(k ) + Bu(k ), where A : = f x(0, 0) andB : = f u(0, 0). Then the author of [36] employs
a non-quadratic terminal cost E ( · ) and a terminal constraint set X f  that is positively invari‐
ant for the nonlinear system x(k + 1)= f (x(k), kf (x(k ))) and that satisfies X f ⊂X and
kf (X f )⊂U.

Variable horizon/Hybrid model predictive control. These techniques were proposed by
[37] and developed by [38] to deal with both the global optimality and the feasibility prob‐
lems, which plague nonlinear MPC with a terminal constraint. Variable horizon MPC also
employs a terminal constraint, but the time horizon at the end of which this constraint must
be satisfied is itself an optimization variable. It is assumed that inside this region another
controller is employed for which it is somehow known that it asymptotically stabilizes the
system. Variable horizon has also been employed in contractive model predictive control
(see the next section). With these modifications a global optimum is no longer needed and
feasibility at a particular time step implies feasibility at all future time steps. The terminal
constraint is somewhat less artificial here because it may be met in actual operation. Howev‐
er, a variable horizon is inconvenient to handle on-line, an exact end constraint is difficult to
satisfy, and the exact determination of the terminal region is all but impossible except
maybe for low order systems. In order to show that this region is invariant and that the sys‐
tem is asymptotically stable in this region, usually a global optimization problem needs to
be solved.

Contractive model predictive control. The idea of contractive MPC was mentioned by [39],
the complete algorithm and stability proof were developed by [40]. In this approach a con‐
straint is added to the usual formulation which forces the actual and not only the predict‐
ed state to contract at discrete intervals in the future. From this requirement a Lyapunov
function can be constructed easily and stability can be established. The stability is independ‐
ent of the objective function and the convergence of the optimization algorithm as long as
a solution is found which satisfies the contraction constraint. The feasibility at future time
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steps is not necessarily guaranteed unless further assumptions are made. Because the con‐
traction parameter implies a specific speed of convergence, its choice comes natural to the
operating personnel.

Model predictive control with linearization. All the methods discussed so far require a
nonlinear program to be solved on-line at each time step. The effort varies somewhat be‐
cause some methods require only that a feasible (and not necessarily optimal) solution be
found or that only an improvement be achieved from time step to time step. Nevertheless
the effort is usually formidable when compared to the linear case and stopping with a feasi‐
ble rather than optimal solution can have unpredictable consequences for the performance.
The computational effort can be greatly reduced when the system is linearized first in some
manner and then the techniques developed for linear systems are employed on-line. Some
approaches have been proposed.

Linearization theory may, in some applications, be employed to transform the original non‐
linear system, using state and feedback control transformations, into a linear system. Model
predictive control may be applied to the transformed system [41, 42]. [42] applies first feed‐
back linearization and then uses MPC in a cascade arrangement for the resulting linear sys‐
tem. The optimal control problem is not, however, transformed into a convex problem,
because the transformed control and state constraint sets and the transformed cost are no
longer necessarily convex. [43, 44] employ linear transformation (x(k + 1)= Ax + Buis re‐
placed byx(k + 1)= (A + BK )x + Bv, where v : =u −Kx is the re-parameterized control) to im‐
prove conditioning of the optimal control problem solved on-line.

Conclusions. MPC for linear constrained systems has been shown to provide an excellent
control solution both theoretically and practically. The incorporation of nonlinear models
poses a much more challenging problem mainly because of computational and control theo‐
retical difficulties, but also holds much promise for practical applications. In this section an
overview over the stability analysis of NMPC is given. As outlined some of the challenges
occurring in NMPC are already solvable. Nevertheless in the nonlinear area a variety of is‐
sues remain which are technically complex but have potentially significant practical implica‐
tions for stability and performance.

5. Robust model predictive control

MPC is a class of model-based control theories that use linear or nonlinear process models to
forecast system behavior. The success of the MPC control performance depends on the accu‐
racy of the open loop predictions, which in turn depends on the accuracy of the process
models. It is possible for the predicted trajectory to differ from the actual plant behavior
[45]. Needless to say, such control systems that provide optimal performance for a particular
model may perform very poorly when implemented on a physical system that is not exactly
described by the model (see e.g. [46]).

When we say that a control system is robust we mean that stability is maintained and that
the performance specifications are met for a specified range of model variations (uncertainty
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range). To be meaningful, any statement about robustness of a particular control algorithm
must make reference to a specific uncertainty range as well as specific stability and perform‐
ance criteria.

Predictive controllers that explicitly consider the process and model uncertainties, when de‐
termining the optimal control policies, are called robust predictive controllers. The main
concept of such controllers is similar to the idea of H∞controllers and consists on the mini‐
mization of worst disturbance effect to the process behavior [47]. Several applications for the
formulation of robust predictive control laws began to appear in the literature in the 1990s,
focusing on both model uncertainties and disturbances.

