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Abstract

Urban drainage systems (UDS) may be considered large–scale systems given their large number of associated states and
decision actions, making challenging their real–time control (RTC) design. Moreover, the complexity of the dynamics of
the UDS makes necessary the development of strategies for the control design. This paper reviews and discusses several
techniques and strategies commonly used for the control of UDS. Moreover, the models to describe, simulate, and control
the transport of wastewater in UDS are also reviewed.

Keywords: Modeling, real-time control

1. Introduction

Drainage networks are hybrid complex large–scale sys-
tems composed by several processes including collection,
transport, storage, wastewater and/or rainwater treatment,
and final disposition of treated water. UDS involve most
of these processes inside cities and urban areas. UDS have
a considerable social, economic, and environmental impact,
so a correct and efficient urban drainage management to
prevent flooding and polluting discharges to the environ-
ment is extremely important [1].
Depending on how wastewater and rainwater are man-

aged, UDS can be either combined or separated. Combined
sewage systems (CSS) carry wastewater and stormwater
in a inosingle pipe, whereas the separated sewage systems
(SSS) transport wastewater and storm water through in-
dependent pipes. During a rainstorm, wastewater flows
can overload the CSS, producing flow discharges out from
the network known as combined sewer overflows (CSO).
Furthermore, some overflows incorporate back to the sys-
tem after some external stages, e.g., an overflow going to
streets might get back to the system throughout a different
point within the network. In contrast, all the overflows dis-
charges released to the environment without return to the
system are flows that cause pollution. Consequently, CSOs
can become pollution in case they do not return to the
network, whereas the pollution is irreversible, i.e., a CSO

IThis work has been partially supported by Mexichem, Colombia
through the project “Drenaje Urbano y Cambio Climático: Hacia los
Sistemas de Alcantarillado del Futuro.” Fase II, with reference No.
548-2012, the scholarships of Colciencias No. 567-2012 and 647-2013,
and the project ECOCIS (Ref. DPI2013-48243-C2-1-R).

Email addresses: j.barreiro135@uniandes.edu.co -
jbarreiro@iri.upc.edu (J. Barreiro-Gomez),
nquijano@uniandes.edu.co (N. Quijano), cocampo@iri.upc.edu
(C. Ocampo-Martinez)

might become into pollution but not the opposite. From
now on, CSOs are clearly differentiated from the pollution
concept, and these two factors are treated independently
for control objectives.
Over the last decades, climate change and the constant

growth of cities and urban areas have had a considerable
impact on UDS. On the one hand, population in cities has
grown much faster than the infrastructure of its drainage
networks [2]. On the other hand, the population growth in
cities has required an increase in the construction of build-
ings, roads, and other civil infrastructures. As a result, the
soil in these areas has lost rainwater absorption capacity,
making cities more vulnerable to flooding in the presence of
heavy rain events [3, 4]. Additionally, weather phenomena
such as global warming have increased the frequency, in-
tensity, and duration of rain events in many areas [2, 5]. All
these circumstances have caused considerable increments
in both wastewater and rainwater within cities, thereby
increasing the risk of CSO and flooding events. Then, the
minimization of the risk of CSO becomes an objective of
great importance. To attain this objective, three main al-
ternatives might be considered. The most evident solution
consists in enlarging the infrastructure of the sewer sys-
tem (either by adding more channels, pipelines and storage
tanks [6] or by expanding the capacity of the existing ones),
in order to transport water and sewage away from cities in
a faster way and avoiding flooding. However, this solution
generally involves high costs and the implementation times
may be also high, making this solution unfeasible in many
cases.
Other alternatives are related to the well-known storm-

water source control approaches, which are aimed to reduce
and/or delay runoff volume (i.e., provide rainfall capture)
by managing in a suitable way the local water balance
(e.g., promoting infiltration and evaporation, or delaying
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the runoff by means of green roofs). Source control options
(e.g., pervious paving, pervious pecks, rainwater re-use) can
be complemented by the proper management of green in-
frastructures (e.g., parkland, forests, wetlands, greenbelts,
floodways) [7]. Notice that techniques based on stormwater
source control options might be effective according to the
time scale considered and the dimension of the whole sys-
tem. Their implementation should be analyzed according
to the particular methodology, which in turn determines
the associated costs with respect to the achieved goals
[8, 9]. The previous discussion leads to the latter altern-
ative, which consists in the reduction of the number and
magnitude of overflows in UDS through an efficient man-
agement of the sewer system using the already existing
infrastructure, requiring none or minimal volumetric ex-
pansion of the system. Such objective can be achieved
by applying intelligent control systems to handle the UDS
[10, 11].

Control of UDS can be performed either off–line (static
rules) or on–line (real–time varying control actions). Due
to the dynamic nature and complexity of drainage systems,
as well as the dynamic loading conditions under which UDS
operate, off-line control may not be the most appropriate
option to be considered. Therefore, a dynamic control
based on real-time information is necessary, then real–time
control (RTC) appears as a suitable alternative to operate
and manage UDS [12, 13]. The application of RTC to UDS
has been studied by several researchers over the last years.
Studies have shown that RTC is a reliable and cost-effective
solution that improves the performance of UDS and that
helps UDS to achieve operational objectives in a better
way [14, 15, 16].

This paper presents a literature review of the main mod-
eling and RTC techniques applied to UDS. A review of the
main modeling approaches adopted for UDS is shown, a
classification criterion is proposed, and the software tools
(oriented to control and simulation) are also presented.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the characteristics of RTC when it is ap-
plied to UDS, and introduces some of the most used RTC
techniques for these systems. Subsections 3.1 and 3.2 deal
with the principal modeling approaches used to describe,
simulate, and control UDS. Subsection 3.3 presents some
of the main software tools to simulate and control such
hydraulic systems. Finally, a discussion based on the liter-
ature review, and concluding remarks are shown in Section
4.

2. Real-Time Control of Urban Drainage Systems

UDS can be controlled in real time if process variables of
the system are monitored and continuously used to operate
actuators [16]. RTC algorithms consist of sets of rules that
determine the control actions, which are taken in response
to the current states of the sewer network [17].
The first RTC prototype for UDS was implemented at

the end of the 1960s in Minneapolis–St. Paul (United

States) [13]. Thenceforth, an increasing number of RTC
strategies have been designed, simulated, and implemented
for UDS all over the world, especially in Europe and North
America.

