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Given a set of n sticks of various (not necessarily different) lengths, what is
the largest length so that we can cut k equally long pieces of this length from
the given set of sticks? We analyze the structure of this problem and show
that it essentially reduces to a single call of a selection algorithm; we thus
obtain an optimal linear-time algorithm.
This algorithm also solves the related envy-free stick-division problem,

which Segal-Halevi, Hassidim, and Aumann [SHA16] recently used as their
central primitive operation for the first discrete and bounded envy-free cake
cutting protocol with a proportionality guarantee when pieces can be put to
waste.
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1. Introduction

This article originates from an apparently innocuous problem posed to the online question-
and-answer network Computer Science Stack Exchange in September 2014:

“You have n sticks of arbitrary lengths, not necessarily integral. By cutting some
sticks (one cut cuts one stick, but we can cut as often as we want), you want to
get k < n sticks such that:

• All these k sticks have the same length;

• All k sticks are at least as long as all other sticks.
∗Recreational Researcher, formerly at University of Kaiserslautern, reitzig@verrech.net
†David R. Cheriton School of Computer Science, University of Waterloo; wild@waterloo.ca
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1. Introduction

Note that we obtain n+ C sticks after performing C cuts.

What algorithm would you use such that the number of necessary cuts is
minimal? And what is that number?” [Seg14]

Erel Segal-Halevi posed the question because he and his coauthors Avinatan Hassidim
and Yonatan Aumann used this very procedure as their basic primitive to devise the
first discrete and bounded envy-free cake cutting protocol for any number of agents,
when it is acceptable to leave some pieces of the cake unassigned (these pieces go to
waste) [SHA15; SHA16]. Their work constituted a significant progress on a long-standing
open problem; and a key technical lemma in their work uses the algorithms devised
in this paper. We give some background on cake cutting and some details about the
protocol of Segal-Halevi, Hassidim, and Aumann in Section 1.2.

The proposed problem – we will call it Envy-Free Stick Division – is quite elementary in
nature and one expects to find an efficient solution using only basic data structures if
properly combined – the feeling is that something along the lines of a binary search should
do the job. It seemed like an ideal creative exercise problem for students, and indeed,
the authors of this paper posed a simplified version of Envy-Free Stick Division as a bonus
problem in a written exam for an intermediate-level algorithms course. While preparing
a detailed solution, though, we found the problem surprisingly intriguing; in particular,
all answers given by the Stack Exchange community at that time were either far from
optimal or had significant gaps in the argumentation; a linear-time solution was not even
speculated about. In the end, the first impression turned out right – there is a simple
and elementary algorithm that optimally solves Envy-Free Stick Division – but finding it
was well beyond the scope of a typical exercise problem. Somewhat unexpectedly, one
can entirely avoid sorting the stick lengths and use a single call to a (rank) selection
algorithm instead, leading to a linear-time algorithm.

The formulation of the problem above asks for the minimal number of cuts C, but
Segal-Halevi et al. do not use C itself in the end, but rather the length of the longest
sticks. It is a trivial observation (see Section 2) that the crux of the problem is indeed
finding the maximal length l? so that k sticks of that length are obtainable by cuts at all;
given l?, we can easily determine how often and where to cut sticks to solve the original
Envy-Free Stick Division problem. If we only ask for k longest equal-length sticks, the
second requirement, that all other sticks must be (weakly) shorter, becomes immaterial.
This makes the problem even shorter to formulate, and quite practical:

Assume you have a supply of n sticks (or planks; or poles; . . . ) of various lengths,
and you need k equally long pieces (as legs for a table; as posts for a fence; as boards
for a shelf; . . . ).

What is the maximal length of the pieces you can get from these (without glue)?

Despite its natural applications, this article is the first algorithmic treatment of the
problem to the best of our knowledge.
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1. Introduction

Interestingly, the Envy-Free Stick Division problem was also part of a recent programming
contest: the ICI Open 2016 organized by the Norwegian University of Science and
Technology in Trondheim. Torbjørn Morland came up with the problem independently
of the Stack Exchange question [private communication] and he formulated it in yet
another context (as cutting equally high posts for a fence).1 The problem was called
“Building Fences” in the contest and code can still be submitted (outside the original
competition) in the Kattis online system [Mor16]. We submitted a straight-forward C++
implementation of the algorithm devised in this paper, and this submission immediately
was the fastest of all 50-odd accepted submissions to date. We take this anecdote as a
sign that (a) Envy-Free Stick Division is indeed a reasonably natural problem (natural
enough to be rediscovered independently), (b) our proposed algorithm is indeed efficient
in practice (also for small input sizes), and (c) that the algorithmic idea does not (yet)
seem to be folklore, making it well worthy of a proper discussion.

There is a less immediate connection to the problem of adequately assigning seats in
parliament to parties according to their relative share of votes after an election: as we
discuss in Section 1.4, Envy-Free Stick Division can be formulated as such an apportionment
problem, and likewise the algorithm for cutting sticks we devise below can be transferred
and generalized to proportional apportionment. We show in a companion paper [RW15]
that the resulting algorithm is indeed an improvement over state-of-the-art methods for
proportional apportionment with divisor sequences: it is the first algorithm with both a
worst-case guarantee of linear running time, and practical performance on par with the
best heuristic algorithms currently in use.

We conclude this introduction with another metaphor for the problem considered in this
paper. We found this metaphor the most memorable one that includes the requirement
of an envy-free division of the resources; it is however not meant as a serious application.

Imagine you and your family move to a new house. Naturally, each of your k
children wants to have a room of their own, which is why you wisely opted for a
large house with many rooms. The sizes of the rooms are, however, not equal,
and you anticipate that peace will not last long if any of the rascals finds out
that their room is smaller than any of the others’.

Removing walls is out of the question, but any room can (arbitrarily and
iteratively) be divided into smaller rooms by installing drywalls. What is the
minimal number of walls needed to obtain a configuration that allows you to let
your kids freely choose their rooms with guaranteed envy-freeness?

We would like point out two differences to typical fair-division scenarios: We assume
(somewhat unrealistically for children) that only the size of the rooms matters, so that
two rooms of the same size are essentially indistinguishable. Moreover, we make the (in
our opinion sensible) assumption that all resulting rooms can in principle be chosen; this

1It is an unlucky coincidence that Morland used the same parameter names n and k with exactly
reversed roles . . .
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1. Introduction

is in contrast to division scenarios with free disposal where agents do not envy resources
that were laid to waste. Although we like the children’s-rooms metaphor we prefer to
remain consistent with existing descriptions of the problem and will therefore continue
talking about sticks that are cut instead of rooms with installed walls.

In the remainder of this first section, we give an overview over related problems and a
roadmap of our contribution. We then introduce notation and give a formal definition
of Envy-Free Stick Division in Section 2. In Section 3 we develop the means to limit our
search to finite sets of candidates. We follow up by developing first a linearithmic, then a
linear time algorithm for solving Envy-Free Stick Division in Section 4. Finally, we propose
smaller candidate sets in Section 5. A short conclusion in Section 6 on the complexity of
Envy-Free Stick Division completes the article.

We append a glossary of the notation we use in Appendix A for reference, and some
lower bounds on the number of distinct candidates in Appendix B.

1.1. Other Optimization Goals

We briefly discuss of a few variants of stick cutting, none of which changes the nature of
the problem. To reiterate, we consider the problem of dividing resources (fairly), some of
which may remain unallocated. These are wasted, which of course is to be avoided if
possible. We can formulate this goal in different ways; one can seek to

(G1) minimize the number of necessary cuts (as in the original Envy-Free Stick Division),

(G2) minimize the number of waste pieces,

(G3) minimize the total amount of waste (here, the total length of all unallocated
pieces), or

(G4) maximize the amount of resource each player gets (the length of the maximal
pieces).

The first two objectives are discrete (counting things) whereas the latter two consider
continuous quantities.

Obviously, (G3) and (G4) are dual formulations for equivalent problems; the total waste
is always the (constant) total length of all sticks minus k · l?. Similarly, (G1) is dual to
(G2); c cuts divide n sticks into n+ c pieces, and because exactly k of these are non-waste,
the number of wasted pieces is n+ c− k.

Recall that we require also the unassigned sticks to be cut so that they are no longer
than the k equal sticks. This implies that the canonical division induced by the largest
feasible cut length l – cutting length-l pieces off of any longer sticks until no such are
left – is also optimal w. r. t. the number of cuts: a smaller cut length can only lead to
more cuts. This is one of the key insights towards algorithmic solutions of Envy-Free Stick
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Division so we state it formally in Corollary 3.2 (page 16). In the terms of above goals,
this means that optimal solutions for (G3) and (G4) are also optimal for (G1) and (G2).