Although a rich theory has been developed for the robust control of linear systems, very lit‐
tle is known about the robust control of linear systems with constraints. Most studies on ro‐
bustness consider unconstrained systems. According to the Lyapunov theory, we know that
if a Lyapunov function for the nominal closed-loop system maintains its descent property if
the disturbance (uncertainty) is sufficiently small, then stability is maintained in the pres‐
ence of uncertainty. However, when constraints on states and controls are present, it is nec‐
essary to ensure, in addition, that disturbances do not cause transgression of the constraints.
This adds an extra level of complexity.

In this section, we review two robust model predictive control (RMPC) methods and men‐
tion the advantages and disadvantages of methods below. The basic idea of each method
and some method applications are stated.

5.1. Min-Max RMPC methods

In the main stream robust control literature, “robust performance” is measured by determin‐
ing the worst performance over the specified uncertainty range. In direct extension of this
definition it is natural to set up a new RMPC objective where the control action is selected to
minimize the worst value the objective function can attain as a function of the uncertain
model parameters. This describes the first attempt toward a RMPC algorithm which was
proposed by [48]. They showed that for FIR models the optimization problem which must
be solved on-line at each time step is a linear program of moderate size with uncertain coef‐
ficients and an ∞-norm objective function. Unfortunately, it is well known now that robust
stability is not guaranteed with this algorithm [46].

In literature [48], the Campo algorithm fails to address the fact that only the first element of
the optimal input trajectory is implemented and the whole min-max optimization is repeat‐
ed at the next time step with a feedback update. In the subsequent optimization, the worst-
case parameter values may change because of the feedback’s update. In the case of a system
with uncertainties, the open-loop optimal solution differs from the feedback optimal solu‐
tion, thereby violating the basic premise behind MPC. This is why robust stability cannot be
assured with the Campo algorithm.

The literature [49] proposed the RMPC formulations which explicitly take into account un‐
certainties in the prediction model
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f (xk , uk , wk , vk )= A(wk )xk + B(wk )uk + Evk (9)

where A(w)= A0 +∑
i=1

q
Aiwi, B(w)= B0 +∑

i=1

q
Biwi

wk∈W∈ℝnw, vk∈V∈ℝnv

Letvk , wkbe modeled as unknown but bounded exogenous disturbances and parametric un‐

certainties andW, Vbe polytopes respectively. A RMPC strategy often used is to solve a min-
max problem that minimize the worst-case performance while enforcing input and state
constraints for all possible disturbances. The following min-max control problem is referred
as open-loop constrained robust optimal control problem (OL-CROC).

min
u0,…,uN −1{ max

v0,…,vN −1∈V
w0,…,wN −1∈W

∑
k=0

N −1
l(xk , uk ) + F (xN )}

s.t . dynamics (9), constraints (3) satisfied ∀vk∈V, ∀wk∈W

(10)

Other papers in the literature aim at explicitly or implicitly approximating the problem
above by simplifying the objective and uncertainty description, and making the on-line ef‐
fort more manageable, but still guaranteeing at least robust stability. For example, the au‐
thors of [50] use an ∞-norm open-loop objective function and both assume FIR models with
uncertain coefficients. A similar but more general technique has also been proposed for
state-space systems with a bounded input matrix [51].

The authors of [52] have defined a dynamic programming problem (thus accounting for
feedback) to determine the control sequence minimizing the worst case cost. They show that
with the horizon set to infinity this procedure guarantees robust stability.  However,  the
approach suffers from the curse of dimensionality and the optimization problem at each stage
of the dynamic program is non-convex. Thus, in its generality the method is unsuitable for
on-line (or even off-line) use except for low order systems with simple uncertainty descriptions.

These formulations may be conservative for certain problems leading to sluggish behavior
because of three reasons. First of all, arbitrarily time-varying uncertain parameters are usu‐
ally not a good description of the model uncertainty encountered in practice, where the pa‐
rameters may be either constant or slowly varying but unknown. Second, the
computationally simple open-loop formulations neglect the effect of feedback. Third, the
worst-case error minimization itself may be a conservative formulation for most problems.

The authors of [50, 53, 54] propose to optimize nominal rather than robust performance and
to achieve robust stability by enforcing a robust contraction constraint, i.e.requiring the worst-
case prediction of the state to contract. With this formulation robust global asymptotic stabil‐
ity can be guaranteed for a set of linear time-invariant stable systems. The optimization problem
can be cast as a quadratic program of moderate size for a broad class of uncertainty descriptions.
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To account for the effect of feedback, the authors of [55] propose to calculate at each time
step not a sequence of control moves but a state feedback gain matrix which is determined
to minimize an upper bound on robust performance. For fairly general uncertainty descrip‐
tions, the optimization problem can be expressed as a set of linear matrix inequalities for
which efficient solution techniques exist.