Historically, the main objective in the application of
RTC to UDS has been the reduction of volume in tanks
and/or the total CSO, without having to make a volumet-
ric extension of the already existing system [13]. Other
objectives commonly taken into account include prevention
of urban flooding and minimization of operational costs.
More recently, further control objectives regarding water
quality and pollution loads have also been considered. RTC
algorithms may pursue more than one of these objectives
simultaneously by using multi–objective control strategies.
Additionally, operational objectives may change depending
on the states of the UDS. This can be the case in countries
where there are seasons or with large variations of the
weather, where dry and wet seasons have quite different
conditions.

It has been shown that the application of RTC techniques
is a solution that allows the reduction of CSO volumes,
among other benefits that, at the end, improve the per-
formance of UDS [16, 18]. The two main reasons of why
RTC improves the operation of the existing UDS are [13]:

1. Most parts of the UDS are historically designed ac-
cording to static rules. However, the whole system is
operated under dynamic loading conditions.

2. Climate change makes necessary to adapt sewer sys-
tems, which have a life expectancy of tens of years,
to new loading situations. Singular climatic phenom-
ena and problems such as global warming increase the
urgency on real–time automatic operation.

RTC implementation includes several aspects such as
hydraulics, instrumentation, remote monitoring, process
control, software development, mathematical modeling, or-
ganizational issues, and forecasting of rainfall and/or flows.
Implementation of all these aspects may be quite expensive,
depending on the nature of each system. For this reason,
RTC potential and benefits in an UDS must be identified
before any implementation to justify the corresponding
investments.
There is not a single criterion to determine whether or

not an RTC implementation is suitable for a given UDS.
In addition, there are some challenges that the application
of RTC should face. These challenges that are considered
in the decision–making process are [17]:

1. On-line measurements are the foundation of the RTC
system. Processes that are unable to include monitor-
ing sensors may not be suitable for the implementation
of RTC. It is also important to determine whether the
RTC system will use existing and already installed
instrumentation, or if mostly new instruments are
needed. Also, how well the processes are established,
and the funding for maintaining those instruments.
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2. Size of the system (normally of large–scale nature),
overall hydraulic conditions, and dynamics of the sewer
network.

3. Topology of the UDS and the general flow pattern
(looped flow with many interconnections or dendritic
flow pattern without many interconnections).

4. On–line storage possibilities, including the location of
the major storage spots in the network and system to-
pology (centralized and/or distributed/decentralized).

5. Organizational issues, including in–house expertise
and available resources for the hydraulic modeling,
RTC development and implementation, and future
maintenance/support of the RTC module.

6. Overall information technology maturity of the or-
ganization interested in implementing RTC, i.e., how
stable the SCADA (Supervisory Control and Data
Adquisition) system is.

7. Number, complexity, flexibility, and operational exper-
ience with the actuators (e.g., gates, valves).

Efforts have been made to establish basic standard as-
pects to be taken into account when considering RTC
implementation. One example of this is the working group
in RTC of the German Association for Water, Wastewater
and Waste (DWA in German), which prepared a guideline
document on how to plan the RTC systems for urban drain-
age catchments (DWA M180) [19]. Software tools have also
been designed to help in this decision process, e.g., the
planning tool named PASST (Planning Aid for Sewer Sys-
tem RTC) [19, 20]. Furthermore, the essential components
of a RTC system such as sensors, automated gates, and
some strategies are described in [21].
There are numerous and quite different types of RTC

strategies, and there are also many ways to classify them.
Five different ways to classify RTC algorithms found in the
literature are presented next.

The literature distinguishes between RTC strategies that
are model–based and those that are not [17]. Among the
most used control strategies for UDS, there are control
strategies based on the system model such as model pre-
dictive control (MPC) and the linear quadratic regulator
(LQR). This type of algorithms require a mathematical
model that suitably describes the dynamical behavior of the
plant. On the other hand, some decision–making strategies
do not require a model of the system, but a complete know-
ledge on the system behavior. In general, this knowledge
is hard to obtain. Some examples of these strategies are
fuzzy–logic control (FLC) and rule–based control (RBC).
Another way to classify RTC strategies is into control

algorithms based on optimization versus algorithms that
use automated rules (rule–based algorithms) [17]. Rule–
based systems consider the possible scenarios that can
occur during the operation of the system, and have rules
to determine the appropriate control actions. These kind
of systems are usually easy to understand by the operators
[17]. In contrast, optimization–based algorithms usually
demand more computational efforts and a mathematical

representation of the system dynamics, but they are less
dependent on the expert knowledge about the system, and
these algorithms can generate control actions that produce
an optimal performance.

Regarding the complexity of an RTC system, distinctions
of the class or level of control implemented in UDS can be
made [14, 16, 17, 18, 19, 22, 23, 24]. If the actuators are not
remotely operated from a central control room, then the
system is operated at a local level. On the other hand, the
system is operated in a global control level when sensors
communicate their data to other places of the system.
There are many different configurations and communication
architectures for this kind of control.

One of the most commonly used configurations of global
control is the centralized control, in which a central control
room receives all the measurement data from local sensors
and centrally operates the actuators in a coordinated way.
Consequently, the local control scheme may represent a
more suitable solution in cases where there are few actuat-
ors in the system, but if the system is more complex or if
all actuators have to be operated jointly, then the global
control level is required [16].
In large–scale and complex systems, it is common to

have both global and local levels of control. In this case,
there can be up to three control levels. Firstly, there is a
management level that provides the operational objectives
and the performance index for the control system. Then,
the global control level takes this information into account
to produce the set–points for the local controllers, which
are placed at different parts of the system. At the global
control level the information from the system is gathered,
including measurements at different points of the drainage
network and measurements of disturbances of the system
such as rain events (if available). Finally, the local control
level receives the set–points, and operates the actuators
accordingly [11]. This hierarchical structure is discussed in
Section 3.

Distinctions between reactive systems and predictive sys-
tems can also be made. Reactive systems react to current
(and possibly past) external events. Differently, predictive
systems have forecasting mechanisms and methodologies
to estimate future events, and take them into account to
choose a control action. The addition of forecasting mech-
anisms in control systems may improve their performance,
but it would add complexity to the mechanisms, since ad-
ditional calculations and computations are required [17].
In the case of UDS, forecasts of variables such as rainfalls
may give important and useful information about the sys-
tem, although it might be deteriorated with the length of
the forecasting horizons. For these reasons, benefits over
the simpler reactive system should be identified in order
to justify the increase of complexity and the expense of
implementing forecasting.
The type of controlled variables is also an important

criterion to classify RTC algorithms. Regarding this, the
literature distinguishes between three different types of
RTC: volume–based RTC, pollution–based RTC (PBRTC),
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and water quality–based RTC (WQBRTC) [13]. Most RTC
for UDS developed projects have focused only on waste–
water volumes (volume–based RTC). In the last decade, the
other two approaches have been taken more into account.
Both PBRTC and WQBRTC require knowledge of the
dynamics, not only the sewer network, but also about
the waste–water treatment plant (WWTP) and the water
bodies where the sewage is released. This means that an
integrated model of the whole sewerage system is needed
[16, 25, 26].