The converse is also true. Let l? be the cut length of an optimal canonical division w. r. t.
the number of needed cuts (goal (G1)). This division must divide (at least) one stick
perfectly, that is into only maximal pieces; otherwise we could increase l? a tiny bit until
one stick is perfectly split, resulting in (at least) one cut less (as this stick does not
produce a waste piece now). But this means that we cannot increase l? by any (positive)
amount without immediately losing (at least) one maximal piece; we formalize this fact
in Lemma 3.1 (page 15). As the number of cuts grows with decreasing cut length, l? is
the largest cut length that yields at least k maximal pieces. Together it follows that l?
must be the largest feasible cut length overall and thus induces an optimal solution for
goal (G4) (and therewith (G3)), too.

Therefore, all four objective functions we give above result in the same optimization
problem, and the same algorithmic solutions apply. The reader may use any of the four
formulations in case they do not agree with our choice of (G1).

Note that the requirement that unassigned sticks must also be cut is essential for this
equivalence. Minimizing the number of cuts to obtaining any k equal pieces (of arbitrary
positive length) – or equivalently, producing an envy-free allocation when agents do not
envy wasted pieces – is indeed a different problem that we do not consider here.2

1.2. The Origins: Cake Cutting

Envy-Free Stick Division was motivated by a recent approach to envy-free cake cutting.
We briefly describe the context of the problem and how the stick division problem is used
for cake cutting.

The fair allocation of resources is a well-studied problem in economics. See, e. g., Brams
and Taylor [BT96] for a general treatise of the field and Brandt et al. [Bra+16] for recent
developments with a focus on computational aspects. A vital feature of all fair division
problems is that valuations are subjective: different players may assign different values
to the same objects, i. e., the same piece of cake in the cake-cutting problem.

The cake-cutting problem has become the predominant mathematical metaphor for allo-
cating an infinitely divisible, inhomogeneous resource “fairly” to a number of competing

2 As one of our reviewers pointed out, the total fraction of waste is unbounded if we minimize cuts in
the allocated part only: consider the input 2, 1, . . . , 1, M , where M is a huge number; it requires only
one cut to assign pieces of length 1, so an arbitrarily large fraction of the resource goes to waste.
In contrast, when the cuts in wasted pieces also count, we never waste more than half of the total
resource (unless n > k already initially).

From an algorithmic perspective, the assumption that waste is not envied means that the algorithm
must decide which sticks are deliberately put to waste and need hence not be cut at all. The number
of performed cuts is then no longer a monotonic function of the cut length (as it is in our case, see
Section 1.5); rather it depends on how many sticks can be cut evenly into maximal pieces. Our
efficient solution by selection does hence not solve this problem.
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players or agents. The standard model is to consider the unit interval as the cake (a very
thin cake, alas). An agent’s value for a piece of cake does not only depend on the size
of the piece, but also on its position within the cake (say, because the topping of the
cake differs). In general, assigning disconnected pieces, i. e., a finite union of intervals,
is acceptable, but sometimes contiguous pieces are explicitly required. Agents are not
willing to share pieces, so all assigned pieces must be disjoint. To exclude degenerate
situations, valuations are assumed to be additive and absolutely continuous w. r. t. length.

What exactly constitutes a “fair” division is subject to debate and several (partly
contradicting) notions of fairness appear in the literature:

• proportional division (or simple fair division) guarantees that each player gets a
share that she values at least 1/k;

• envy-freeness ensures that no player (strictly) prefers another player’s share over
her own;

• equitable division requires that the (relative) value each player assigns to her own
share is the same for all players, (everyone feels the same amount of “happiness”).

All three notions of fairness have been studied extensively for cake cutting.

Despite the maturity of the field, several ground-breaking results on envy-free cake
cutting have only been found very recently; in fact concurrently to the preparation
of this article, Aziz and Mackenzie [AM16] published the first discrete and bounded
protocol to produce an envy-free allocation for any number of agents, settling an open
problem intensively studied at least since the 1960s.3 Many solutions for variations
and restrictions of this problem have been proposed, and in view of the tremendous
complexity of Aziz and Mackenzie’s protocol – it does not greedily assign pieces to agents,
but potentially reallocates them many times – those will probably remain relevant in
practical applications.

Segal-Halevi, Hassidim, and Aumann [SHA15; SHA16] devise a much simpler protocol
to find an envy-free division of a cake to n agents when parts of the cake may remain
unassigned. Their core method (Algorithm 1 in [SHA16]) is a protocol that allocates
contiguous pieces to n agents with the guarantee that each agent values her piece at least
1/2n−1 of the overall cake. This may seem little, but the generic protocol can be further
improved for n = 3 and n = 4, and if it is applied iteratively to non-assigned pieces, it
yields an almost proportional envy-free division with disconnected pieces.

Segal-Halevi et al. use the algorithm for solving Envy-Free Stick Division presented in this
paper as a subroutine in their protocol, namely for implementing the Equalize(k) queries
(Lemma 4.1 [SHA16]). In short, their core method works as follows: The players cut
pieces from the cake, one after another, only allowing to subdivide already produced
pieces. After that, players each choose one of their favorite pieces among the existing
pieces in the opposite cutting order, i. e, the player who cut first is last to choose her

3The authors thank the reviewers for pointing out this recent development.
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piece of cake. During the cutting phase, agents produce a well-chosen number of pieces
(2n−r−1 + 1 if the agent is the rth cutter) of the cake that they regard to be all of equal
value and all other pieces are made at most that large; this is exactly the setting of
Envy-Free Stick Division. The number of maximal pieces is chosen such that even after all
players who precede the given player in “choosing order” have taken their favorite piece
of cake, there is at least one of the current player’s maximal pieces left for her to pick,
guaranteeing envy-freeness of the overall allocation.

1.3. Stick Cutting As Fair Division Problem

The setting of Envy-Free Stick Division shares some features of fair division problems, but
we would like to explicitly list several important differences here.

First, the core assumption for classic fair division problems is the subjective theory of
value, which in general forbids an objectively fair division of the resources. In stick
cutting, all players agree in their valuations, so that we can speak of the length of any
given stick without loss of generality – or in the alternative metaphor: all the children
value same rooms same: (linearly) by their size.

Second, among the above notions of fairness, proportional divisions do not usually exist
for cutting sticks, and equitability coincides with envy-freeness when players agree in
their valuations. Envy-free assignments of sticks do also not exist in general unless we
allow leaving some pieces unallocated. Note that we use the term envy-free to imply that
also these non-allocated pieces have to be made unattractive by cutting them (cf. the
discussion in Section 1.1), whereas in fair allocation scenarios agents do not envy waste.

Third, while each given stick is assumed to be continuously divisible, existing cuts
constrain the set of possible allocations, so we neither have a purely divisible nor a purely
indivisible allocation scenario.

In summary, we think that viewing Envy-Free Stick Division as restrictive special case of
fair division misses the problem’s immediate own applications.

1.4. Implications for Proportional Apportionment

It may be a surprising connection at first sight, but the stick cutting problem can be viewed
as an apportionment problem in disguise. Proportional apportionment is the problem of
assigning each party its “fair” share of a pool of indivisible, unit-value resource items
(seats in parliament), so that the fraction of items assigned to a party resembles as closely
as possible its (fractional, a priori known) value (the number of votes for a party); these
values are the input.4 Balinski and Young [BY01] describe the problem extensively and
illustrate many pitfalls with examples from the rich history of representation systems in

4We thank Chao Xu for bringing this problem to our attention.
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the US. Pukelsheim [Puk14] adds more recent developments and the European perspective;
he also takes a more algorithmic point of view on apportionment.

Most methods used in real-word election systems use sequential assignment, allocating
one seat at a time in a greedy fashion, where the current priority of each party depends
on its initial vote percentage and the number of already assigned seats. Different systems
differ in the function for computing these updated priorities, but all sensible ones are
of the “highest averages form”: In each round they assign the next seat to a party that
(currently) maximizes vi/dj (with ties broken arbitrarily), where vi is the vote percentage
of party i, j is the number of seats party i has already been assigned and d0, d1, d2, . . . is
an increasing divisor sequence characterizing the method.5

Even though the original description of the highest averages allocation procedure is an
iterative process, it is actually a static problem: The averages vi/dj are strictly decreasing
with j for any i, so the sequence of maximal averages in the assignment rounds is also
decreasing. In fact, if we allocate a seat to a party with current average a in round r,
then a must have been the rth largest element in the multiset of all ratios vi/dj for all
parties i and numbers j. Moreover, if we know the value of the kth largest average a∗ up
front,6 we can directly determine for each party i how many seats it should receive: if j
is the largest number such that vi/dj ≥ a∗, then party i receives j + 1 seats.