5.2. LMI-based RMPC methods

In the above method, a cost function is minimized considering the worst case into all the
plants described by the uncertainties. Barriers of RMPC algorithms include: the computa‐
tional cost, the applicability depending on the speed and size of the plant on which the con‐
trol will act. In this section, we present one such MPC-based technique for the control of
plants with uncertainties. This technique is motivated by developments in the theory and
application (to control) of optimization involving linear matrix inequalities (LMIs) [56].

In this regard, the authors in [55] used the formulation in LMIs to solve the optimization
problem. The basic idea of LMIs is to interpret a control problem as a semi-definite pro‐
gramming (SDP), that is, an optimization problem with linear objective and positive-definite
constraints involving symmetric matrices that are related to the decision variables.

There are two reasons why LMI optimization is relevant to MPC. Firstly, LMI-based optimi‐
zation problems can be solved in polynomial time, which means that they have low compu‐
tational complexity. From a practical standpoint, there are effective and powerful algorithms
for the solution of these problems, that is, algorithms that rapidly compute the global opti‐
mum, with non-heuristic stopping criteria. It is comparable to that required for the elevation
of an analytical solution for a similar problem. Thus LMI optimization is well suited for on-
line implementation, which is essential for MPC. Secondly, it is possible to recast much of
existing robust control theory in the framework of LMIs [55].

The implication is that we can devise an MPC scheme where, at each time instant, an LMI
optimization problem (as opposed to conventional linear or quadratic programs) is solved
that incorporates input/output constraints and a description of the plant uncertainty. What’s
more, it can guarantee certain robustness properties.

5.3. Our works

In recent decades, many research results in the design of RMPC have appeared, see for ex‐
amples, [55-62] and the references therein. The main drawback associated with the above-
mentioned methods proposed in MPC is that a single Lyapunov matrix is used to guarantee
the desired closed-loop multi-objective specifications. This must work for all matrices in the
uncertain domain to ensure that the hard constraints on inputs and outputs are satisfied.
This condition is generally conservative if used in time-invariant systems. Furthermore, the
hard constraints on outputs of closed-loop systems cannot be transformed into a linear ma‐
trix inequality (LMI) form using the method proposed in [57, 58, 60].
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We present a multi-model paradigm for robust control. Underlying this paradigm is a linear
time-varying (LTV) system.

x(k + 1) = A(k )x(k ) + B(k )u(k )
y(k ) = C(k )x(k )
A(k ) B(k )
C(k) 0

∈ Ω
(11)

where u(k )∈ℝnuis the control input, x(k )∈ℝnxis the state of the plant and y(k )∈ℝnyis the
plant output, and Ω is some pre-specified set.

For polytopic systems, the set Ωis the polytope

Ω =Co{ A1 B1

C1 0
,

A2 B2

C2 0
, ...,

AL BL

CL 0
}, (12)

where Co devotes to the convex hull. In other words, if
A(k ) B(k )
C(k) 0 ∈Ω, then, for some non‐

negativeξ1(k ), ξ2(k ),...,ξL (k ) summing to one, we have

A(k ) B(k )
C(k) 0 =∑

i=1

L
ξi(k )

Ai Bi

Ci 0
, (13)

where L =1 corresponds to the nominal LTI system. The system described in equation (11)
subject to input and output constraints

                                        
|uh (k + i |k )| ≤ uh ,max, i ≥0, h =1, 2, ..., ℝnu,

| yh (k + i |k )| ≤ yh ,max, i ≥1, h =1, 2, ..., ℝny.

In 2001, the authors of [63] firstly put forward the idea of using the parameter-dependent
Lyapunov function to solve the problem of robust constrained MPC for linear continuous-
time uncertain systems, and hereafter, this idea was applied to linear discrete-time uncertain
systems in [64, 65].

Inspired by above-mentioned work, we addressed the problem of robust constrained MPC
based on parameter-dependent Lyapunov functions with polytopic-type uncertainties in
[66]. The results are based on a new extended LMI characterization of the quadratic objec‐
tive, with hard constraints on inputs and outputs. Sufficient conditions in LMI do not in‐
volve the product of the Lyapunov matrices and the system dynamic matrices. The state
feedback control guarantees that the closed-loop system is robustly stable and the hard con‐
straints on inputs and outputs are satisfied. The approach provides a way to reduce the con‐
servativeness of the existing conditions by decoupling the control parameterization from the
Lyapunov matrix. An example will be provided to illustrate the effectiveness of the techni‐
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ques developed in [66]. As the method proposed in [55] is a special case of our results, the
optimization problem should be feasible using the method proposed in our paper since it is
solvable using the approach in [55]. However, the optimization may not have a solution by
the result in [55], while it has a solution by our result.