According to the mentioned classifications, and depend-
ing on the selected type of RTC strategy, different com-
ponents are required for control implementation in UDS.
Table 1 shows some of the components needed for the im-
plementation of different control schemes in sewer systems.
A detailed description of the measurement and control
components used for applying RTC to UDS can be found
in [27]. Once the generality of RTC has been presented,
then the most used RTC techniques are introduced.

Table 1: Components required for different control configurations
[17].
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2.1. Heuristic Algorithms
The main characteristic of heuristic algorithms is that

these techniques are purely based on experience (knowledge
already acquired). This means that a dynamical model
of the system is not required to design the controller. In
addition, the heuristic nature of these algorithms causes
that any computed solution cannot guarantee optimality.
Heuristic algorithms are usually developed to have low
complexity, and they are generally used for systems that
are quite complex to model [28].

In the case of UDS, the design of RTC based on heuristic
algorithms does not need a control-oriented model of the
system. However, simulation-oriented models1 of the UDS
are desired in order to evaluate the performance of these
controllers, before their real implementation. Additionally,
once these controllers are designed, they can be tuned.
Then, an adequate simulation-oriented model helps in the
improvement of the control performance.

One of the most broadly RTC heuristic algorithms used
in UDS over the last decades is the rule–based control
[30]. A particular rule-based strategy, known as fuzzy-logic
control, has gained popularity in the application to UDS.
A brief description of both conventional rule-based control
strategies, and fuzzy-logic control is presented next.

2.1.1. Rule-Based Control (RBC)
Conventional RBC is one of the simplest RTC strategies

that have been used in UDS. RBC for real–time flow control
has been widely used in several UDS over the last decades.
Hydraulic conditions, in a sewer system or in a WWTP,
are important for the control of the system and the control
actions must consider them. Therefore, the mentioned
conditions are taken into account in the control system by
using a large number of rules. For example, the CSO of a
tank can be adjusted as a function of the water level in the
storage tank as in [30].
RBC strategies are generally established off–line. This

means that the control rules are specified before the process
starts and they are represented in a way that allows a quick
selection of the control actions, depending on the current
state of the system. Examples of this kind of representa-
tions include “if–then” rules (where the “if” part depends
on the current state of the system known as antecedent; and
the “then” part represents the corresponding control action
known as consequent), scenarios, and decision matrices
correspond to a list of all possible combinations of inputs
and current state variables in the process, relating them to
the appropriate control actions [31]. Even if the rules of

1According to the literature (see, e.g., [29], among others), sys-
tem models might reproduce their behavior with a desired accuracy,
which is related to the complexity and manipulability of such models.
Therefore, simulation-oriented models are only used for simulation
purposes. On the other hand, control-oriented models (COM) are
established to design model-based control strategies. Given that they
should be used several times for complex computations, these COMs
should be simpler and less accurate than the simulation-oriented
models.
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the control strategy are previously defined (off–line) and
do not change, control actions depend only on the current
state of the UDS at each time. Therefore, RBC computes
the control action quickly and it can be considered as RTC.
Despite being one of the simplest RTC algorithms to

implement, understand, and operate, RBC has some dis-
advantages. First of all, there is not a conventional meth-
odology to establish the control rules for RBC. Rules are
usually set by using the available expert knowledge about
characteristics of the system and its behavior, so both the
quality and performance of the rules and the controller
highly depend on this expertise. Moreover, the expertise
about the system may be obtained from the dynamical
behavior of a model, i.e., the development of rules can be
made by using a model of the system. Additionally, for
large and complex systems the strategy may demand a
huge number of rules and scenarios.
Briefly, the design of these rules depends on how the

system behaves. An example of a rule might be as follows:
“If a tank is close to be filled up, then all the inflows of the
tank should be decreased in order to avoid an overflow”.

2.1.2. Fuzzy–Logic Control (FLC)
Instead of conventional RBC systems, it is possible to use

control strategies based on fuzzy logic. Fuzzy–logic control
(FLC) is a control technique derived from fuzzy set theory.
In contrast with classical binary logic where the variables
can only have two values (‘0’ or ‘1’) where Boolean algebra
is used, variables in fuzzy logic are allocated to so–called
degrees of membership ranging between 0 and 1, where the
Kleene and D’Morgan algebras can be used to formalize
mathematically the fuzzy rules [32].
FLC combines simple rules of an expert system with a

flexible specification of output parameters. Conventional
controllers adjust the control sizes of the system based on
a set of differential equations that represent a model of a
dynamical system. In fuzzy controllers, the control values
are obtained on the basis of fuzzy rules, which are similar
to the model of human reasoning [33].
The way in which fuzzy controllers produce control ac-

tions can be summarized in three steps. In the first step,
scalar inputs are transformed into memberships of fuzzy
sets by fuzzifying functions. This information is then given
to the inference engine. Finally, the membership values
are transformed into required scalar output variables by
a defuzzification step [30]. This process requires that the
fuzzy functions are already defined, in order to establish
the degrees of membership of the inputs. FLC has been
studied for reduction of CSO in UDS, and also for the
control of WWTP [34].

The controllers of conventional RBC and FLC are differ-
ent in many ways. Even the use of an identical rule base for
both systems leads to different inference values [30]. The
RBC and FLC have been studied in several applications
involving UDS. In [35], a rule–based fuzzy algorithm is
used to reduce overflows and the volume of CSO in the
UDS of Wilhelmshaven (Germany), achieving both control

objectives. In [36], rule–based and fuzzy principles are used
in Taiwan for the control of pumping operations in Taipei
City sewage system, achieving a more effective draining
of rainwater in order to avoid flooding in the city. Other
applications of heuristic RTC techniques in UDS include
the use of fuzzy expert systems to establish rehabilitation
priorities of UDS in Laval (Canada)[37], and the use of
FLC in urban drainage tunnels with nonlinear dynamics
and random interferences, obtaining positive results such as
improvement of the drainage system efficiency, extension of
the pump lifetime, and a reduction in energy consumption
[38].