The arguably most natural choice is hence dj = j + 1, yielding the highest average
method of Jefferson, a. k. a. the greatest divisors method. For dj = j + 1, a party gets
one seat for each time it can afford to pay the full price of a seat (namely a∗ votes), so it
is assigned bvi/a∗c seats. The crux of the problem is thus to find a value a∗, such that
this rule assigns exactly k seats in total (or the smallest number no less than k in case of
ties). Since bvi/a∗c is also the number of maximal pieces that can be cut from a stick of
total length L = vi using cut length l = a∗, we are actually asking for a maximal cut
length a∗ so that we obtain k equally long pieces when trimming sticks of initial lengths
v1, . . . , vn to length a∗. Therefore Envy-Free Stick Division is essentially equivalent to
an apportionment problem with divisor sequence dj = j + 1 and the stick lengths as
vote tallies. Note that for this equivalence, we have to reverse the roles of agents and
resources: Assigning equally long stick pieces to players is equivalent to apportioning to
the sticks their fair share of players using Jefferson’s highest averages method.

We can consequently use any apportionment algorithm to solve Envy-Free Stick Division, in
particular the practically efficient methods proposed by Pukelsheim [Puk14] or the (rather
complicated) worst-case linear-time algorithm of Cheng and Eppstein [CE14]. However,
it actually turns out more fruitful to reverse the idea: our algorithm for Envy-Free Stick

5d0 = 0 is allowed in which case vi/d0 is supposed to mean vi + M for a very large constant M (larger
than the sum

∑
vi of all values is sufficient). This ensures that before any party is assigned a second

seat, all other parties must have one seat, which is a natural requirement for some allocations scenarios,
e. g., the number of representatives for each state in a federal republic might be chosen to resemble
population counts, but any state, regardless how small, should have at least one representative.

6Pukelsheim [Puk14] calls this value the divisor D, and thus refers to highest-averages methods simply
as divisor methods.
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Division is conceptually much simpler than the method of Cheng and Eppstein, but
has the same time worst-case linear-time guarantee, so we can actually improve the
state-of-the-art methods for apportionment.

The method for Envy-Free Stick Division per se can only deal with the divisor sequence
dj = j + 1, but we show in a companion article [RW15] how to generalize the underlying
ideas to all divisor sequences listed by Cheng and Eppstein [CE14, Table 1], and indeed
to any divisor sequence that Cheng and Eppstein’s algorithm can handle. Although the
techniques remain similar, the generalization required modifications to the formalism,
and it deemed us best to separate the detailed discussion of apportionment from the
stick cutting algorithms in this paper.

In the apportionment article [RW15], we demonstrate in extensive running-time experi-
ments that our method is indeed much faster than Cheng and Eppstein’s algorithm, and
has more predictable running time than the methods currently used in practice. The
latter do not have a linear-time guarantee in the worst case, and we identify a class of
inputs, where they indeed exhibit superlinear behavior.

It is somewhat surprising to us (in hindsight) that we did not find our method in the
quite extensive literature on proportional apportionment; in any case, the detour through
Envy-Free Stick Division has helped us in finding it a lot.

1.5. Overview of this Article

In this section, we give an informal description of the steps that lead to our solution for
Envy-Free Stick Division (see also Figure 1); formal definitions and proofs follow in the
main part of the paper.

Without further restrictions, Envy-Free Stick Division is a non-linear continuous optimiza-
tion problem that does not seem to fall into any of the usual categories of problems that
are easy to solve. Any stick might be cut an arbitrary number of times at arbitrary
lengths, so the space of possible divisions is huge.

The first step to tame the problem is to observe that most of these divisions cannot be
optimal: Assuming we already know the size l? of the k maximal pieces in an optimal
division (the size of the rooms assigned to the kids), we can recover a canonical optimal
division by simply cutting l?-sized pieces off of any stick longer than l? until all sticks
have length at most l?. Cutting a shorter piece only creates waste, cutting a larger
piece always entails a second cut for that piece. We can thus identify a (candidate) cut
length with its corresponding canonical division and so Envy-Free Stick Division reduces
to finding the optimal cut length l?.

The second major simplification comes from the observation that for canonical divisions,
the number of cuttings can only get larger when we decrease the cut length. (We cut
each sticks into shorter pieces, this can only mean more cuts.) Stated differently, the
objective function that we try to minimize is monotonic (in the cut length). This is a
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Envy-Free Stick Division

one-dimensional problem

search problem

discrete search problem

finite search problem

linearithmic search space linear search space

only canonical divisions

monotonic objective

piecewise constant constraint

trivial lower bound on l?

combinatorics sandwich bounds

Figure 1: Schematic overview of the refinement steps that turn a seemingly hard problem
into a tame task amenable to elementary yet efficient algorithmic solutions.

very fortunate situation since it allows a simple characterization of optimal solutions:
l? is the largest length, whose canonical division still contains (at least) k maximal pieces
of equal size, transforming our optimization to a mere search problem for the point where
cut lengths transition from feasible to infeasible solutions.

By similar arguments, also the number of equal sized maximal pieces (in the canonical
division) for a cut length l does only increase when l is made smaller, so we can use
binary search to find the length l? where the number of maximal pieces first exceeds k.
The search is still over a continuous region, though.

Next we note that both the objective and the feasibility function are piecewise constant
with jumps only at lengths of the form Li/j, where Li is the length of an input stick
and j is a natural number. Any (canonical) division for length l that does not cut any
stick evenly into pieces of length l remains of same quality and cost if we change the
l a very little. Moreover, any such division can obviously be improved by increasing
the cut length, until we cut one stick Li evenly, say into j pieces, as we then get the
same number of maximal pieces with (at least) one less cutting. We can thus restrict
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our (binary) search for l? to these jump points, making the problem discrete – but still
infinite, as we do not yet have an upper bound on j.

We can, however, easily find lower bounds on l? – or, equivalently, upper bounds on j –
that render the search space finite. For example, we obviously never need to cut more
than k pieces out of any single stick, in particular not the largest one. This trivial
observation already reduces the search space to O(n2) candidates, where n is the number
of sticks in the input.

We will then show how to obtain even smaller candidate sets by developing slightly
cleverer upper and lower bounds for the number of maximal pieces (in the canonical
divisions) for cut length l. The intuitive idea is as follows. If we had a single stick with
the total length of all sticks, dividing it into k equal pieces would give us the ultimately
efficient division without any waste. The corresponding “ultimate cut length” is of course
easy to compute, but with pre-cut sticks, it will usually not be feasible.

However, we know how much the precut sticks can possibly cost us relative to the ultimate
division: each input stick contributes (at most) one piece of waste. Now imagine the
sticks arranged in line, so that they form a single long stick with some existing fractures.
When cutting this stick evenly into n+ k (not only k) pieces, the existing cuts lie in at
most n of these pieces, leaving k segments intact. Therefore the total length divided by
n + k is always a feasible cut length. With a little diligence (see Section 5.1), we can
show that the number of jumps between these “sandwich bounds” for l?, i. e., the number
of cut lengths to check, remains linear in n. For k ≤ n, we get an O(k) bound by first
removing sticks shorter than the kth largest one.

The discussion above takes the point of view of mathematical optimization, describing
how to reduce the number of candidate cut lengths we have to check; we are still one step
away from turning this into an actual, executable algorithm. After reducing the problem
to a finite search problem, binary search naturally comes to mind; we work out the details
in Section 4. However, sorting the candidate set and checking feasibility of candidates
dominate the runtime of this binary-search-based algorithm – this is unsatisfactory.

As hinted at above, it is possible to determine l? more directly, namely as a specific
order statistic of the candidate set. From the point of view of objective and feasibility
functions, this trick works because both functions essentially count the number of unit
jumps (i. e. occurrences of Li/j) at points larger than the given length. This approach
yields a simple linear-time algorithm based on a single rank selection; we describe it in
detail in Section 4.1.

2. Problem Definition

We will mostly use the usual zoo of mathematical notation (as used in theoretical
computer science, that is); see Appendix A for a comprehensive list. Since they are
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less often used, let us quickly introduce notation for multisets, though. For some set X,
denote a multiset over X by

A = {x1, x2, . . . }

with xi ∈ X for all i ∈ [1..|A|]. Note the bold letter; we will use these for multisets, and
regular letters for sets. Furthermore, denote the multiplicity of some x ∈ X in A as A(x);
in particular,

|A| =
∑

x∈X

A(x).

When we use a multiset as operator range, we want to consider every occurrence of
x ∈ A; for example,

∑
x∈A

f(x) =
∑

i∈[1..|A|]
f(xi) =

∑
x∈X

A(x) · f(x).

As for multiset operations, we use multiset union ] that adds up cardinalities; that is, if
C = A ]B then C(x) = A(x) + B(x) for all x ∈ X. Multiset difference works in the
reverse way; if C = A \B then C(x) = max{0,A(x)−B(x)} for all x ∈ X.