Example (Input and Output Constraints) Consider the linear discrete-time parameter uncer‐
tain system (11) with

A1 =
−0.90 0.80
0.35 0.45 , A2 =

0.90 0.85
0.40 −0.85 , A3 =

0.96 0.13
0.28 −0.90 ,

B1 =
1
−1 , B2 =

1
−0.8 , B3 =

1
−0.86 ,

C1 = 1 0.3 , C2 = 0.8 0.2 , C3 = 1.2 0.4 .

(14)

It is shown that the optimization is infeasible with the method proposed in [55] without the
constraints. However, taking output constraints with y1,max =2 and input constraints with

u1,max =0.8, and with uncertain parameters assumed to beξ1(k )=0.5cos(k )2, ξ2(k )=0.6sin(k)2,

ξ3(k )=0.5cos(k )2 + 0.4sin(k )2, it is feasible using the method proposed in this paper. The simu‐
lation results are given in Figure 2 and Figure 3.

5.4. Conclusion

An overview of some methods on RMPC is presented. The methods are studied based on
LMI and Min-Max. The basic idea and applications of methods are stated in each part. Ad‐
vantages and disadvantages of methods are stated in this section too.

6. Recent developments in stochastic MPC

Despite the extensive literature that exists on predictive control and robustness to uncertain‐
ty, both multiplicative (e.g. parametric) and additive (e.g. exogenous), very little attention

has been paid to the case of stochastic uncertainty. Although robust predictive control can
handle constrained systems that are subject to stochastic uncertainty, it will propagate the
effects of uncertainty over a prediction horizon which can be computationally expensive
and conservative. Yet this situation arises naturally in many control applications. The aim of
this section is to review some of the recent advances in stochastic model predictive control
(SMPC).

The basic SMPC problem is defined in Subsection 6.1. and a review of earlier work is given
in Subsection 6.2.
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Figure 2. States (x1, x2) (method in [66]).

Figure 3. Output yand input u(method in [66]).

6.1. Basic SMPC problem

Consider the system described by the model

x(k + 1)= Ax(k ) + Bu(k ) + w(k ) (15)
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where x∈ℝn is the state, u∈ℝmis the input and the disturbance wk are assumed to be inde‐
pendent and identically distributed (i.i.d.), with zero mean, known distribution, and

−α ≤wk ≤α (16)

where α >0and inequalities apply element wise. (15) is subject to probabilistic constraints

P(ej
T ϕk ≤h j)≥ pj, j =1, ..., ρ ϕk =Gxk +1 + F uk (17)

whereG∈ℝρ×n, F ∈ℝρ×mand ej
T denotes the jth row of the identity matrix. This formulation

covers the case of state only, input only and state/input constraints which can be probabilis‐
tic (soft) or deterministic (hard) since pj =1can be chosen for some or all j. For each j (17) can
be invoked separately so that in this section is taken to be scalar

ϕk = g T xk +1 + f T uk (18)

The problem is to devise a receding horizon MPC strategy that minimizes the cost

J =∑
k=0

∞
E(x T (k)Qx(k ) + u T (k )Ru(k )) (19)

(where Edenotes expectation) and guarantees that the closed loop system is stable, while its
state converges to a neighborhood of the origin subject to the constraint (17).

As is common in the literature on probabilistic robustness (e.g. [67]), all stochastic uncertain‐
ties are assumed to have bounded support. Not only is this necessary for asserting feasibility
and stability, but it matches the real world more closely than the mathematically convenient
Gaussian assumption which permits wto become arbitrarily large (albeit with small proba‐
bility), since noise and disturbances derived from physical processes are finite.

6.2. Earlier work

Stochastic predictive control (SMPC) is emerging as a research area of both practical and
theoretical interest.

MPC has proved successful because it attains approximate optimality in the presence of con‐
straints. In addition, RMPC can maintain a satisfactory level of performance and guarantee
constraint satisfaction when the system is subject to bounded uncertainty [2]. However, such
an approach does not cater for the case in which model and measurement uncertainties are
stochastic in nature, subject to some statistical regularity, and neither can it handle the case
of random uncertainty whose distribution does not have finite support (e.g. normal distribu‐
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tions). Therefore RMPC can be conservative since it ignores information on the probabilistic
distribution of the uncertainty.

It is possible to adopt a stochastic uncertainty description (instead of a set-based descrip‐
tion) and develop an MPC algorithm that minimizes the expected value of a cost function. In
general, the same difficulties that plagued the set-based approach are encountered here. One
notable exception is that, when the stochastic parameters are independent sequences, the
true closed-loop optimal control problem can be solved analytically using dynamic pro‐
gramming [68]. In many cases, the expected error may be a more meaningful performance
measure than the worst-case error.

SMPC also derives from the fact that most real life applications are subject to stochastic un‐
certainty and have to obey constraints. However, not all constraints are hard (i.e. inviolable),
and it may be possible to improve performance by tolerating violations of constraints pro‐
viding that the frequency of violations remains within allowable limits, namely soft con‐
straints (see e.g. [69, 70] or [71, 73]).