2.2. Optimization–Based Algorithms
Optimization–based control algorithms involve an op-

timization problem that represents the desired behavior of
the system. Based on the optimization problem and the
measure (or estimation) of the current system variables,
these algorithms seek the optimal control action. In UDS,
optimization–based algorithms deal with the problem of
generating control strategies in order to minimize or max-
imize certain criteria, based on current and past readings
of the telemetry system [10].
The criterion to be minimized or maximized is usually

expressed mathematically as a scalar function J(x) known
as objective or cost function. As it was previously stated,
there can exist many different control objectives when
applying RTC to UDS. Some objectives are [39]:

• Minimization of flooding in streets.

• Minimization of the CSOs to the receiving environ-
ment.

• Maximization of the treated sewage in the system.

• Minimization of operation costs (pump stations and
treatment plants).

• Minimization of the water pollution released to the
environment.

Regardless of the control objective for a particular UDS,
this should be expressed as a cost function to solve the
optimization problem. It is possible for some algorithms
to take into account two or more control objectives. This
is known as multi–objective control, and it can be done in
several ways. One of the most widely used multi–objective
techniques is called scalarisation. This technique consists
in converting the problem into a single–objective optimiza-
tion problem with a scalar–valued objective function [11].
This is done by forming a new objective function that is a
linearly weighted sum of several single–objective cost func-
tions. Thus, if there are N single–objective cost functions
J1(x), . . . , JN (x), a scalar weight wi, with i = {1, ..., N},
can be assigned to each function, obtaining the new object-
ive function
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J(x) =
N∑

i=1
wiJi(x), (1)

where x ∈ Rnx corresponds to the state vector of the UDS,
where R denotes the set of real numbers. There are different
ways of assigning the weights wi depending on the priority
that each control objective has in a specific system. Other
multi–objective techniques focus on the Pareto–optimal
solution concept. A Pareto–optimal solution has the char-
acteristic that one objective cannot be improved without
worsening a different one [25]. Generally, there is more
than one solution in a problem that satisfies this condition,
generating sets of solutions known as Pareto sets. Addi-
tionally, several techniques use evolutionary approaches
as well for solving multi–objective optimization problems.
Examples of techniques based on these two notions can be
found in [11, 25, 40, 41].
Most research has focused on single–criteria optimiza-

tion so far. For this reason, multi–criteria optimization
is an ongoing field [32]. An extensive review of several
multi–objective optimization methods can be found in [42].
Some of the main optimization–based RTC algorithms are
described below.

2.2.1. Linear–Quadratic Regulator (LQR)
LQR is an optimal controller that produces a linear

control action in order to minimize an objective function
J(x(t), u(t)) associated to the state variables norm (states
xi(t), i = 1, ..., nx) and the energy (control outputs uj(t),
j = 1, ..., nu). In general, the objective function J has the
form

J(x(t), u(t)) = 1
2

∫ ∞
0

(
x(t)>Qx(t) + u(t)>Ru(t)

)
dt,

where Q and R are weighting matrices with suitable dimen-
sions that determine if the systems state x or the control
action u are more suitable to be penalized. In the case of
UDS, states x can be associated to volumes of the tanks,
and the control actions u are associated to the manipulated
flows in the system. The objective function J and its para-
meters are established according to the control objectives
of the process.

For the LQR design, it is necessary to have a continuous–
time state–space representation of the system given by

dx(t)
dt

= Ax(t) + Bu(t),

where x ∈ Rnx is the vector of states of the system, u ∈ Rnu

is the vector of control actions (inputs to the system), and A
and B are coefficient matrices with suitable dimensions. In
order to minimize the objective function, LQR controllers
produce the linear control law given by u(t) = −Kx(t),
where K is a gain matrix that must be found by solving a
quadratic, first–order, ordinary differential equation known
as the Riccati’s equation [43].

In [44], multi–variable LQR is applied to sewer network
flow control in Bavaria, Germany. In this case, the control
objectives are the minimization of overflows in the system
by using all available storage space in an optimal way,
and emptying the network as soon as possible. Results of
the study show positive performance with respect to the
uncontrolled case, presenting the LQR as a valid alternative
for the control of UDS. LQR techniques have also been
applied in the RTC of water delivery and irrigation channels,
in order to improve their delivery service [45].

2.2.2. Evolutionary Strategies (EA)
EA use and mimic evolutionary principles to seek op-

timal solutions. This kind of algorithms belong to the
global optimization procedures, which do not require the
assumption on the continuity of the objective function since
they do not require information about the gradient of the
function, making EA suitable for solving a very wide range
of optimization problems [25].
Unlike classical methods, EA use a population repres-

enting a set of possible solutions at each iteration instead
of evaluating just one possible solution. Therefore, these
algorithms do not reach a single optimal solution of the
optimization problem, but a set of commonly sub–optimal
solutions. The ability to find multiple sub–optimal solu-
tions in one single run makes evolutionary algorithms to
be a suitable option to solve multi–objective optimization
problems [25].

Most research in multi–objective optimization has mainly
focused in Pareto–based optimization, a technique that in-
volves a high computational burden. EA constitute there-
fore an important alternative, which can be more computa-
tionally efficient. In addition, EA allow the consideration
of both linear and non–linear constraints and the handling
of complex optimization problems.

One of the EA that has been studied and applied in the
context of UDS is fuzzy decision making (FDM). This is a
fuzzy–logic–based strategy, a decision making tool that can
be used for multi–criteria optimization. Decision making
can be described as the selection of the best alternative
from a given set of possible choices, and the decision making
approach gives information about the problem and goals
to the decision maker. Since decision making resembles
the selection of the best available alternative, it can be
described mathematically as an optimization problem [46].
Also, these solutions are heuristic since they do not use an
analytic mathematical procedure.

FDM allows to transform a multi–objective optimization
problem into a single–objective problem by merging all par-
tial objectives in one substitute quality criteria [32]. This
technique has been applied in multi–criteria optimization
of non–linear and dynamic control systems, showing ad-
vantages such as transparent criteria weighting, low compu-
tational effort and optimal trade–off between performance
criteria, among others [47]. Knowledge–based approaches
have also been used to support decision–making algorithms
that aim to achieve environmental objectives in UDS, such
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as reduction of pollution in rivers due to the waste–water
discharges [48].
Other EA applied to UDS include genetic algorithms.

These algorithms mimic the natural genetic processes of
evolution, deliberately keeping a range of proper solu-
tions to avoid being drawn into local optimal solution [49].
Genetic algorithms are usually used for solving complex
and/or nonlinear optimization problems, or when the ob-
jective function is unknown. Examples of the application
of genetic algorithms to water quality management sys-
tems and control of UDS can be found in [41] and [50]. In
[25], evolutionary strategies combined with non–dominating
sorting and self–adapting algorithms are applied to the con-
trol of integrated UDS, achieving an improvement in the
receiving river water quality and lower investment costs.