Intersection with a set B ⊆ X is to be read as natural extension for the usual set
intersection; that is, if C = A ∩B then C(x) = A(x) ·B(x) for all x ∈ X (we also use
the multiplicity notation for ordinary sets, where B(x) ∈ {0, 1}).

Now for problem-specific notation. We call any length L ∈ Q a stick.7 Cutting L with
length 0 < l < L creates two pieces with lengths l and L− l respectively. By iteratively
cutting sticks and pieces thereof into smaller pieces, we can transform a set of sticks into
a set of pieces.

We define the following trivial problem for fixing notation.

Problem 1: Envy-Free Fixed-Length Stick Division

Input: Multiset L = {L1, . . . , Ln} of sticks with lengths Li ∈ Q>0, target
number k ∈ N>0 and cut length l ∈ Q>0.

Output: The (minimal) number of cuts necessary for cutting the input sticks
into sticks L′1, . . . , L′n′ ∈ Q>0 so that

i) (at least) k pieces have length l, i. e. |{i | L′i = l}| ≥ k,

ii) and no piece is longer than l, i. e. L′i ≤ l for all i.
7We restrict the input lengths to rational numbers to simplify the presentation; all algorithms would
work the same in a model that works with exact real numbers, and they are numerically stable
when using floating-point numbers. Our analyses count the number of arithmetic operations and
comparisons, and apply to any such model.

12



2. Problem Definition

The solution is immediate; we state it below to demonstrate the notation introduced in
the following.

We denote by m(L, l) the number of stick pieces of length l – we will also call these
maximal pieces – we can get when we cut stick L into pieces no longer than l. This is to
mean that you first cut L into two pieces, then possibly further cut those pieces and so
on, until all pieces have length at most l. Obviously, the best thing to do is to only ever
cut with length l. We thus have

m(L, l) =
⌊
L

l

⌋
.

Because we may also produce one shorter piece, the total number of pieces we obtain by
this process is given by

p(L, l) =
⌈
L

l

⌉
,

and

c(L, l) =
⌈
L

l

⌉
− 1

denotes the number of cuts we perform.

We extend this notation to multisets of sticks, that is

m(L, l) :=
∑

L∈L
m(L, l) =

∑
L∈L

⌊
L

l

⌋
and

c(L, l) :=
∑

L∈L
c(Li, l) =

∑
L∈L

⌈
L

l
− 1

⌉
.

See Figure 2 for a small example.

Using this notation, the conditions of Envy-Free Fixed-Length Stick Division translate into
checking whether m(L, l) ≥ k for cut length l; we call such l feasible cut lengths (for L
and k). We define the following predicate as a shorthand:

Feasible(L, k, l) :=
{

1, m(L, l) ≥ k;
0, otherwise.

Now we can give a concise algorithm for solving Envy-Free Fixed-Length Stick Division.

13



2. Problem Definition

L1 L2 L3 L4 L5

l

Figure 2: Sticks L = {L1, . . . , L5} cut with some length l. Note how m(L, l) = 20 and
c(L, l) = 19. There are four non-maximal pieces.

Algorithm 1: CanonicalCutting(L, k, l) :

1. If Feasible(L, k, l):

1.1. Answer c(L, l).

2. Otherwise:

2.1. Answer ∞ (i. e. “not possible”).

Assuming the unit-cost RAM model – which we will do in this article – the runtime of
CanonicalCutting is clearly in O(n); evaluation of Feasible and c in time O(n) each
dominates. We will see later that a better bound is Θ(min(k, n)) (cf. Lemma 3.3).

Of course, different cut lengths l cause different numbers of cuts. We want to find an
optimal cut length, that is a length l? which minimizes the number of cuts necessary to
fulfill conditions i) and ii) of Envy-Free Fixed-Length Stick Division. We formalize this as
follows.

Problem 2: Envy-Free Stick Division

Input: Multiset L = {L1, . . . , Ln} of sticks with lengths Li ∈ Q>0 and target
number k ∈ N>0.

Output: A (feasible) cut length l? ∈ Q>0 which minimizes the result of Envy-
Free Fixed-Length Stick Division for L, k and l?.

We observe that the problem is not as easy as picking the smallest Li, cutting the longest
stick into k pieces, or using the kth longest stick (if k ≤ n). Consider the following,
admittedly artificial example which debunks such simplistic attempts.

Example 2.1: Let

L = {mx, (m− 1)x+ 1, (m− 2) · x+ 2, . . . ,m/2 · x+ m/2, x− 1, x− 1, . . . }

14



3. Exploiting Structure

2 4 6 8

0

5

10

15

k = 9

l? = 2

l

m
(l

)

Figure 3: The number of maximal pieces m(Lex, l) in cut length l for Lex as defined
in Example 2.1. The filled circles indicate the value of m(Lex, l) at the jump
discontinuities.

for a total of n = m2 elements and k = 3/8 ·m2 + 3/4 ·m, where m ∈ 4N>0 and x > m/2.

Note that l? = x, that is in particular

• l? 6= Li and

• l? 6= Li/k

for all i ∈ [1..n]. In fact, by controlling x we get an (all but) arbitrary fraction of an Li for l?.
It is possible to extend the example so that “mx” – the stick whose fraction is optimal – has
(almost) arbitrary index i, too.

As running example we will use (Lex, k) as defined by m = 4 and x = 2, that is

• Lex = {8, 7, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} and

• k = 9.

Note that l? = 2 and m(Lex, l
?) = 10 > k here. See Figure 3 for a plot of m(Lex, l).

3. Exploiting Structure

For ease of notation, we will from now on assume arbitrary but fixed input (L, k) be
given implicitly. In particular, we will use m(l) as short form of m(L, l), and similar for c
and Feasible.

At first, we observe that both constraint and objective function of Envy-Free Stick Division
belong to a specific, simple class of functions.

15



3. Exploiting Structure

Lemma 3.1: Functions m and c are non-increasing, piecewise-constant functions in l
with jump discontinuities of (only) the form Li/j for i ∈ [1..n] and j ∈ N>0.

Furthermore, m is left- and c is right-continuous.

Proof: The functions are given as finite sums of terms that are either of the form bL
l c or

dL
l − 1e. Hence, all summands are piecewise constant and never increase with growing l.

Thus, the sum is also a non-increasing piecewise-constant function.

The form Li/j of the jump discontinuities is apparent for each summand individually, and
they carry over to the sums by monotonicity.

The missing continuity properties of m resp. c follow from right-continuity of b·c resp.
left-continuity of d·e; the direction gets turned around because we consider l−1 but other
than that arithmetic operations maintain continuity. �

See Figure 3 for an illustrating plot.

Knowing this, we immediately get lots of structure in our solution space which we will
utilize thoroughly.

Corollary 3.2: l? = max{l ∈ Q>0 | Feasible(l)}. �

Note in particular that the maximum exists because Feasible is left-continuous.

This already tells us that any feasible length gives a lower bound on l?. One particular
simple case is k < n since then the kth largest stick is always feasible. This allows us
to get rid of all properly smaller input sticks, too, since they are certainly waste when
cutting with any optimal length. As a consequence, having any non-trivial lower bound
on l? already speeds up our search by ways of speeding up feasibility checks.

Lemma 3.3: Let L ∈ Q≥0 fixed and denote with

I>L := {i ∈ [1..n] | Li > L}

the (index) set of all sticks in L that are longer than L. Then,

m(l) =
∑

i∈ I>L

m(Li, l)

for all l > L.

Proof: Clearly, all summands bLi/lc in the definition of m(l) are zero for Li ≤ L < l.�

As a direct consequence, we can push the time for checking feasibility of a candidate
solution from being proportional to n down to being proportional to the number of Li

16



3. Exploiting Structure

larger than a lower bound L on the optimal length; we simply preprocess L>L in time
Θ(n). Since it is easy to find an Li that can serve as L – e. g. any one that is shorter
than any known feasible solution – we will make use of this in the definition of our set of
candidate cut lengths.

In addition, the special shape of c and Feasible comes in handy. Recall that both functions
are step functions with (potential) jump discontinuities at lengths of the form l = Li/j

(cf. Lemma 3.1). We will show that we can restrict our search for optimal cut lengths to
these values, and how to do away with many of them for efficiency.

Combining the two ideas, we will consider candidate multisets of the following form.

Definition 3.4: We define the candidate multiset(s)

C(I, fl, fu) :=
⊎
i∈I

{
Li

j

∣∣∣∣ fl(i) ≤ j ≤ fu(i)
}

dependent on index set I ⊆ [1..n] and functions fl : I → N and fu : I → N ∪ {∞} which
bound the denominator from below and above, respectively; either may implicitly depend
on L and/or k.

Note that |C| = ∑
i∈I [fu(i) − fl(i) + 1]. We denote the multiset of all candidates by

Call := C([1..n], 1,∞).

First, let us note that this definition covers the optimal solution as long as upper and
lower bounds are chosen appropriately.