These concerns are addressed by stochastic MPC. Early work [74] considered additive dis‐
turbances and ignored the presence of constraints. Later contributions [68, 75-78] took con‐
straints into account, but suffered from either excessive computation or a high degree of
conservativeness, or did not consider issues of closed loop stability/feasibility.

An approach that arose in the context of sustainable development [70, 79] overcame some
of these difficulties by using stochastic moving average models and equality stability con‐
straints. This was extended to state space models with stochastic output maps and to inequal‐
ity maps involving terminal invariant sets [81]. The restriction of model uncertainty to the
output map was removed in [81], but the need to propagate the effects of uncertainty over
the prediction horizon prevented the statement of results in respect of feasibility. [82] over‐
comes these issues through an augmented autonomous prediction formulation, and pro‐
vides  a  method  of  handling  probabilistic  constraints  and  ensuring  closed  loop  stability
through the use of an extension of the concept of invariance, namely invariance with prob‐
ability p.

Recent work [83, 84] proposed SMPC algorithms that use probabilistic information on addi‐
tive disturbances in order to minimize the expected value of a predicted cost subject to hard
and soft (probabilistic) constraints. Stochastic tubes were used to provide a recursive guar‐
antee of feasibility and thus ensure closed loop stability and constraint satisfaction. More‐
over, the authors of [84] proposed conditions that, for the parameterization of predictions
employed, are necessary and sufficient for recursive feasibility, thereby incurring no addi‐
tional conservatism. The approach was based on state feedback, which assumed that the
states are measurable. In practice this is often not the case, and it is then necessary to esti‐
mate the state via an observer. The introduction of state estimation into RMPC is well un‐
derstood and uses lifting to describe the combined system and observer dynamics. In [85],
these ideas are extended to include probabilistic information on measurement noise and the
unknown initial plant state, and extends the approach of [84].
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Applications

In the next two sections, we will show that many important practical and theoretical prob‐
lems can be formulated in the MPC framework. Pursuing them will assure MPC of its stat‐
ure as a vibrant research area, where theory is seen to support practice more directly than in
most other areas of control research.

7. Networked control systems

Traditionally, the different components (i.e., sensor, controller, and actuator) in a control
system are connected via wired, point-to-point links, and the control laws are designed and
operate based on local continuously-sampled process output measurements.

In recent years, there has been a growing interest in the design of controllers based on the
network systems in several areas such as traffic, communication, aviation and spaceflight
[86]. The networked control systems (NCSs) is defined as a feedback control system where
control loops are closed through a real-time network [96, 97], which is different from tradi‐
tional control systems. For an overview, the readers can refer to [97], which systematically
addresses several key issues (band-limited channels, sampling and delay, packet loss, sys‐
tem architecture) that make NCSs distinct from other control systems.

7.1. Characteristics of NCSs

Advantages. Communication networks make the transmission of data much easier and pro‐
vide a higher degree of freedom in the configuration of control systems. Network-based
communication allows for easy modification of the control strategy by rerouting signals,
having redundant systems that can be activated automatically when component failure oc‐
curs. Particularly, NCSs allow remote monitoring and adjustment of plants over the Inter‐
net. This enables the control system to benefit from the way it retrieves data and reacts to
plant fluctuations from anywhere around the world at any time, see for example, [98-101]
and references therein.

Disadvantages. Although the network makes it convenient to control large distributed sys‐
tems, new issues arise in the design of a NCSs. Augmenting existing control networks with
real-time wired or wireless sensor and actuator networks challenges many of the assump‐
tions made in the development of traditional process control methods dealing with dynami‐
cal systems linked through ideal channels with flawless, continuous communication. In the
context of networked control systems, key issues that need to be carefully handled at the
control system design level include data losses due to field interference and time-delays due
to network traffic as well as due to the potentially heterogeneous nature of the additional
measurements (for example, continuous, asynchronous and delayed) [102]. These issues will
deteriorate the performance and may even cause the system to be unstable.
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Hence, the main question is how to design the NCSs include the handling of data losses,
time-varying delays, and the utilization of heterogeneous measurements to maintain the
closed-loop stability while improving the closed-loop performance.

7.2. Results on NCSs

To solve these problems, various methods have been developed, e.g., augmented determin‐
istic discrete-time model, queuing, optimal stochastic control, perturbation, sampling time
scheduling, robust control, fuzzy logic modulation, event-based control, end-user control
adaptation, data packet dropout analysis, and hybrid systems stability analysis. However,
these methods have put some strict assumptions on NCSs, e.g., the network time delay is
less than the sampling period [109, 110]. The work of [111] presents an approach for stability
analysis of NCSs that decouples the scheduling protocol from properties of the network-free
nominal closed-loop system. The problem of the design of robust H∞controllers for uncer‐
tain NCSs with the effects of both the network-induced delay and data dropout has been
considered in [112] the network-induced time delay is larger than one sampling period, but
there is no compensation for the time delay and data dropout.