2.2.3. Model Predictive Control (MPC)
MPC is a model–based control strategy that uses a pre-

diction of the system response to establish an appropriate
control action [51, 52]. This strategy makes an explicit
use of a mathematical model of the process to generate
a sequence of future actions within a finite prediction ho-
rizon. These actions, known as the control law u(k), are
computed to minimize a given cost function. Notice that
this approach is commonly designed in discrete time, where
k ∈ Z, denoting Z the set of integer numbers.

At time instant k ∈ Z, the algorithm looks for a sequence
of future control actions u(k), u(k+1), . . . , u(k+Hp) within
a finite–time horizon Hp previously determined. This se-
quence is obtained by solving an optimization problem
based on the system predicted outputs and the cost func-
tion to be minimized. In practice, the controller can only
apply the first action u(k). At time instant k + 1, the same
procedure is repeated, moving the prediction horizon one
step ahead in time.

An MPC controller is composed by four main elements:
a mathematical (control–oriented) model of the system,
a cost function that expresses the control objective to be
achieved, a set of system constraints (of bounding and
operational nature), and a finite–horizon open–loop optim-
ization problem, which is solved at each time instant [51].
Figure 1 shows the basic scheme of an MPC controller in a
closed–loop topology.
The basic formulation of a linear MPC controller con-

siders dynamic systems described by the discrete–time
state–space model

x(k + 1) = Ax(k) + Bu(k), (2)
y(k) = Cx(k), (3)

where y ∈ Rny is a vector containing the system outputs
and C is a system matrix of suitable dimensions. In the
most general case, the cost function of the optimization
problem associated to the MPC algorithm may be a quad-
ratic function of the form

J(x, u) =
Hp∑
j=1
‖x̂(k + j|k)‖2

Q +
Hp−1∑
j=0
‖û(k + j|k)‖2

R.

Here, x̂(k + i|k) and û(k + i|k) denote the prediction of the
state x(k + i) and the input u(k + i), respectively, from
knowing (or estimated) x(k). The notation ‖x‖2

Q denotes
the quadratic form x>Qx. In this cost function, Q is a
positive semi–definite matrix and R is a positive definite
matrix with suitable dimensions.
Let ũ be a control sequence given by ũ = [û(k|k)>

û(k + 1|k)> . . . û(k + Hp − 1|k)>]>. The objective of
the MPC controller is to find the optimal sequence ũ∗ that
minimizes the cost function J(x, u), while satisfying the
existing restrictions in the system.

When applying MPC to UDS, a different type of inputs
for the system may be taken into account. These inputs,
called disturbances, cannot be manipulated by the control-
ler. Thereby, it is necessary to modify the system model.
In order to include disturbances in the model, (2) can be
rewritten as

x(k + 1) = Ax(k) + Bu(k) + Bpd(k), (4)

where d ∈ Rnd is a vector containing the system disturb-
ances, and Bp is a system matrix of suitable dimensions.
Table 2 shows the physical meaning that the variables x,
u, and d would have in an UDS, according to the model
proposed in [53].

Table 2: UDS variables.
Type of variable Variable Description

System states x Tank volumes
Control inputs u Manipulated

flow through
pipes and sewers

Measured disturbances d Rain flow

Constraints in this case are given by the volumetric
capacity of tanks and pipes, and by flow restrictions in
pipes and actuators. These variables have maximum and
minimum values, which must not be overstepped in order
to ensure a proper system behavior. Moreover, the type of
sensors and actuators used in the system may add extra
restrictions. Regarding the cost functions, there are several
options depending on the control objective that each UDS
may have. Cost functions do not necessarily have the
quadratic form of (2.2.3). Additionally, these functions can
have different mathematical forms, and can take multiple
control objectives into account, as it has been noted before.
In the case of a multi-objetive MPC, scalarisation can be
applied, obtaining a new objective function of the form (1).
Moreover, a prioritization of multi-objective cost functions
using the lexicographic approach might be applied [54].

The features of MPC controllers have certain advantages
for their application to UDS. Some of them include the
ability to explicitly express constraints in the system, the
possibility to anticipate the response of the system to future
rain events, and the capacity to consider non–ideal elements
in the system such as delays and disturbances [55]. Other
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Figure 1: Closed–loop MPC configuration.

advantages of MPC include its suitability for multiple input
multiple output (MIMO) systems, and for systems with
complex dynamics.
Furthermore, MPC can be used to establish optimal

references to local controllers. In this regard, MPC may
use a control–oriented model of the system, whereas local
controllers consider a more detail model to compute the
final control action.
MPC strategies have been successfully applied in an

increasing number of industrial applications during the last
decades. In the case of UDS, MPC techniques have been
applied and studied in several cities such as Barcelona,
where an MPC controller is simulated in part of the city
drainage network and it is shown that significant reductions
in flooding and CSO may be achieved [10, 11, 53].
Predictive control has also been studied in Haute–Sure,

Luxemburg. MPC techniques are being developed for a
drainage system that gathers the sewage of 23 villages and
several small settlements located around the Haute–Sure
reservoir, and directs it to one main WWTP [22, 56]. Other
countries where MPC has been studied and/or applied to
UDS are: Canada [16], Germany [57], Colombia [58], and
Netherlands [59].
MPC theory has been developed into a quite matured

stage. However, some problems and subjects remain opened
in this field, e.g., adaptive [60], and robust MPC [61, 62, 63].
Additionally, decentralized and distributed MPC configur-
ations have become a growing research field. Distributed
MPC has been studied for different applications including
control and coordination of power systems [52, 64] and
urban traffic control [65]. Decentralized and distributed
MPC strategies have also been studied in water related
applications such as level control in tanks [66] and coordin-
ation in water supply networks [67, 68, 69]. A review of
different distributed MPC configurations and future re-
search directions in this field can be found in [70].
Table 3 shows a comparison between the RTC tech-

niques described in this paper. Aspects such as the ability
to deal with constraints and non–linear dynamics in the
system were taken into account for the comparison. The

configuration in which the control techniques can be imple-
mented (centralized and/or distributed) was considered too,
as well as their degree of implementation in applications
related to UDS. Additionally, Table 4 shows a categoriza-
tion of optimization-based and heuristic algorithms control
strategies, as well as references of some cases where control
strategies have been applied to UDS.