Lemma 3.5: There is an optimal solution on a jump discontinuity of m, i. e. l? ∈ Call.

Proof: From its definition, we know that Feasible has exactly one jump discontinuity,
and from Lemma 3.1 (via m) we know that it is one of the Li/j. By Corollary 3.2 and
left-continuity of Feasible (again via m) we know that this is indeed our solution l?. �

Of course, our all-encompassing candidate multiset Call is infinite (as is the corresponding
set) and does hence not lend itself to a simple search. But there is hope: we already
know that l? ≥ l for any feasible l which immediately implies finite (albeit possibly large)
bounds on j (if we have such l). We will now show how to restrict the set of candidates
via suitable index sets I and bounding functions fl and fu so that we can efficiently
search for l?. We have to be careful not to inadvertently remove l? by choosing bad
bounding functions.

Lemma 3.6: Let I ⊆ [1..n] and fl, fu : I → N so that

i) fl(i) = 1 or Li/(fl(i)−1) is infeasible, and

ii) Li/fu(i) is feasible,

17



3. Exploiting Structure

for all i ∈ I, and

iii) Li′ is suboptimal (i. e. Li′ is feasible, but not optimal)

for all i′ ∈ [1..n] \ I. Then,

l? ∈ C(I, fl, fu).

Proof: We argue that Call \ C(I, fl, fu) does not contain the optimal solution l?; the
claim then follows with Lemma 3.5.

Let i ∈ [1..n] and j ∈ [1..∞] be arbitrary but fixed. We investigate three cases for why
length Li/j may not be included in C(I, fl, fu).

i /∈ I: Candidate Li/j is suboptimal by Corollary 3.2 because Li/j ≤ Li and Li itself
is already suboptimal by iii).

j < fl(i): In this case, we must have fl(i) > 1, so Li/(fl(i)−1) is infeasible by i). Clearly,
Li/j > Li/fl(i), so Li/j ≥ Li/(fl(i)−1) and we get by monotonicity of Feasible (cf.
Lemma 3.1 via m) that Li/j is infeasible, as well.

j > fu(i): Clearly, Li/j < Li/fu(i), where the latter is already feasible by ii). So, again
by Corollary 3.2, Li/j is suboptimal.

Thus, we have shown that every candidate length Li/j given by (i, j) ∈ I × [1..∞] is either
in C(I, fl, fu) or, failing that, infeasible or suboptimal. �

We will call triples (I, fl, fu) of index set and bounding functions that fulfill Lemma 3.6
admissible restrictions (for L and k). We say that C(I, fl, fu) is admissible if (I, fl, fu) is
an admissible restriction.

We will restrict ourselves for the remainder of this article to index sets Ico that contain
indices of lengths that are larger than the n′th largest8 length L(n′) in L, for n′ =
min(k, n+ 1). This corresponds to working with I>L(n′) as defined in Lemma 3.3. We
will have to show that such index sets are indeed admissible (alongside suitable bounding
functions); intuitively, if k ≤ n then L(k) is always feasible, and otherwise we have to
work with all input lengths. We fix this convention for clarity and notational ease.
Definition 3.7: Define cut-off length Lco by

Lco :=
{
L(k), k ≤ n;
0, k > n,

and index set Ico ⊆ [1..n] as

Ico :=
{
I>Lco , Lco not optimal;
undefined, otherwise.

8We borrow from the common notation S(k) for the kth smallest element of sequence S.
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3. Exploiting Structure

Note that Ico = [1..n] if k > n.

We will later see that we never invoke the undefined case as we already have l? = L(k)

then.

In order to illustrate that we have found a useful criterion for admissible bounds, let
us investigate shortly an admittedly rather obvious choice of bounding functions. We
use the null-bound fl = i 7→ 1 and fu = i 7→ k; an optimal solution does not cut more
than k (equal-sized) pieces out of any one stick. The restriction ([1..n], 1, k) is clearly
admissible; in particular, every Li/k is feasible.

Example 2.1 Continued: For Lex and k = 9, we get

C(Ico, 1, k) =
{

8
1 ,

8
2 ,

8
3 ,

8
4 ,

8
5 ,

8
6 ,

8
7 ,

8
8 ,

8
9 ,

7
1 ,

7
2 ,

7
3 ,

7
4 ,

7
5 ,

7
6 ,

7
7 ,

7
8 ,

7
9 ,

6
1 ,

6
2 ,

6
3 ,

6
4 ,

6
5 ,

6
6 ,

6
7 ,

6
8 ,

6
9 ,

1
1 ,

1
2 ,

1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
7 ,

1
8 ,

1
9

}
,

that is 36 candidates. Note that there are four duplicates, so there are 32 distinct candidates.

We give a full proof of admissibility and worst-case size here; it is illustrative even if
simple because later proofs will follow the same structure.

Lemma 3.8: If Lco 6= l?, then C(Ico, 1, k) is admissible.
Furthermore, |C(Ico, 1, k)| = k ·min(k − 1, n) ∈ Θ

(
k ·min(k, n)

)
in the worst case.

Proof: First, we show that (Ico, 1, k) is an admissible restriction (cf. Lemma 3.6).

ad i): Since fl(i) = 1 for all i, this checks out.

ad ii): Clearly, m(Li/k) ≥ k just from the contribution of summand bLi/lc.

ad iii): We distinguish the two cases of Lco (cf. Definition 3.7).

• If k > n then Ico = [1..n] which trivially fulfills iii).

• In the other case, k ≤ n and Lco is not optimal by assumption. Then
Ico = I>Lco ; therefore Li′ ≤ Lco for any i′ /∈ Ico and Lemma 3.1 implies that
Li′ is not optimal as well.

This concludes the proof of the first claim.

As for the number of candidates, note that clearly |C(Ico, 1, k)| = ∑
i∈Ico k = |Ico| · k; the

claim follows with |Ico| = min(k − 1, n) in the case that the Li are pairwise distinct (cf.
Definition 3.7). �

Since we now know that we have to search only a finite domain for l?, we can start
thinking about effective and even efficient algorithms.
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4. Algorithms

4. Algorithms

Just from the discussion above, a fairly elementary algorithm presents itself: first cut
the input down to the lengths given by Ico (cf. Definition 3.7), then use binary search
on the candidate set w. r. t. Feasible. This works because Feasible is non-increasing (cf.
Corollary 3.2 and Lemma 3.1).

Algorithm 2: SearchLstar〈fl, fu〉(L, k) :

1. Compute n′ := min(k, n+ 1).

2. If n′ ≤ n:

2.1. Determine Lco := L(n′), i. e. the n′th largest length.

2.2. If Lco is optimal, answer l? = Lco (and terminate).

2′. Otherwise (i. e. n′ > n):

2.3. Set Lco := 0.

3. Assemble Ico := I>Lco .

4. Compute C := C(Ico, fl, fu) as sorted array.

5. Find l? by binary search on C w. r. t. Feasible.

6. Answer l?.

For completeness we specify that fl, fu : Ico → N.
Theorem 4.1:
Let (Ico, fl, fu) be an admissible restriction where fl and fu can be evaluated in time
O(1).

Then, algorithm SearchLstar〈fl, fu〉 solves Envy-Free Stick Division in (worst-case) time

T (n, k) ∈ Θ(n+ |C| log |C|)

and space

S(n, k) ∈ Θ(n+ |C|).

Proof: We deal with the three claims separately.

Correctness follows immediately from Lemma 3.6 and Lemma 3.1 resp. Corollary 3.2.
Note in particular that SearchLstar does indeed compute Ico as defined
in Definition 3.7, and the undefined case is never reached.

Runtime: Since the algorithm contains neither loops nor recursion (at the top level)
we can analyze every step on itself.
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4. Algorithms

Steps 1, 2.3.: These clearly take time O(1).

Step 2.1.: There are well-known algorithms that perform selection in
worst-case time Θ(n).

Step 2.2.: Testing Lco for optimality is as easy as computing
Feasible(Lco) and counting the number a of integral
Li/Lco in m(Lco). If Feasible(Lco) (i. e., m(Lco) ≥ k)
and m(Lco)− a < k, then Lco is the jump discontinuity of
Feasible and Lco is optimal; otherwise it is not.

Thus, this step takes time Θ(n).

Step 3: This can be implemented by a simple iteration over [1..n]
with a constant-time length check per entry, hence in time
Θ(n).

Ico can be assembled by one traversal over L and stored as
simple linked list in (worst-case) time Θ(n).

Step 4: By Definition 3.4 we have |C| many candidates. Sorting
these takes time Θ(|C| log |C|) using e. g. Heapsort.

Step 5: The binary search clearly takes at most blog2 |C|+ 1c steps.
In each step, we evaluate Feasible in time

• Θ(|Ico|) for all candidates l > Lco using Lemma 3.3, and

• O(1) for l ≤ Lco since we already know from feasibility
of Lco via Lemma 3.1 that these are feasible, too.

