31,349 research outputs found

    Mixed-Mode Oscillations in a Stochastic, Piecewise-Linear System

    Full text link
    We analyze a piecewise-linear FitzHugh-Nagumo model. The system exhibits a canard near which both small amplitude and large amplitude periodic orbits exist. The addition of small noise induces mixed-mode oscillations (MMOs) in the vicinity of the canard point. We determine the effect of each model parameter on the stochastically driven MMOs. In particular we show that any parameter variation (such as a modification of the piecewise-linear function in the model) that leaves the ratio of noise amplitude to time-scale separation unchanged typically has little effect on the width of the interval of the primary bifurcation parameter over which MMOs occur. In that sense, the MMOs are robust. Furthermore we show that the piecewise-linear model exhibits MMOs more readily than the classical FitzHugh-Nagumo model for which a cubic polynomial is the only nonlinearity. By studying a piecewise-linear model we are able to explain results using analytical expressions and compare these with numerical investigations.Comment: 25 pages, 10 figure

    Resonance and marginal instability of switching systems

    Full text link
    We analyse the so-called Marginal Instability of linear switching systems, both in continuous and discrete time. This is a phenomenon of unboundedness of trajectories when the Lyapunov exponent is zero. We disprove two recent conjectures of Chitour, Mason, and Sigalotti (2012) stating that for generic systems, the resonance is sufficient for marginal instability and for polynomial growth of the trajectories. We provide a characterization of marginal instability under some mild assumptions on the sys- tem. These assumptions can be verified algorithmically and are believed to be generic. Finally, we analyze possible types of fastest asymptotic growth of trajectories. An example of a pair of matrices with sublinear growth is given

    Large deviations in the presence of cooperativity and slow dynamics.

    Get PDF
    We study simple models of intermittency, involving switching between two states, within the dynamical large-deviation formalism. Singularities appear in the formalism when switching is cooperative or when its basic time scale diverges. In the first case the unbiased trajectory distribution undergoes a symmetry breaking, leading to a change in shape of the large-deviation rate function for a particular dynamical observable. In the second case the symmetry of the unbiased trajectory distribution remains unbroken. Comparison of these models suggests that singularities of the dynamical large-deviation formalism can signal the dynamical equivalent of an equilibrium phase transition but do not necessarily do so

    Time Dependent Saddle Node Bifurcation: Breaking Time and the Point of No Return in a Non-Autonomous Model of Critical Transitions

    Full text link
    There is a growing awareness that catastrophic phenomena in biology and medicine can be mathematically represented in terms of saddle-node bifurcations. In particular, the term `tipping', or critical transition has in recent years entered the discourse of the general public in relation to ecology, medicine, and public health. The saddle-node bifurcation and its associated theory of catastrophe as put forth by Thom and Zeeman has seen applications in a wide range of fields including molecular biophysics, mesoscopic physics, and climate science. In this paper, we investigate a simple model of a non-autonomous system with a time-dependent parameter p(τ)p(\tau) and its corresponding `dynamic' (time-dependent) saddle-node bifurcation by the modern theory of non-autonomous dynamical systems. We show that the actual point of no return for a system undergoing tipping can be significantly delayed in comparison to the {\em breaking time} τ^\hat{\tau} at which the corresponding autonomous system with a time-independent parameter pa=p(τ^)p_{a}= p(\hat{\tau}) undergoes a bifurcation. A dimensionless parameter α=λp03V−2\alpha=\lambda p_0^3V^{-2} is introduced, in which λ\lambda is the curvature of the autonomous saddle-node bifurcation according to parameter p(τ)p(\tau), which has an initial value of p0p_{0} and a constant rate of change VV. We find that the breaking time τ^\hat{\tau} is always less than the actual point of no return τ∗\tau^* after which the critical transition is irreversible; specifically, the relation τ∗−τ^≃2.338(λV)−13\tau^*-\hat{\tau}\simeq 2.338(\lambda V)^{-\frac{1}{3}} is analytically obtained. For a system with a small λV\lambda V, there exists a significant window of opportunity (τ^,τ∗)(\hat{\tau},\tau^*) during which rapid reversal of the environment can save the system from catastrophe
    • …
    corecore