A common approach is to insert network behavior between the nodes of a conventional con‐
trol loop, designed without taking the network behavior into account. More specifically, in
[114], it was proposed to first design the controller using established techniques considering
the network transparent, and then to analyze the effect of the network on closed-loop sys‐
tem stability and performance. This approach was further developed in [115] using a small
gain analysis approach.

In the last few years, however, several research papers have studied control using the
IEEE802.11 and Bluetooth wireless networks, see, for example, [116-119] and the references
therein. In the design and analysis of networked control systems, the most frequently stud‐
ied problem considers control over a network having constant or time-varying delays. This
network behavior is typical of communications over the Internet but does not necessarily
represent the behavior of dedicated wireless networks in which the sensor, controller, and
actuator nodes communicate directly with one another but might experience data losses. An
appropriate framework to model lost data, is the use of asynchronous systems [120-122] and
the process is considered to operate in an open-loop fashion when data is lost.

The most destabilizing cause of packet loss is due to bursts of poor network performance in
which case large groups of packets are lost nearly consecutively. A more detailed descrip‐
tion of bursty network performance using a two-state Markov chain was considered in
[123]. Modeling networks, using Markov chains results in describing the overall closed-loop
system as a stochastic hybrid system [120]. Stability results have been presented for particu‐
lar cases of stochastic hybrid systems (e.g., [124, 125]). However, these results do not directly
address the problem of augmentation of dedicated, wired control systems with networked
actuator and sensor devices to improve closed-loop performance.

With respect to other results on networked control, in [126], stability and disturbance at‐
tenuation issues for a class of linear networked control systems subject to data losses mod‐
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eled as a discrete-time switched linear system with arbitrary switching was studied. In [127],
(see also [128-130]), optimal control of linear time-invariant systems over unreliable commu‐
nication links under different communication protocols (with and without acknowledgment
of successful communication) was investigated and sufficient conditions for the existence of
stabilizing control laws were derived.

Although, within control theory, the study of control over networks has attracted considera‐
ble attention in the literature, most of the available results deal with linear systems (e.g.,
[100, 131]).

7.3. Our works

MPC framework is particularly appropriate for controlling systems subject to data losses be‐
cause the actuator can profit from the predicted evolution of the system. In this section, re‐
sults from our works are summarized.

Several methodologies have been reported in the open literature to handle with the prob‐
lems mentioned above in networked systems. Among these papers, two basic control strat‐
egies are applied when the packet dropping happens, they are zero-input schemes, by which
the actuator input is set to zero when the control packet is lost, and hold-input scheme which
implies the previous control input is used again when the control packet drops. The further
research is proposed in [132] by directly comparing the two control methods.

The work of [133] presents a novel control technique combining modified MPC and modi‐
fied Smith predictor to guarantee the stability of NCSs. Especially,  the key point in this
paper is that the future control sequence is used to compensate for the forward communi‐
cation time delay and predictor is responsible for compensating the time delay in the back‐
ward channel.

Although much research work have been done in NCSs, many of those results simply treat
the NCSs as a system with time delay, which ignores NCSs features, e.g., random network
delay and data transmission in packets [134]. In order to solve the problem, Markovian jump
system can be used to model the random time-delay. Moreover, most work have also ignor‐
ed another important feature of NCSs. This feature is that the communication networks can
transmit a packet of data at the same time, which is not done in traditional control sys‐
tems. We have proposed a new networked control scheme – networked predictive control
which mainly consists of a control prediction generator and a network dropout/delay com‐
pensator. It is first assumed that control predictions based on received data are packed and
sent to the plant side through a network. Then the network dropout/delay compensator
chooses the latest control value from the control prediction sequences available on the plant
side,  which can compensate for  the time delay and data dropouts.  The structure of  the
networked predictive control system (NPCS) is shown as Figure 4. The random network
delay in the forward channel in NCS has been studied in [135]. Some other results has been
obtained in [136] and [137], where the network-induced delay is not in the form of a Mar‐
kov chain.
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Figure 4. The networked predictive control system.

But, the random network delay in the forward and feedback channels makes the control de‐
sign and stability analysis much more difficult. In [100] proposes a predictive control
scheme for NCS with random network delay in both the feedback and forward channels and
also provides an analytical stability criteria for closed-loop networked predictive control
(NPC) systems. Furthermore, [138] can overcome the effects caused by both the unknown
network delay and data dropout. Recently, [139] mainly focus on the random transmission
data dropout existing in both feedback and forward channels in NCSs. So, the network-in‐
duced time delay is not discussed here.

In fact, using the networked predictive control scheme presented in this section, the control
performance of the closed-loop system with data dropout is very similar to the one without
data dropout.