Therefore, this step needs time Θ(|Ico| log |C|) time in total.

It is easy to see that admissible bounds always fulfill fu(i) ≥
fl(i) for all i ∈ Ico. Therefore, |Ico| ≤ |C| so the runtime of
this step is dominated by step 4.

Space: The algorithm stores L of size Θ(n), plus maybe a copy for selection and
partitioning (depends the actual algorithm used). Step 4 then creates a
Θ(|C|)-large representation of the candidate set. Both step 3 and 5 can
be implemented iteratively, and a potential recursion depth (and therefore
stack size) in step 2.1. is bounded from above by its runtime O(n). A few
additional auxiliary variables require only constant amount of memory. �

For practical purposes, eliminating duplicates in Step 4 is virtually free and can speed
up the subsequent search. In the worst case, however, we save at most a constant factor
with the bounding functions we consider (see Appendix B), so we decided to stick to the
clearer presentation using multisets (instead of candidate sets).
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4.1. Knowing Beats Searching

We have seen that the runtime of algorithm SearchLstar is dominated by sorting the
candidate set. This is necessary for facilitating binary search; but do we have to search?
As it turns out, a slightly different point of view on the problem allows us to work with
the unsorted candidate multiset and we can save a factor log |C|.

The main observation is that m increases its value by one at every jump discontinuity
(for each Li/j that has that same value). So, knowing m(l) for any candidate length l,
we know exactly how many candidates (counting duplicates) we have to move to get to
the jump of Feasible. Therefore, we can make do with selecting the solution from our
candidate set instead of searching through it.

The following lemma states the simple observation that m(L, l) is intimately related to
the “position” of l in the decreasingly sorted candidate multiset for L.

Lemma 4.2: For all L, l ∈ Q>0,

m(L, l) =
∣∣{L/j | j ∈ N ∧ L/j ≥ l

}∣∣.
Proof: The right-hand side equals the largest integer j ∈ N0 for which L/j ≥ l, i. e.
j ≤ L/l, which is by definition bL/lc = m(L, l). Note that this argument extends to the
case L < l by formally setting L/0 =∞ ≥ l. �

Since we consider multisets, we can lift this property to m(l):

Corollary 4.3: For all l ∈ Q>0,

m(l) =
n∑

i=1

∣∣{Li/j | j ∈ N ∧ Li/j ≥ l
}∣∣ =

∣∣Call ∩ [l,∞)
∣∣.

�

In other words, m(l) is the number of occurrences of candidates that are at least l. We
can use this to transform our search problem (cf. Corollary 3.2) into a selection problem.

Lemma 4.4: l? = C(k)
all .

Proof: Denote with Call the set of all candidates, that is l ∈ Call ⇐⇒ Call(l) > 0. We
can thus write the statement of Corollary 4.3 as

m(l) =
∑

l′ ∈Call
l′≥ l

Call(l′). (1)

As a direct consequence, we get for every i ∈ N that

i ≤ m
(
C(i)

all
)
≤ i+ Call

(
C(i)

all
)
− 1; (2)
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Figure 4: An example illustrating eq. (2) with li = C(i)
all for some suitable instance. Note

that the lower bound is tight for i ∈ {1, 5} and the upper for i = 2.

see Figure 4 for a sketch of the situation. Feasibility of l := C(k)
all follows immediately.

Now let l̂ := min{l′ ∈ Call | l′ > l}; we see that

m(l̂) (1)= m(l)− Call(l)
(2)
≤ k + Call(l)− 1− Call(l) = k − 1

and therefore l̂ is infeasible. By the choice of l̂ and monotonicity of Feasible (cf. Lemma 3.1)
we get that l = C(k)

all is indeed the largest feasible candidate; this concludes the proof via
Corollary 3.2 and Lemma 3.5. �

Of course, we want to select from a small candidate set such as those we saw above;
surely, selecting the kth largest element from these is not correct, in general. Also, not
all restrictions may allow us to select because if we miss an Li/j between two others, we
may count wrong. The relation carries over to admissible restrictions with only small
adaptions, though.

Corollary 4.5: Let C = C(I, fl, fu) be an admissible candidate multiset. Then,

l? = C(k′)

with k′ = k −
∑

i∈I

[
fl(i)− 1

]
.

Proof: With multiset

M :=
⊎

i∈ I

{Li/j | i ∈ I, j < fl(i)},

we get by Lemma 3.6 ii) and Lemma 3.1 that

C ∩ [l?,∞) =
(
Call ∩ [l?,∞)

)
\M.

In addition, we know from Lemma 4.4 that

(
Call ∩ [l?,∞)

)(k) = l?.
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Since M contains only infeasible candidates (cf. Lemma 3.6 i) and Lemma 3.1), we also
have that

M ⊂ (l?,∞),

and by definition

M ∩ C = ∅.

The claim

l? = C(k)
all = C(k−|M|)

follows by counting. �

Hence, we can use any of the candidate sets we have investigated above. Instead
of binary search we determine l? by selecting the k′th largest element according to
Corollary 4.5. Since selection takes only linear time we save a logarithmic factor compared
to SearchLstar.

We give the full algorithm for completeness; note that steps 1 and 2 have not changed
compared to SearchLstar.

Algorithm 3: SelectLstar〈fl, fu〉(L, k) :

1. Compute n′ := min(k, n+ 1).

2. If n′ ≤ n:

2.1. Determine Lco := L(n′), i. e. the n′th largest length.

2.2. If Lco is optimal, answer l? = Lco (and terminate).

2′. Otherwise (i. e. n′ > n):

2.3. Set Lco := 0.

3. Assemble Ico := I>Lco .

4. Compute C := C(Ico, fl, fu) as multiset.

5. Determine k′ := k −
∑

i∈Ico

[
fl(i)− 1

]
.

6. Answer l? := C(k′).

Theorem 4.6:
Let (Ico, fl, fu) be an admissible restriction where fl and fu can be evaluated in time
O(1).

Then, SelectLstar〈fl, fu〉 solves Envy-Free Stick Division in time and space Θ(n+ |C|).
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Proof: Correctness is clear from Lemma 5.2 and Corollary 4.5.

We borrow from the resource analysis of Theorem 4.1 with the following changes.

ad 4: We do not sort C, so creating the multiset takes only time Θ(|C|); the result
takes up space Θ(|C|), too, though.

ad 5,6: Instead of binary search on C with repeated evaluation of Feasible, we just have
to compute k′ (which clearly takes time Θ(|Ico|)) and then select the k′th largest
element from C. This takes time Θ(|C|) using e. g. the median-of-medians
algorithm [Blu+73].

The resource requirements of the other steps remain unchanged, that is Θ(n). The
bounds we claim in the corollary follow directly. �

Is has become clear now that decreasing the number of candidates is crucial for solving
Envy-Free Stick Division quickly, provided we do not drop l? along the way. We now
endeavor to do so by choosing better admissible bounding functions.

5. Reducing the Number of Candidates

We can decrease the number of candidates significantly by observing the following.
Whenever we cut L(i) (which is the ith largest length) into j pieces of length L(i)/j each,
we also get at least j pieces of the same length from each of the longer sticks. In total,
this makes for at least i · j pieces of length L(i)/j; see Figure 5 for a visualization. By
rearranging the inequality k ≥ i · j, we obtain a new admissible bound on j. For the
algorithm, we have to sort Ico, though, so that Li = L(i).
Example 2.1 Continued: For Lex and k = 9, we get

C(Ico, 1, dk/ie) =
{

8
1 ,

8
2 ,

8
3 ,

8
4 ,

8
5 ,

8
6 ,

8
7 ,

8
8 ,

8
9 ,

7
1 ,

7
2 ,

7
3 ,

7
4 ,

7
5 ,

6
1 ,

6
2 ,

6
3

}
,

that is 17 candidates (16 distinct ones); compare to |C(Ico, 1, k)| = 36).

Lemma 5.1: Assume that Lco 6= l? and Ico is sorted w. r. t. decreasing lengths.

Then, C(Ico, 1, dk/ie) is admissible.
Furthermore, |C(Ico, 1, dk/ie)| ∈ Θ

(
k · log(min(k, n))

)
in the worst case.

Proof: Again, we start by showing that (Ico, 1, dk/ie) is an admissible restriction.

ad i), iii): Similar to the proof of Lemma 3.8.

ad ii): Because Ico is sorted, we have Li = L(i) and Li′ ≥ Li for i′ ≤ i. Therefore,
we get for all the l = Li/fu(i) = Li · dk/ie−1 with i ∈ Ico that

m(L) =
n∑

i′=1

⌊
Li′

l

⌋
≥

i∑
i′=1

⌊
Li

l

⌋
=

i∑
i′=1

⌊⌈
k

i

⌉⌋
≥ k.
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L(1)

L(2)
L(i−1)

L(i)
L(i+1)

. . . . . ....
...