2.2.4. Population Dynamics-based Control (PD)
This control approach has already been studied for water

systems [71]. The controller designed with this approach is
inspired in a resource allocation problem, and its interpret-
ation can be related to a biological evolution process. As in
the fuzzy controller, this controller assigns dynamically the
outflow from a tank throughout m possible paths wherever
there is a control action available, and this decision making
is made without requiring a system model. With this ap-
proach, the system states x ∈ Rnx , introduced in previous
sub-sections, are associated to the volumes of the tanks
that compose the system denoted by v ∈ Rnx . Moreover,
we clarify that the m amount of considered tanks in this
sub-section is a subset of the total number of tanks that
compose the system (i.e., m < nx).

a) b)

Figure 2: Resource allocation flow topology.

Consider a topology with one source tank Ts whose
volume is denoted by vs(t) ∈ R, and m receptor tanks
as shown in Figure 2a). Then, the outflow of the source
tank Ts as a function of the current volume is given by
Q(vs(t)), and it should be optimally distributed throughout
the receptor tanks by controlling the valves. Then, the flow
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assigned to the receptor tank vi(t) is given by Q(vs(t))ui(t),
for all i = {1, ..., m}, where ui(t) establishes how opened
the valve is. Moreover, notice that it should be satisfied
that

∑n
i=1 ui(t) = 1, since considering the sum of all the

outflows from the source tank
m∑

i=1
Q(vs(t))ui(t) = Q(vs(t))

m∑
i=1

ui(t),

= Q(vs(t)),

satisfying the distribution of the outflow throughout all the
receptor tanks.
Now, consider a PD approach to allocate the resources.

It is assumed that there is a population composed by a
large number of agents that can select a strategy. The
set of possible strategies is given by the receptor tanks,
i.e., S = {1, ..., m}. Let ui(t) be the percentage of agents
selecting the strategy i ∈ S, i.e., there is a proportion of
the outflow going to the ith tank. For this approach, agents
have incentives to select a certain receptor tank from the
set of strategies S. These mentioned incentives are given
by a fitness denoted by fi(ei(t)) that is function of the
error ei(t) = vmaxi(t) − vi(t), where vmaxi denotes the
capacity or maximum volume of the ith tank. In [72], these
ideas have been used in order to control the case in which
m different flows converge to one receptor tank Tr whose
volume is denoted by vr(t) ∈ R. This topology is the one
presented in Figure 2b).
In both topologies presented in Figure 2, the control

actions are a probabilistic distribution between the m pos-
sible paths, then the vector of the percentage u(t) ∈ Rm

should belong to the invariant set denoted by

∆ =
{

u(t) ∈ Rm :
m∑

i=1
ui(t) = 1, ui(t) ≥ 0 ∀i

}
.

Moreover, fitness functions fi(ei(t)) should be designed
properly such that it has a decreasing trend with respect
to the control action ui(t). For instance, in [71] fitnesses
are shown as the error within each tank, i.e., there are
more incentives to assign inflow to tanks with more error
or available volumetric capacity. In contrast, in [72] fitness
are shown as the volume at each tank, i.e., there are more
incentives to assign outflow to tanks with more volume to
avoid they achieve their maximum capacity.

The replicator equation introduced in [73], describes this
dynamical process in which agents pursuit higher benefits,
and it is given by

dui(t)
dt

= ui(t)
(
fi(ei(t))− f̄(t)

)
, for all i ∈ S,

where

f̄(t) =
m∑

i=1
ui(t)fi(ei(t)).

The equilibrium point u∗(t) ∈ ∆ for the replicator equation
(5) implies that f(ei(t)) = f(ej(t)), for all i, j ∈ S. In

both topologies, this strategy allows to take advantage of
space in the network avoiding CSO. This model-free control
approach represents an alternative solution for distributed
and optimization-based controllers since this technique
involves concepts from game theory.

3. Modeling Approaches

The urban water cycle is composed by different stages
that include collection, transport, purification and con-
ditioning for human needs, distribution, consumption,
wastewater collection, depuration, and finally reuse or dis-
posal in the natural environment. This paper focuses on
the stage where the sewage produced by homes and busi-
nesses is collected and carried to treatment plants in order
to avoid pollution to the environment.

UDS exhibit some specific characteristics that make them
especially challenging to analyze and manage. These char-
acteristics may include many complex features and/or be-
haviors as: large–scale architecture, nonlinear dynamics,
hybrid dynamics, delays, disturbances, and operating con-
straints [11]. Mathematical models of UDS can be classified
depending on how detailed they are, and also on how many
stages they consider.

For instance, the integrated models include mainly inform-
ation about WWTP and receiving water body. These mod-
els are used to predict possible future scenarios (e.g., impact
of climate change, urbanization; see Figure 3). Within the
integrated models, the following sub–categories can be
found:

1. Models that include information of the cycle of the
wastewater as rainfall–runoff, hydraulic transport, pol-
lutant transport process, overflow–runoff, and WWTP
[84, 85].

2. Models that include information about physical vari-
ables such as supply of water, climate, soil, air quality,
and social variables such as economics, energy cost,
demographic, ecological and urban models for decision–
support systems in UDS [86].

3. Models that include process of transport and infilt-
ration of urban wastewater in UDS, which can be
modeled in an integrated form. They are described,
with their pros and cons in [87, 88].

The use of a particular model among the different cat-
egories mentioned above can be discussed. For instance, in
[85, 89] a comparison between simplified and detailed in-
tegrated urban modeling with respect to the water quality
receiving on a water body is presented.
Due to the fact that the purpose of this survey is to

present the most used models in the RTC design and its ap-
plication, the previously mentioned integrated models are
not the main models within the scope of this work. Since it
is not necessary to include complete details of all the pro-
cess stages of the UDS in order to design a controller, this
paper focuses on models of water transport and particularly
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Table 3: Features of RTC.

Type of Optimization System Consideration of Centralized or Model Degree of
Controller Based Non–linearities Constraints Distributed Free Implementation
RBC – FLC No Yes No C / D Yes Medium
LQR Yes No No C No Medium
EA Yes Yes Partially C / D Yes Low
MPC Yes Yes Yes C / D No High
PD Yes Yes Yes C / D Yes Medium

Table 4: An overview of the control strategies for UDS.