8. Distributed MPC

At the beginning of research on NCSs, more attention was paid on single plant through net‐
work. Recently, fruitful research results on multi-plant, especially, on multi-agent net‐
worked control systems have been obtained. The aim of this section is to review a
classification of a number of distributed control architectures for large scale systems. Atten‐
tion is focused on the design approaches based on model predictive control. The controllers
apply MPC policies to their local subsystems. They exchange their predictions by communi‐
cation and incorporate the information from other controllers into their local MPC problem
so as to coordinate with each other. For the considered architecture, the underlying ration‐
ale, the fields of application, the merits and limitations are discussed and the main referen‐
ces to the literature are reported.

8.1. Background

Technological and economical reasons motivate the development of process plants, manu‐
facturing systems, traffic networks, water or power networks [140] with an ever increasing
complexity. In addition, there is an increasing interest in networked control systems, where
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dedicated local control networks can be augmented with additional networked (wired
and/or wireless) actuator/sensor devices have become cheap and easy-to-install [141, 142].
These large scale systems are composed by many physically or geographically divided sub‐
systems. Each subsystem interacts with some so called neighbouring subsystems by their
states and their inputs. The technical target is to achieve some global performance of entire
system (or a common goal of all subsystems). Actually, it is difficult to control with a cen‐
tralized control structure due to the required inherent computational complexity, robustness
and reliability problems and communication bandwidth limitations.

For all these reasons, many distributed control structures have been developed and applied
over the recent decades.

8.2. The reasons why DMPC is adopted

About MPC. The aim of this section is to review the distributed control approaches adopt‐
ed, and to provide a wide list of references focusing the attention on the methods based on
MPC. This choice is motivated by the ever increasing popularity of MPC in the process in‐
dustry, see e.g. the survey papers [143, 144] on the industrial applications of linear and non‐
linear MPC. Moreover, in recent years many MPC algorithms have been developed to
guarantee some fundamental properties, such as the stability of the resulting closed-loop
system or its robustness with respect to a wide class of external disturbances and/or model
uncertainties, see e.g. the survey paper [2]. Especially, MPC is also a natural control frame‐
work to deal with the design of coordinated, distributed control systems because of its abili‐
ty to handle input and state constraints, and also because it can account for the actions of
other actuators in computing the control action of a given set of control actuators in real-
time. Therefore, MPC is now recognized as a very powerful approach with well established
theoretical foundations and proven capability to handle the problems of large scale systems.

Other control structures

1) Centralized Control. MPC is normally implemented in a centralized fashion. One controller
is able to acquire the information of the global system, computes all the control inputs for
the system, and could obtain a good global performance. In large-scale interconnected sys‐
tems, such as power systems, water distribution systems, traffic systems, etc., such a central‐
ized control scheme may not suitable or even possible apply to large scale system for some
reasons: (1) there are hundreds of inputs and outputs. It requires a large computational ef‐
forts in online implementation (2) when the centralized controller fails, the entire system is
out of control and the control integrity cannot be guaranteed when a control component
fails (3) in some cases, e.g. in multi-intelligent vehicle system, the global information is un‐
available to each controller and (4) objections to centralized control are often not computa‐
tional, however, but organizational. All subsystems rely upon the central agent, making
plantwide control difficult to coordinate and maintain. These obstacles deter implementa‐
tion of centralized control for large-scale plants.

In recent years, there is a trend for the development of decentralized and distributed MPC
due to the disadvantages of centralized MPC mentioned above (e.g.,[145, 146]).
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2) Decentralized Control. Most large-scale and networked control systems are based on a de‐
centralized architecture, that is, the system is divided into several subsystems, each control‐
led by a different agent that does not share information with the rest. Each of the agents
implements an MPC based on a reduced model of the system and on partial state informa‐
tion, which in general results in an optimization problem with a lower computational bur‐
den. Figure 5 shows a decentralized control structure, where the system under control is
assumed to be composed by two subsystems S1 and S2, with states, control and output vari‐
ables (x1, u1,y1) and (x2, u2,y2), respectively, and the interaction between the subsystems is
due the inputs and the outputs of different pairs are weak. These interactions can either be
direct (input coupling) or caused by the mutual effects of the internal states of the subsys‐
tems under control, like in Figure 5.

For example, in [147], a MPC algorithm was proposed under the main assumptions that the
system is nonlinear, discrete-time and no information is exchanged between local control‐
lers.The decentralized framework has the advantages of being flexible to system structure,
error-tolerance, less computational efforts and no global information requirements [148].

Figure 5. Decentralized control of a two input (u1,u2)-two output (y1,y2) system.