...
...

...k
i

i

Figure 5: When considering cut lengths L(i)
/j, no j larger than dk/ie is relevant. The

sketch shows a cutting with L(i) and j = k/i. Note how we have k maximal
pieces for sure (dark); there may be many more (light).

This concludes the proof of the first claim.

For the size bound, let for short C := C(Ico, 1, dk/ie). Clearly, |C| = ∑
i∈Icodk/ie (cf.

Definition 3.4). With |Ico| = n′ − 1 = min(n, k − 1) in the worst-case (cf. the proof of
Lemma 3.8), the Θ(k logn′) bound on |C| follows from

|C| =
n′−1∑
i=1

⌈
k

i

⌉
≤ n′ +

n′∑
i=1

k

i
= n′ + k ·Hn′ ∈ Θ(k logn′)

and

|C| =
n′−1∑
i=1

⌈
k

i

⌉
≥

n′−1∑
i=1

k

i
= k ·Hn′−1 ∈ Θ(k logn′)

with the well-known asymptotic Hk ∼ ln k of the harmonic numbers [GKP94, eq. (6.66)].�

Combining Theorem 4.6 and Lemma 5.1 we have obtained an algorithm that takes time
and space Θ

(
n+ k · log(min(k, n))

)
. This is already quite efficient. By putting in some

more work, however, we can save the last logarithmic factor that separates us from linear
time and space.

5.1. Sandwich Bounds

Lemma 3.6 gives us some idea about what criteria we can use for restricting the set of
lengths we investigate. We will now try to match these criteria as exactly as possible,
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0.2 0.3 0.4 0.5 0.6 0.7

0

5

10

15

1/l

infeasible

1/l

dominated

1/l

m
(l

)

ΣIco /l

ΣIco /l − |Ico|

k = 9

Figure 6: The number of maximal pieces m(l) in the reciprocal of cut length l for (Lex, 9)
as defined in Example 2.1. Note how we can exclude all but three candidates
(the filled circles) in a narrow corridor around 1/l? = 0.5, defined by the points
at which the bounds from (3) attain k = 9, namely l = 1.75 and l = 2.3.

deriving an interval [l, l] ⊆ Q>0 that includes l? and is as small as possible; from these,
we can infer almost as tight bounds (fl, fu).

Assume we have some length L < l? and consider only lengths l > L. We have seen in
Lemma 3.3 that we can then restrict ourselves to lengths from I>L when computing m(l).
Now, from the definition of m it is clear that we can sandwich m(l) by

∑
i∈ I>L

Li

l
− 1 < m(l) ≤

∑
i∈ I>L

Li

l

for l > L. We denote for short ΣI := ∑
i∈I Li for any I ⊆ [1..n]; rearranging terms,

we can thus express these bounds more easily, both with respect to notational and
computational effort. We get

ΣI>L

l
− |I>L| < m(l) ≤ ΣI>L

l
(3)

for all l > L. Note that L = 0 is a valid choice, as then simply I>L = [1..n].

Rearranging these inequalities “around” m(l) = k yields bounds on l?, which we can
translate into bounds (fl, fu) on j (cf. Definition 3.4). We lose some precision because we
round to integer bounds but that adds at most a linear number of candidates. A small
technical hurdle is to ensure that both bounds are greater than our chosen L so that we
can apply the sandwich bounds (3) in our proof.

Lemma 5.2: Let Lco and Ico be defined as in Definition 3.7, and
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5. Reducing the Number of Candidates

• l := max
{
Lco,

ΣIco

k + |Ico|

}
and

• l := ΣIco

k
.

Then,
(
Ico, p(Li, l), p(Li, l)

)
is admissible.

Proof: First, we determine what we know about our length bounds. Recall that
Ico = I>Lco 6= ∅ and Lco is not optimal.

We see that l is feasible by calculating

m(l)


(3)
>

ΣIco
l − |Ico| = ΣIco

ΣIco
k+|Ico|

− |Ico| = k, l > Lco,

= m(Lco) ≥ k, l = Lco > 0,
(4)

using in the second case that Lco is feasible. For the upper bound, we first note that
because Lco is not optimal, there is some δ > 0 with

ΣIco ≥ k(Lco + δ) > kLco,

from which we get by rearranging that l > Lco. Therefore, we can bound

m(l + ε)
(3)
≤ ΣIco

l + ε
<

ΣIco

l
= ΣIco

ΣIco
k

= k (5)

for any ε > 0, that is any length larger than l is infeasible. Note in particular that, in
every case, l > l so we always have a non-empty interval to work with.

We now show the conditions of Lemma 3.6 one by one.

ad i) Let i ∈ Ico. If p(Li, l) = 1 the condition is trivially fulfilled. In the other case, we
calculate

l := Li

p(Li, l)− 1
= Li

dLi/le − 1 >
Li

Li/l
= l

and therewith m(l) < k by (5).

ad ii) Let i ∈ Ico again. We calculate

l := Li

p(Li, l)
= Li

dLi/le
≤ Li

Li/l
= l

which implies by Lemma 3.1 that

m(l) ≥ m(l)
(4)
≥ k.

ad iii) See the proof of Lemma 3.8. �
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5. Reducing the Number of Candidates

Example 2.1 Continued: For Lex and k = 9, we get

C
(
Ico, p(Li, l), p(Li, l)

)
=
{

8
4 ,

8
5 ,

7
4 ,

7
3 ,

6
3 ,

6
4

}
,

that is six candidates (five distinct ones); compare to |C(Ico, 1, dk/ie)| = 17 and |C(Ico, 1, k)| = 36.
See Figure 6 for a visualization of the effect our bounds have on the candidate set; note that we
keep some additional candidates smaller than l.

We see in this example that the bounds from Lemma 5.2 are not as tight as could be;
C(Ico, p(Li, l), p(Li, l)) ∩ [l, l] can be properly smaller (but not by more than one element
per Li), and since l? ∈ [l, l] it is still a valid candidate set.

We stick with the slightly larger set here for conciseness of the proofs, but remark that
omitting lengths outside the interval [l, l] is safe. We have defined admissibility in a
way that is local to each Li – we require to envelop l? for each length in isolation: in
particular, condition ii) ensures we include at least one j for every Li, so that Li/j is
feasible. We thus have no way to express global length bounds [l, l] in this framework:
although lengths smaller than l are dominated, the upper bound fu = i 7→ bLi/lc is not
admissible in the sense of Lemma 3.6 because it might for some sticks not add a single
feasible length.

Nevertheless, we have obtained yet another admissible restriction and, as it turns out, it
is good enough to achieve a linear candidate set. Only some combinatorics stand between
us and our next corollary.

Lemma 5.3: |C(Ico, p(Li, l), p(Li, l))| ∈ Θ
(
min(k, n)

)
in the worst case.

Proof: Recall that |Ico| = min(k − 1, n) in the worst case (cf. the proof of Lemma 3.8).
The upper bound on |C| then follows from the following calculation:

|C| =
∑

i∈ Ico

[
p(Li, l)− p(Li, l) + 1

]
= |Ico|+

∑
i∈ Ico

⌈
Li

l

⌉
−
∑

i∈ Ico

⌈
Li

l

⌉

≤ |Ico|+
∑

i∈ Ico

[
Li

l
+ 1

]
−
∑

i∈ Ico

Li

l

= |Ico|+ ΣIco ·
k + |Ico|

ΣIco
+ |Ico| − ΣIco ·

k

ΣIco

= 3 · |Ico|.

A similar calculation shows the lower bound |C| ≥ |Ico|. �

If we use fu = i 7→ bLi/lc, the candidate set is even smaller, namely |C| ≤ 2|Ico|.
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6. Conclusion

(fl, fu) SearchLstar〈fl, fu〉 SelectLstar〈fl, fu〉

(1, k) Θ(kn log k) Θ(kn)(
1, dk/ie

)9 Θ(k log(k) log(n)) Θ(k logn)(
p(Li, l), p(Li, l)

)
Θ(n logn) Θ(n)

Table 1: Assuming k ≥ n, the table shows the worst-case runtime bounds shown above
for the combinations of algorithm and bounding functions.

6. Conclusion

We have given a formal definition of Envy-Free Stick Division, derived means to restrict
the search for an optimal solution to a small, discrete space of candidates, and developed
algorithms that perform this search efficiently. Table 1 summarizes the asymptotic
runtimes of the combinations of candidate space and algorithm.

All in all, we have shown the following complexity bounds on our problem.

Corollary 6.1: Envy-Free Stick Division can be solved in time and space O(n).