Control Strategies Applied to UDS
Heuristic Algorithms Optimization-based

Fuzzy Rule-Based LQR MPC EA Population Dynamics
[32] [34] [35]
[36] [37] [38]

[30] [48] [45]
[49]
[74]

[11] [51] [53] [54] [59] [67]
[68] [69] [75] [76] [77] [78]
[79] [80] [81] [82]

[25]
[50]
[83]

[71] [72]

Figure 3: Schematic representation of the integrated urban drainage
system, adapted from [89].

on models of flow in open channel. Moreover, this paper
proposes a classification of models into simulation–oriented
models, and control–oriented models. The proposed classi-
fication of models is based on complexity and computational
burden (see Figure 4).
Simulation–oriented models are known as physically–

based models, where the equations that describe the
propagation of a wave in an open channel are the De Saint-
Venant Equations (SVE), which describe the conservation
of mass and momentum [90].
In contrast, the control–oriented models have lower ac-

curacy and complexity, and they are used for the design
of controllers, leading to an accordingly limited design
complexity and implying to moderate computational effort.
These models can be grouped into three categories: simpli-
fied models, data–driven models, and conceptual models
[23].
The main applications of the UDS models are for the

design of infrastructures [12, 91], and to design model-
based controllers [92]. The features of each model should be
evaluated for an appropriate selection of one of them. These
characteristics are: the pursued objective, computational
burden, and complexity of the model, which are briefly
discussed next.
Regarding the models for design and simulation tasks,

time is not a critical factor because these models do not
need online computation, e.g., the curb of height, number
and location of sewers, and the pipe of dimensions. On
the other hand, for models aimed to RTC tasks, time is a
critical variable because the model should be evaluated to
obtain/compute a large number of control actions within
a short selected sampling time. In general, higher per-
formance and low uncertainty levels require higher model
complexity [29].
Figure 5 shows: 1) the relationship for the operation

of the UDS between the control space and real system,
and 2) the relationship between the control space and
simulation space for the design of the UDS. Finally, a
discussion about the main models of UDS, categorized into
simulation–oriented models and control–oriented models is
presented in the next subsections.

3.1. Simulation–Oriented Models
Simulation–oriented models of UDS are mainly based on

SVE. The SVE are two coupled nonlinear partial differential
equations based on the physical principles of mass and
energy conservation, which allow to describe accurately the
flow in irrigation channels and sewers network [83, 93].

Due to the complexity to obtain an analytic solution of
the complete SVE-based model in some cases it is conveni-
ent to make a simplification. Particularly, depending on
the nature of the UDS, it may be possible to simplify the
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Figure 4: Proposed taxonomy of modeling approaches for UDS.
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Oriented
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Figure 5: Simulation-oriented model and control-oriented: (a) real system, (b) control space, and (c) simulation space model.

analysis of the transport model of sewage (i.e., character-
izing the flow as a dynamic, diffusive, or kinematic wave).
These mentioned simplifications are briefly explained next.
The kinematic wave assumes that the flow is uniform, and
that the friction slope is approximately equal to the slope
of the channel. The diffusive wave describes a non–inertial

behavior of the wave (i.e., sub–critical flow). The dynamic
wave is valid for all the channel flow scenarios, and it uses
all the terms of the SVE. In Table 5 some effects considered
with each simplification of the SVE are summarized.

Some numerical methods have been developed in order
to find the solution for SVE [12, 94, 95, 96]. These methods
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are based on finite elements, and finite differences [81, 97,
98, 99]. A brief description of these methods is given next.

1. Methods based on finite elements: These methods have
been used in a limited extension of the open-channel
analysis. These methods do not offer any significant
advantage in comparison with other methods for one–
dimension flow problem, and difficulties have to be
overcome when a shock or bore is formed in the solu-
tion [100]. Finite–element methods can be divided into
explicit schemes such as Diffusive, Lax, Leap-Frog, Mc-
Cormack, and Lambda [101]; and into implicit schemes
such as Preissmann [77], Beam and warming, and Va-
siliev [102, 103].

2. Methods based on finite differences: In the implicit
finite–difference schemes, the spatial partial derivat-
ives and/or the coefficients are replaced in terms of
the values at the unknown time level. The unknown
variables, therefore, appear implicitly in the algebraic
equations. The algebraic equations for the entire sys-
tem should be solved simultaneously in these methods.
Several implicit finite–difference schemes have been
used for the analysis of unsteady open–channel flows
[104, 101].

Finally, Table 6 shows a categorization of both transport
and integral models, as well as references of some cases
where the modelling approaches have been used in UDS.

3.2. Control–Oriented Models
This subsection focuses on the presentation of the main

control–oriented models, taking into account the comprom-
ise between accuracy and complexity. A classification of
control–oriented models on data-driven, conceptual, and
based on the linearization of SVE is proposed and discussed
next.

3.2.1. Data–Driven approaches
Data-driven models are related to a set of techniques that

are constructed and updated by using available information
about the system. This information can be obtained either
by simulation or from both measurement and historical
data. It is important to clarify that it is more common to
obtain the data-driven model by using measured data, and
that despite the accelerated development of software tools
to simulate these kind of complex systems, the use of sim-
ulation data to obtained a data-driven model is not usual.
These models include different categories, generally divided
into statistical and soft–computing models. Data–driven
models are accurate, precise, and flexible, which make them
able to handle UDS with different degrees of complexity
based on the level of knowledge about a system. The
use of data–driven approaches depends on the availability
and quality of data from UDS. Therefore, the data–driven
approach for modeling of UDS is viable whenever there
exists a gradual development and implementation of mon-
itoring systems in UDS (i.e., communication networks and

sensors) with an appropriate relation of reliability, effi-
ciency, and cost. In [107], the physically–based model and
the data–driven model are compared, showing technical
possibilities of the data-driven approach. In [111], some
strategies of data–driven modeling, in water resources and
environmental engineering applications using Matlab, are
presented.

One proper approach for the data-driven control-oriented
models generation, is the artificial neural networks (ANN)
training. This approach has been widely used since it allows
to fit a neural structure with the dynamical behavior of
a system by measuring data. For instance, in [112] the
ANN approach is presented as an alternative of data-driven
models, and the development of the radar pluvial flooding
identification for drainage systems allows to predict urban
flooding in real time. Moreover, the use of measurements
through rainfall radars to develop a data-driven models to
train an ANN is introduced in [113]. These data presented
in [113] are obtained from real CSO for a catchment in the
North of England, UK.

In [114] a graph-theoretical-model approach is proposed,
and the control of the sewer network is made with on/off
actions over the system. This model is considered to be a
data-driven model since measurements about some para-
meters are enough in order to solve the optimization prob-
lem that returns the control actions. For instance, for
different control actions, it is required to dispose of inform-
ation about pollutant loads in CSO events. Furthermore,
measurements about run-off entering the sewer and dry
weather flow are also needed.

3.2.2. Conceptual Models
An UDS conceptual model is made of a composition

of concepts, which are used to analyze in an easy and
fast way the UDS. In this review, the conceptual models
are: the virtual–tank based model, the Nash model, the
Muskingum model, and the integrator–delay model. It is
worthwhile to highlight that all of these mentioned models
only differentiate each other in the way the tanks are
parametrized, and they are explained next.

