1,982 research outputs found

    Efficient Algorithms for Envy-Free Stick Division With Fewest Cuts

    Get PDF
    Given a set of n sticks of various (not necessarily different) lengths, what is the largest length so that we can cut k equally long pieces of this length from the given set of sticks? We analyze the structure of this problem and show that it essentially reduces to a single call of a selection algorithm; we thus obtain an optimal linear-time algorithm. This algorithm also solves the related envy-free stick-division problem, which Segal-Halevi, Hassidim, and Aumann (AAMAS, 2015) recently used as their central primitive operation for the first discrete and bounded envy-free cake cutting protocol with a proportionality guarantee when pieces can be put to waste.Comment: v3 adds more context about the proble

    Multiwinner Voting with Fairness Constraints

    Full text link
    Multiwinner voting rules are used to select a small representative subset of candidates or items from a larger set given the preferences of voters. However, if candidates have sensitive attributes such as gender or ethnicity (when selecting a committee), or specified types such as political leaning (when selecting a subset of news items), an algorithm that chooses a subset by optimizing a multiwinner voting rule may be unbalanced in its selection -- it may under or over represent a particular gender or political orientation in the examples above. We introduce an algorithmic framework for multiwinner voting problems when there is an additional requirement that the selected subset should be "fair" with respect to a given set of attributes. Our framework provides the flexibility to (1) specify fairness with respect to multiple, non-disjoint attributes (e.g., ethnicity and gender) and (2) specify a score function. We study the computational complexity of this constrained multiwinner voting problem for monotone and submodular score functions and present several approximation algorithms and matching hardness of approximation results for various attribute group structure and types of score functions. We also present simulations that suggest that adding fairness constraints may not affect the scores significantly when compared to the unconstrained case.Comment: The conference version of this paper appears in IJCAI-ECAI 201

    Multiwinner Elections with Diversity Constraints

    Full text link
    We develop a model of multiwinner elections that combines performance-based measures of the quality of the committee (such as, e.g., Borda scores of the committee members) with diversity constraints. Specifically, we assume that the candidates have certain attributes (such as being a male or a female, being junior or senior, etc.) and the goal is to elect a committee that, on the one hand, has as high a score regarding a given performance measure, but that, on the other hand, meets certain requirements (e.g., of the form "at least 30%30\% of the committee members are junior candidates and at least 40%40\% are females"). We analyze the computational complexity of computing winning committees in this model, obtaining polynomial-time algorithms (exact and approximate) and NP-hardness results. We focus on several natural classes of voting rules and diversity constraints.Comment: A short version of this paper appears in the proceedings of AAAI-1

    Multi-Winner Voting with Approval Preferences

    Get PDF
    Approval-based committee (ABC) rules are voting rules that output a fixed-size subset of candidates, a so-called committee. ABC rules select committees based on dichotomous preferences, i.e., a voter either approves or disapproves a candidate. This simple type of preferences makes ABC rules widely suitable for practical use. In this book, we summarize the current understanding of ABC rules from the viewpoint of computational social choice. The main focus is on axiomatic analysis, algorithmic results, and relevant applications.Comment: This is a draft of the upcoming book "Multi-Winner Voting with Approval Preferences
    • …
    corecore