In plants where the subsystems interact weakly, local feedback action provided by these
subsystem (decentralized) controllers may be sufficient to overcome the effect of interac‐
tions. For such cases, a decentralized control strategy is expected to work adequately. On the
contrary, it is well known that strong interactions can even prevent one from achieving sta‐
bility and/or performance with decentralized control, see for example [149, 150], where the
role played by the so-called fixed modes in the stabilization problem is highlighted.
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Distributed MPC. While these paradigms (centralized control and decentralized Control) to
process control have been successful, there is an increasing interest in developing distribut‐
ed model predictive control (DMPC) schemes, where agents share information in order to
improve closed-loop performance, robustness and fault-tolerance. As a middle ground be‐
tween the decentralized and centralized strategies, distributed control preserves the topolo‐
gy and flexibility of decentralized control yet offers a nominal closed-loop stability guarantee.

For each decentralized MPC, a sequence of open-loop controls are determined through the
solution of a constrained optimal control problem. A local objective is used. A subsystem
model, which ignores the interactions, is used to obtain a prediction of future process behav‐
ior along the control horizon. For distributed control, one natural advantage that MPC offers
over other controller paradigms is its ability to generate a prediction of future subsystem be‐
havior. If the likely influence of interconnected subsystems is known, each local controller
can possibly determine suitable feedback action that accounts for these external influences.
Intuitively, one expects this additional information to help improve systemwide control per‐
formance. Thus the distributed control framework is usually adopted in large-scale plants
[151], in spite of that the dynamic performance of centralized frame work is better than it.

Figure 6. Distributed control of a two input (u1,u2)-two output (y1,y2) system.

In distributed control structures, like the simple example shown in Figure 6, it is assumed
that some information is transmitted among the local regulators (R1and R2 in Figure 6), so
that each one of them has some knowledge on the behavior of the others. When the local
regulators are designed with MPC, the information transmitted typically consists of the fu‐
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ture predicted control or state variables computed locally, so that any local regulator can
predict the interaction effects over the considered prediction horizon. With reference to the
simple case of Figure 6, the MPC regulators R1and R2are designed to control the subsystems
S1 andS2, respectively. If the information was exchange among the local regulators (R1and
R2) concerns the predicted evolution of the system states (x1andx2), any local regulator
needs only to know the dynamics of the subsystem directly controlled (S1andS2).

In any case, it is apparent that the performance of the closed-loop system depends on the
decisions that all the agents take. Hence, cooperation and communication policies become
very important issues.

With respect to available results in this direction, several DMPC methods have been pro‐
posed in the literature that deal with the coordination of separate MPCs. These communi‐
cate in order to obtain optimal input trajectories in a distributed manner see [145, 146, 152]
for reviews of results in this area. Some distributed MPC formulations are available in the
literatures [153-157].

8.3. DMPC over network information exchange

However, all of the above results are based on the assumption of continuous sampling of the
entire plant state vector and assuming no delays and perfect communication between sub‐
systems. In practice, individual subsystems exchange information over a communication
network, especially wireless communication network, where the data is transmitted in dis‐
crete packets. These packets may be lost during communication. Moreover, the communica‐
tion media is a resource that is usually accessed in a mutually exclusive manner by
neighborhood agents. This means that the throughput capacity of such networks is limited.
Thus, how to improve the global performance of each subsystem with the limited network
communication or limited available information is a valuable problem.

Previous work on MPC design for systems subject to asynchronous or delayed measure‐
ments  has  primarily  focused on centralized MPC design [158],  [159]  and little  attention
has been given to the design of DMPC. In [160],  the issue of delays in the communica‐
tion  between  distributed  controllers  was  addressed.  The  authors  of  [161]  consider  the
design  of  distributed  MPC  schemes  for  nonlinear  systems  in  a  more  common  setting.
That is, measurements of the state are not available continuously but asynchronously and
with delays.

9. Conclusions

Recently, there has been much interest in model predictive control which allows research‐
ers to address problems like feasibility,  stability and performance in a rigorous manner.
We first  give a review of discrete-time model predictive control of  constrained dynamic
systems, both linear and nonlinear. The min-max approach for handling uncertainties are
illustrated, then the LMIs methods are showed, and the advantages and disadvantages of
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methods are mentioned. The basic idea of each method and some method applications are
stated. Despite the extensive literature that exists on predictive control and robustness to
uncertainty, very little attention has been paid to the case of stochastic uncertainty. SMPC
is emerging to adopt a stochastic uncertainty description (instead of a set-based descrip‐
tion). Some of the recent advances in this area are reviewed. We show that many impor‐
tant practical and theoretical problems can be formulated in the MPC framework, such as
DMPC.  Some considerable  attention  has  been  directed  to  NCSs.  Although  the  network
makes  it  convenient  to  control  large  distributed  systems,  there  also  exist  many  control
issues, such as network delay and data dropout, which cannot be addressed using conven‐
tional  control  theory,  sampling  and  transmission  methods.  Results  from  our  recent  re‐
search are summarized in Section 7. We have proposed a new networked control scheme,
which can overcome the effects  caused by the network delay.  In the last  section we re‐
view a number of distributed control architectures based on model predictive control. For
the considered architectures,  the underlying rationale,  the fields of  application,  the mer‐
its and limitations are discussed.
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