1. The virtual–tanks model is based on the idea of sub–
dividing the network. The division is made by grouping
sets of elements in the network and replacing them
by interconnected virtual repositories. At each time
instant, the stored volumes in all the gathered ele-
ments represent the volume of water contained in the
corresponding virtual repository [115]. Outflows are
assumed to be nonlinear in [115], and linear with re-
spect to tank volumes in [11]. The sewage volume is
computed via the mass balance of the stored volume,
the inflows, and the outflows [10, 11]. This model has
been successfully used in the design of MPC controllers
for UDS [53, 75, 80].

2. The Nash model is based on the idea of sub–dividing
the network into sections. These sections are con-
sidered as several tanks in cascade, and the output of
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Table 5: Simplification of the De Saint-Venant Equations.
Effects considered Dynamic wave Diffusive wave Kinematic wave
Backwater effects and flow reversal Yes Yes Yes
Attenuation of flood waves Yes Yes No
Account for flow acceleration Yes No No

Table 6: An overview of models for UDS.

Modeling of UDS
Transport models Integrated models
[4] [12] [31] [56] [86]
[93] [95] [99] [105]

UDS, RWB and
WWTP

Physical and social
variables

Transport and infiltration

[106] [107] [108] [109]
[110]

[84] [85] [86] [87] [88]

each tank is the input of the following one [56, 92].
3. The Muskingum model is a method of lumped para-

meters, which describes the linear relationship between
the inflow and the outflow affecting the corresponding
volume [94]. The Muskingum model is a hydrological
model widely used for simulation and control, due to
its simplicity and its suitability in obtaining results for
prediction. The Muskingum model has been used for
designing MPC controllers as reported in [58, 82, 116].
Notice that the effectiveness of the Muskingum model
depends on the estimation of its parameters. In [110],
an optimal parameter estimation of Muskingum model
using a modified particle–swarm algorithm is presen-
ted.

4. The integrator–delay model is composed by two para-
meters: an integrator, and a delay. This model is
an approximation that relates backwater effects when
a tank-delay model is used. In [109], a comparat-
ive study between Muskingum and integrator-delay
models is presented.

3.2.3. Models Based on Linearization of the De Saint-
Venant Equations

Conventional modeling methods are quite time consum-
ing and cumbersome. That is why a simplified approach
based on transfer function formulation of SVE has been
proposed [76]. The SVE can be linearized around a steady–
state equilibrium (Q0, Y0), where Q0 defines the steady–
state equilibrium for flows, and Y0 defines the steady–state
equilibrium for tank levels [93]. Another linearization of the
SVE, is the one represented in the Laplace domain. This
model has been validated through laboratory experiments
by testing different flow conditions [108]. For instance,
the Hayami model is the linearization of the difusive wave
equation with the hypothesis that the celerity and difusiv-
ity are constant [117]. One way to obtain a simple linear
model from the Hayami equation is the momentum match-
ing method described in [74, 118]. In [119], two control
strategies based on the Hayami model are compared and

studied for open-channel systems.

3.3. Simulation Tools for Urban Drainage System

Since available software tools consider different models,
this section presents a classification of simulation tools
commonly used in the UDS framework. In accordance to
the purpose of the UDS, software tools can be divided into
two main categories:

1. Offline design and simulation.
2. Simulation tools for real–time control design.

3.3.1. Offline Design and Simulation
In [86], a complete review of software tools used on

UDS is presented. Tools are classified into: 1) integ-
rated component-based models (ICBMs); 2) integrated urban
drainage models (IUDMs) or integrated water supply mod-
els (IWSMs); 3) integrated urban water cycle models
(IUWCMs); and 4) integrated urban water system mod-
els (IUWSMs). ICBMs are the lowest level of integration,
focusing on the components within the local urban water
subsystem. IUDMs or IWSMs cover the integration of
subsystems either of urban drainage or water supply, and
particularly in process of treatment and transport. IUW-
CMs links IUDMs and IWSMs in a common framework.
IUWSMs are the highest level of integration that combines
the different urban water infrastructures with aspects such
as weather and economy. Integrated models will play an
important role in the design, simulation, and RTC of UDS,
with the fast improvement of the simulation tools for UDS
and its computational efficiency.

3.3.2. Simulation Tools for Real–Time Control design
In [92], a comparison between some software packages

considering RTC in UDS is presented. Several features
such as the type of model used by the software tool (e.g.,
Muskingum, SVE-based, Nash models), solution method
used (based on finite differences or finite elements), and
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the ability of applying control actions, among others, are
taken into account.
In Table 7, some software tools used in the design of

control strategies are presented, all af them being able to
perform RTC (i.e., the capability to get in touch with a
SCADA in order to read and write data from a database),
and to establish an on-line connection between the software
tool and another software tool for control.

Table 7: Software tools for RTC of USD.

Software tool Reference
Mouse [120]
Infoworks [121]
Coral [79]
Csoft [116]
XPstorm [122]
Swmm [123]
Hystem-Extran [124]
WEST [125]
CityDrain [126]

4. Conclusions

In this paper, some relevant RTC strategies applied
to UDS are presented and briefly discussed, which can
be divided into optimization-based and heuristic-based al-
gorithms. Moreover, some relevant modeling approaches
commonly used for UDS are also reviewed, proposing a
taxonomy of UDS models (simulation–oriented and control–
oriented), and discussing the run-time and complexity of
the considered UDS models. The most relevant software
tools used to simulate and to control UDS are also presen-
ted.

Based on the review made about RTC strategies applied
to UDS, MPC has shown to be the most successful tech-
nique applied so far, because of its versatility to handle
multi-variable complex systems and because it takes into
account constraints and multiple control objectives. This
technique is particularly suitable for its application in UDS.
However, MPC requires a model, which is not an easy
task for large-scale complex systems. On the other hand,
rule-based and fuzzy logic control approaches have as an
advantage that they do not require a model, but the ex-
pert knowledge about the general behavior of the system.
Besides, these model-free approaches cannot consider form-
ally an objective to minimize, and any desired performance
should be achieved by rules of the form “if-then”.

Furthermore, the control approaches that consider global
and local objectives, differ in the sense that they require
a different amount of information about the system. For
instance, the centralized control schemes dispose of more in-
formation about the whole system, and they could consider
both local and global objectives. Contrary, if only local

objectives are desired to be consider in a system, then it
is suitable to implement non-centralized control strategies.
Additionally, the centralized scheme demands a commu-
nication structure that is expensive in comparison to the
communication structure for the non-centralized control
approach. Regarding the software tools, the literature re-
view has shown that there are many and different software
tools to design and simulate UDS.
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