Proof: Algorithm SelectLstar〈p(Li, l), p(Li, l)〉 serves as a witness via Theorem 4.6,
Lemma 5.2 and Lemma 5.3. �

A simple adversary argument shows that a sublinear algorithm is impossible; since the
input is not sorted, adding a sufficiently large stick breaks any algorithm that does not
consider all sticks. We have thus found an asymptotically optimal algorithm.

Given its easy structure and elementary nature – we need but two calls to a selection
algorithm, and in fact just a single one for the typical case k ≥ n – our method is also
hard to beat in practice (as reported in the introduction and shown in [RW15] for the
apportionment variant of the algorithm).
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A. Notation Index

A. Notation Index

In this section, we collect the notation used in this paper. Some might be seen as
“standard”, but we think including them here hurts less than a potential misunderstanding
caused by omitting them.

Generic Mathematical Notation

[1..n] . . . . . . . . . . The set {1, . . . , n} ⊆ N.

bxc, dxe . . . . . . . . floor and ceiling functions, as used in [GKP94].

lnn . . . . . . . . . . . natural logarithm.

log2 n . . . . . . . . . (logn)2

Hn . . . . . . . . . . . nth harmonic number; Hn =
∑n

i=1 1/i.

pn . . . . . . . . . . . nth prime number.

A . . . . . . . . . . . . multisets are denoted by bold capital letters.

A(x) . . . . . . . . . . multiplicity of x in A, i. e., we are using the function notation of
multisets here.

A ]B . . . . . . . . . multiset union; multiplicities add up.

L(k) . . . . . . . . . . The kth largest element of multiset L (assuming it exists);
if the elements of L can be written in non-increasing order, L is given
by L(1) ≥ L(2) ≥ L(3) ≥ · · · .
Example: For L = {10, 10, 8, 8, 8, 5}, we have L(1) = L(2) = 10,
L(3) = L(4) = L(5) = 8 and L(6) = 5.

Notation Specific to the Problem

stick . . . . . . . . . . one of the lengths of the input, before any cutting.

piece . . . . . . . . . . one of the lengths after cutting; each piece results from one input stick
after some cutting operations.

maximal piece . . . . . piece of maximal length (after cutting).

n . . . . . . . . . . . . number of sticks in the input.

L, Li, L . . . . . . . . L = {L1, . . . , Ln} with Li ∈ Q>0 for all i ∈ [1..n] contains the lengths
of the sticks in the input.
We use L as a free variable that represents (bounds on) input stick
lengths.

k . . . . . . . . . . . . k ∈ N, the number of maximal pieces required.
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B. On the Number of Distinct Candidates

l . . . . . . . . . . . . free variable that represents (bounds on) candidate cut lengths; by
Lemma 3.1 only l = Li/j for j ∈ N have to be considered.

l? . . . . . . . . . . . . the optimal cut length, i. e., the cut length that yields at least k
maximal pieces while minimizing the total length of non-maximal (i. e.
waste) pieces.

c(L, l) . . . . . . . . . the number of cuts needed to cut stick L into pieces of lengths ≤ l;
c(L, l) = dL

l − 1e.

m(L, l) . . . . . . . . . the number of maximal pieces obtainable by cutting stick L into pieces
of lengths ≤ l; m(L, l) = bL

l c.

p(L, l) . . . . . . . . . the minimal total number of pieces resulting from cutting stick L into
pieces of lengths ≤ l; p(L, l) = dL

l e.

c(l) = c(L, l) . . . . . total number of cuts needed to cut all sticks into pieces of lengths ≤ l;
c(L, l) =

∑
L∈L c(L, l).

m(l) = m(L, l) . . . . total number of maximal pieces resulting from cutting stick L into
pieces of lengths ≤ l; m(L, l) =

∑
L∈L m(L, l).

Feasible(l) = Feasible(L, k, l)
indicator function that is 1 when l is a feasible length and 0 otherwise;
Feasible(L, k, l) = [m(L, l) ≥ k].

C(I, fl, fu) . . . . . . . multiset of candidate lengths Li/j, restricted by the index set I of
considered input sticks Li, and lower resp. upper bound on j; cf.
Definition 3.4 (page 17).

Call . . . . . . . . . . . The unrestricted (infinite) candidate set Call = C([1..n], 1,∞).

admissible restriction (I, fl, fu)
sufficient conditions on restriction (I, fl, fu) to ensure that
Envy-Free Stick Division ∈ C(I, fl, fu); cf. Lemma 3.6 (page 17).

I>L . . . . . . . . . . . the set of indices of input sticks Li > L; cf. Lemma 3.3.

Ico, Lco . . . . . . . . Ico = I>Lco is our canonical index set with cutoff length Lco the
kth largest input length; cf. Definition 3.7 (page 18).

ΣI . . . . . . . . . . . assuming I ⊆ [1..n], this is a shorthand for
∑

i∈I Li.

l, l . . . . . . . . . . . lower and upper bounds on candidate lengths l ≤ l ≤ l so that
l? ∈ Call ∩ [l, l]; see Lemma 5.2 (page 27).

B. On the Number of Distinct Candidates

As mentioned in Section 4, algorithm SearchLstar can profit from removing duplicates
from the candidate multisets during sorting. We will show in the subsequent proofs
that none of the restrictions introduced above cause more than a constant fraction of all
candidates to be duplicates.
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B. On the Number of Distinct Candidates

We denote with C(. . . ) the set obtained by removing duplicates from the multiset C(. . . )
with the same restrictions.

Lemma B.1: |C(Ico, 1, k)| ∈ Θ
(
|C(Ico, 1, k)|

)
in the worst case.

Proof: Let for short C := |C(Ico, 1, k)| and C := C(Ico, 1, k). It is clear that C ≤ |C|; we
will show now that C ∈ Ω(|C|) in the worst case.

Consider instance

Lprimes = {pn, . . . , p1}

with pi the ith prime number and any k ∈ N; note that Li = pn−i+1. Let for ease of
notation n′ := min(k, n+1); note that Lco = L(n′)

primes if k ≤ n. We have |Ico| = min(k−1, n)
because the Li are pairwise distinct, and therefore |C| = k|Ico| = k(n′ − 1). Since the
Li are also pairwise coprime, all candidates Li/j for which j is not a multiple of Li are
pairwise distinct. Therefore, we get

C ≥ |C| −
n∑

i=n−n′+2

⌊
k

pi

⌋

≥ |C| −
n∑

i=n−n′+2

k

pi

= |C| − (n′ − 1)k ·
n∑

i=n−n′+2

1
pi

≥ |C| − |C| · n
′

pn′

≥ |C| − |C| · 2
3

= |C|3 .

In particular, we can show that k/pk ≤ 2/3 by k/pk < 0.4 for k ≥ 20 [GKP94, eq. (4.20)]
and checking all k < 20 manually; the maximum is attained at k = 2. �

Lemma B.2: |C(Ico, 1, dk/ie)| ∈ Θ
(
|C(Ico, 1, dk/ie)|

)
in the worst case.

Proof: Let for short C := |C(Ico, 1, dk/ie)| and C := C(Ico, 1, dk/ie). It is clear that
C ≤ |C|; we will show now that C ∈ Ω(|C|) in the worst case.
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B. On the Number of Distinct Candidates

We make use of the same instance (Lprimes, k) we used in the proof of Lemma B.1, with
a similar calculation:

C = |C| −
n∑

i=n−n′+2

⌊
dk/ie
pi

⌋

≥ |C| −
n∑

i=n−n′+2

k
i + 1
pi

≥ |C| − n′ − 1
pn′−1

·
(

1 + k

n′ − 1

)
≥ |C| − 2

3 ·
(

1 + k

n′ − 1

)
∈ Θ(|C|)

because k/n′ ∈ o(k logn′) = o(|C|). �

Lemma B.3: |C(Ico, p(Li, l), p(Li, l))| ∈ Θ
(
|C(Ico, p(Li, l), p(Li, l))|

)
in the worst case.

Proof: Let again for short C := |C(Ico, p(Li, l), p(Li, l))| and C := C(Ico, p(Li, l), p(Li, l)).
It is clear that C ≤ |C|; we will show now that C ∈ Ω(|C|) in the worst case.

We make use of our trusted instance (Lprimes, k) again. We show that very prime yields
at least one candidate unique to itself, as long as k is constant (which is sufficient for a
worst-case argument).

Recall that l > l so every Li has some j; we note furthermore that for fixed i ∈ Ico,

j ≤ p(Li, l) =
⌈
Li

/ ΣIco

k + |Ico|

⌉
=

⌈
pi ·

k + |Ico|∑
i′∈Ico pi′

⌉
≤

⌈
pi ·

2k
pn

⌉
≤ 2k < Li

for big enough n, in particular because pn ∼ n lnn [GKP94, p 110]. That is, every Li

with i ∈ Ico yields at least one Li/j no other does, since all Li are co-prime. Hence
C ≥ |Ico| ∈ Θ(|C|). �
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